HomeMy WebLinkAbout1.0 Applicationoo
t
Special Use Permit Application
Mountain States Communications, Inc
New tower for KMTS radio
o
GARFIELD COUNTY
Building & Planning DePartment
108 8th Street, Suite 201
Glenwood Springs, Colorado 81601
Telephone: 970.945.8 21 2 F acs;imile: 970. 384 .Y7 0
www. qarfi el&countv.com
Special Use Permit
GENERAL INFORMATION
' (fo bc oornpl€lod bY ihe aPPkxnt)
\, v U! Yvll'l
Street Address / General Location of Property:
Legal DescriPtion:
Existing Use & Size Of PrOpeO in aCreS: Communication Facilitv / 40 acres gporox.
Description of Special Use Requested:
) Zone District:
Mountain States Commultct!&nt'lnc.
) Address: Rttn: Wm R Dunawav 32308 S lephone: 970;945:9125
1> City: GtenwoodSprinqs State: CO - ZipCode: 81601 FAJ(U0-915'5409
D Name of Owner's Representative. if anv (Attorney. Planner. etc):
Gabe Chenoweth, General Manaqer. KMTS.Radio,
) Address; 32308 South Glen Ave TelePhone: 970-945-9125
1, City: _ Glenwood,spring,s Stats CO Zip Code: 81601 FAX:970'945{'409
NETIof the SE % of Section 17, TEq llqw
lO2tttower for Radio Station KMTS to comply with Federal
)'Doc. No.:
STAFF USE ONLY
Date Submitted:- TC Date:
) Planner:Hearing Date:
I. APPLICATION SUBMITTAL REQUIREMENTS
As a minimum, specincatty respo.rt"l;H|;];VU h:T:$:lg,3ll
r** anv additionar information to
1. Please submit, in narrative form, the nature and character of the Special Use requested.
Submit plans and supporting information (i.e. letters from responsible agencies)- lnclude
specifications for the pioposed use including, but not limited to, the hours of operation, the
number and type of vinides accessing the site on a daily, weekly and/or monthly basis, and
the size and tocation of any existing and/or proposed structures that will be used in conjunction
with the proposed use, and provisions for electric power service and any other proposed utility
improvements. Be sPecifi c.
2. lf you will be using water or will be treating wastewater in conjunction with the. proposed use,
please detail the imount of water that would be used and the type of wastewater treatment. lf
you will be utilizing well water, please attach a copy of the appropriate wel! permit and any
otner bgat water supply information, including a water atlotment contract or an approved water
augmeniation plan io demonstrate that you have legal and adequate water for the proposed
use.
3. Submit a site plan /map drawn to scale that portrays the boundaries of the subject property, all
existing and pioposed structures on the property, and the County or State roadways within one
(1) mile of your'property. lf you are proposing a new or expanded access onto a County or
State roadway, submit a driveway or highway access permit.
4. Submit a vicinity map showing slope / topography of your property, for which a U'S.G.S.
1:24,000 scale quadrangle map will suffice.
Submit a copy of the appropriate portion of a Garfield County Assessor's Map showing all
mineral rights-owners oi ttre'subject property and public and private landowners adjacent to
your property (which should be delineated). ln additional, submit a list of all property owners
and theii adiresses adjacent to or within 2OO ft. of the site. This information can be obtained
from the Assessor's ffice.
Submit a copy of the deed and a legal description of the subject property.
lf you are acting as an agent for the property owner, you must aftach an acknowledgement
from the property owner that you may act in his/her behalf.
Submit an statement that specifically responds to each of the following criteria from Section
5.03 of the Zoning Regulations:
(1) Utilities adequate to provide water and sanitation service based on accepted
engineering standards and approved by the Board of County Commissioners shall either
be in place or shall be constructed in conjunction with the proposed use.
(2) Street imprcvements adequate to accommodate traffic volume generated by the
prbposeO use and to provide safe, convenient access to the use shall either be in place or
shall be constructed in conjunction with the proposed use;
(3) Design of the proposed use is organized to minimize impact on and from adjacent
uses of land through installation of screen fences or landscape materials on the periphery
of the lot and by location of intensively utilized areas, a@ess points, lighting and signs in
such a manner as to protect established neighborhood character;
5.
6.
7.
8.
r-t
i,-_/
g. Depending on the type of Special Use Permit requested, you may need to respond to
additional review standards in the Garfield County Zoning Resolution Section 5.00
Brppf"r"ntary Regulationsl. This may include _uleg gy.ch industrial uses [section 5.03'07 &
b.Oa.Oe], Rcceisorybwelling Units [seition 5.03.21], Utility line/Utili$ Substations, etc. Specific
seaioni of the zoning Res-olution wnicrr can be located on the Garfield. County web site.a_t
http://w\
^,v.qarfield-county.
com/buildinq and olannino/index. htm,information can be
obtained from this office
10. A $400.00 Base Fee: Applicant shall sign the 'Agreement for Payment' form and provide the
fee with the aPPlication.
11. Submit 2 copies of this completed application form and all the required submittal materials to
the Building'and planning Department. Staff will request additional copies once the Special
Use Permiiapplication has been deemed technically complete'
il.
(The following stePs outline @ermit Application review process works in
Garfield Gounty.)
1.Submit this completed application form, base fee, and all supplemental information to the
Garfield County irlanning bepartment. lt wil! be received and given to a Staff Planner who
witl review the application for technical completeness.
Once the application is deemed technically complete, the Stafi Planner will send you a
letter indicaiing tne application is complete. ln addition, Staff will also send you a "Public
Notice Form(sJ" inOicaiing the time and date of your hearing beforg tn9 A91d of County
Commissionirs. prior to t-he public hearing, Staffwill provide you with a Staff Memorandum
regarding your requested Special Use. (liStatr determines you application to be deficient,
a letter will be sent to you indicating that additional information is needed to deem your
application comPlete.)
3. lt is solely the Appticant's responsibility to ensu-re proper noticing occulls regarding the
requesteO Speciai Use and the public nearing. lf proper notice has not occurred, the
public hearing witl not occur. Notice requirements are as follows:
Notice by publication, including the name of the applicant, description of the subject
ioi, a Oelcription of the proposed special use and nature of the hearing, and the
daie, time and place for ine hearing shall be given once in a newspaper of general
circulation in that portion of the County in which the subject property is located at
teast thirty (30) bui not more than sixty (60) days prior to the date of such hearing,
and proof oi publication shall be presented at hearing by the applicant.
Notice by mail, containing information as described under paragraph (1)-above,
shafl be mailed to all owndrs of record as shown in the County Assessot's Ofiice of
lots within two hundred feet (2OO') of the subject lot and to all owners of mineral
interest in the subject property at least thirty (30) but not more than sixty (60) days
prior to such heahng'time by certified return receipt mail, and receipts shall be
presented at the hearing by the applicant.
a.
b.
LI
4.
5.
c. The site shall be posted such that the notice is clearly and conspicuously visible
from a public right-of-way, with notice signs provided by the Planning Department.
The posting must take piace at least thirty (30) but not more than sixty (60) days
prior to thJhearing date and is the sole responsibility of the applicant to post the
notice, and ensure tnat it remains posted until and during the date of the hearing.
The Applicant is required to appear before the Board of County Commissioners at the time
and dite of the puoiic hearing at which time the Board will consider the request. ln addition'
the Applicant shall provide proof, at the hearing, that proper notice was provided'
Once the Board makes a decision regarding the Special Use request, Staff will provide the
Applicant with a signed resolution memorializing the action taken by the Board. Following
the Board's approval, this office will issue the Special Use Permit to the applicant. lf the
Board's appror'al includes specific conditions of approval to be met, this office will not issue
in" Otriciir Special Use permit certificate until the applicant has satisfied all conditions of
approvat. The Special Use Permit approval is not finalized until this office has issued the
Ofiiciat Speciat Use Permit certificati signed by the Chairman of the Board of County
Commissioners.
I have read the statements above and have provided the required attached information
which is.correct and accurate to the best of my knowledge'
of applicanUowner)Last Revised : 1 1 lO7 l2OO2
o
o
1. Narrative
Proposal to erect a new taller tower for KMTS
to meet Federal safetY standards
Colorado West Broadcasting, lnc, the licensee of Radio Station KMTS, is submitting a special use
permit application as the igent for Mountain States Communications, lnc. The president of
irlountain btates Communications is also a principal of Colorado West Broadcasting.
ln order to meet changing federal safety and health regutations, this application is being filed for a
special use permit to-inJtall a taller 102 foot tower 170 feet west of the existing tower used by
KMTS on neO Mountain, west of Glenwood Springs. The taller tower is required to meet federal
safety and health regulations.
The subject property is the northeast quarter of the southeast quarter of section 17, TOS R89W'
approximatet'y +O a6res in area. The property is located just south of the cross, overlooking the
City of Glenwood SPrings.
KMTS has broadcast from this property, serving Garfietd County and its city of license, Glenwood
Springs, using a shorter 41 fooltower since June of 1977.
Federal regulations, fir'st enacted in the 1980's, set standards for public exposure to radio ene.rgy.
The standards were made more strict by new regulations in the late 90's. KMTS cant meet those
regulations from their curent tower.
The levels of radio energy fall off rapidly as the distance from the antenna increases. To comply
with the regulations, stations must make sure that the general public can't approach the antenna
closely, entering an area where the levels exceed the standard.
The distance from the antenna is measured both vertically and horizontally, so an antenna at the
top of a talltower might not produce excessive levels of energy at any point on the ground ... the
energy levets would drop below the threshold before even reaching the ground'
This is, in fact, the situation in most of the country. Broadcasters use tall towers to serve a large
area, and there is no problem. But here in the west, it's common to have short towers on tall
mountains, and the levels on the ground at the base of the tower can exceed the threshold. At
that time the short towers were prefened for cost, efficiency and aesthetic reasons. Now, they're
a problem.
Broadcasters can address the problem in several ways. A taller tower can raise the antenna,
reducing the energy levels on the ground. A fence can restrict public acoess to the area where
tevels aie excessive. And certain antenna designs can reduce the level of radio energy direded
straight down from the antenna.
KMTS has few options. The current tower is so short that a fence would need to be about 160
feet from the tower. An easement across the property (put in use in the last few years) goes
within a few feet of the tower.
The best performing antenna designs cannot reduce the downward radiation enough to meet the
standards from the existing short tower.
So the only option is to raise the antenna enough to meet the regulations for exposure to the
public on t-he ground. The minimum height required is 92 feet to the centerline of the antenna,
102 feel to the top of the tower. Neither the use of fencing nor a high performance antenna
reduce that minimum height significantly.
To alleviate concems about hazards to aircraft, or the visual impact from tower lights or orange
and white obstruction painting, Colorado West Broadcasting provided ,_oti*.. of proposed
construction to the FAA, and releived a Determination of No Hazard, and confirmation that tower
liglrting and painting would not be required.
KMTS understands that radio towers are not popular; most people don't want to see them' The
cunent short tower stands near the lip of the'mountain, and the proposal for the new tower sits
172 teetfarther back. This is designed to keep essentially the same visual impact to the citizens
in the valley below. lf the tower wis moved any farther back, it would lose line of sight to the city,
and the stition's signal would be greatly weaiened. This proposal is for a relatively thin guyed
tower with an approiimately thirty inch face. This type of tower will have the least visual impacl.
Consideration was given to other sites; both lron Mountain and Lookout Mountain provide line of
iight service to Gtdnwood Springs. But there are no towers on lron Mountain over 27 feet in
njight, and Lookout Mountain iJadminislered by the BLM as a low power site, with a power
restliction far less than the 10,000 watts KMTS is licensed for'
KMTS gains nothing from this proposal, and it involves significant expense, time, trouble, and
interruplion to the stition's operation. The station does not increase its audience or power, extend
its coverage or range, increase its market share or revenue. This is being done solely to comply
with the applicable federal regulations-
The site is in continuous use, twenty four hours a day, year round. lt's operated as an unmanned
communications facility, aveiaging ibout one site viiit per month. The typicalvehicle is a pickup
truck, although a snowcat migit 6e used in winter. The facility does not use water or generate
waste water. The existing eleAric service is adequate and will not be changed'
ln evaluating this proposal, Colorado West Broadcasting asks for consideration of the service
KMTS has given the community over the years, such as:
Emergency coverage of the Coal Seam and Spring Creek fires, and Mitchell Creek flooding
St. pa-tricks Day Dinking Awareness show with local law enforcement agencies
lssue and Answer Night live broadcasts
Search and Rescue event Promotion
Literacy Awareness
Buckskin Network to get emergency messages to hunters
Traffic Reports aterting the public to hazardous road conditions
Local high schoolsports coverage
As well as event promotion and fundraising help for community organizations like Kiss and
Squeal, Garfietd County Sheriffls Golf Toumiment, DARE, Lift Up, the Rotary Club, Strawberry
Oays ioOeo, the Muscular Dyslrophy Walk, Garfield County Fair, Summer of Jazz, and many
others.
or Print on This Fom
. Deparlned of Trsnsportdion
l.r.l Avistion Admini.tra{ion
Sponsor (pers,,n, @nqny, etc. pmposing thb adion) :
r. ot: GSbe
nE:, lnc
rcss: 3230-8
r
eptpne:
Sponsor's Repn'3 tildtlr (ll other thart *1) :
r. of:
TE:
Jres6:
EptEne:
State:
-Zip:
Fax:
Notice ol!
Duratlon:
I ltlenr Constrrrc,tion El Alteraiion tr Existing
E Perrnanent O Tenrporary1 rflortths, days)
Wort Schcdub: Beghnirg 1011102 E d 413q43
Type:E Antenna Tower E crane fl euilor,g El Power Une
I tantrll E WaiterTank El Other
f,erting/Pahrong and/or Lightng Preferred:
Red Lights and Paint EI Dual - Red and Mediwn lnbnsity White
ItVhite - Meclium lntslrity EI Drial - Red and I'Igh lntensity White
WtriE - High lnterx*ty EI otrer Prefer no lighting
FCC Antenna Srucluto Registratinn Number (rf applica$e):
Gomplcde [lescrlptbn of Proposd:
Colorado West Broadcasting, lnc, the licensee of FM radio station KMTS, is proposing a
taller tower 170 feet to the west of their existing tower. There will be no change to the
station's power or frequency. The KMTS antenna is omnidirectional; the proposed antenna
center of radiation height is 92 feet above ground level.
The proposed site is located on the eastern slope of a mountain southwest of downtown
GlenwooO Springs. The site is approximately 1600 feet above the city and the municipal
airport; the mountain rises another 800 feet to the west of the site, providing significant
terrain shielding to the proposed tower.
loe ls requlreO Oy 14 Co<te of Federal Regulations, part r/ pursEnt to 49 U.S.c., section 2t4718. Percons who knowingv and willhgty virlate the rEtice
drerrlents A paitt are sutiect b a ciyil pendty ot $1,fl)0 per day until the notice b received, pursuant b 49 U.S.C., seAbn 48301 (a).
,rcby cortify that af of the above stsltoments made b3r me aro truo, com-pl€te, and corect to the bsst of nry knowledgc, ln additon, I agrrc to
rt anAor tfitrt tre 3tn cfiire in accordance wilh estaHishod marthg and lighthg strndards aB ne,cessa]y.
OMB No.212GmO1
Failure To Proide N! Requested lnlomation May Delay Procossing of Your Notice
Notice of Proposed Construction or Alteration
9. tatftudc: 39 o 31 ' 57 .._-.-'l
10. tongihrde:
--107
" 20 '
-32'll. Darum: tr NAD 83 E NAD 27 E Other.
i2. Nearcst: City: Glenwood Sprinqs State: CO
t3. Near:sil Public'use (not private-use) or Militrary Airport ot Heliporf
14- Disilance frorn #13. to Struchrre:
15. Direcffon tom #t3. to Sfuctrre:
16. Slte Ehvatldr (AMSL):
17. Total S:trucilurc Height(AGt):
315 degrees true
7461 n.
102 x.
18. Overall hdgm (ill&+ #r7.) (AMSL):
19. Prevbus FAA Acronautca! Study l.umber (if applit=ble):
20. Desctiption of location: (Atiach a USGS 7.5 minute
Quadrangli Map with the precise site marked and any certified suruey.)
As shown on the attached quadrangle map, the site
is on the east slope of Red Mountain, southwest of
the City of Glenwood SPrings.
Typed or Printed name and TiUe cf Person Filing Notice
Gabe Chenoweth, General Manager8116102
Federal Aviation Administrat-ion
Northwest Mountain Regional Office
1601 Lind Avenue SW-ANM-520
Renton, WA 98055-4056
AERONAUTICAL STUDY NO.
2002-ANM-1761-OE
PRIOR STUDY NO.
Issued Date: 70/11 /2002
Gabe Chenoweth
Colorado West Broadcasting, Inc
3230-8 South GIen Avenue
Glenwood SPrgs, CO 81601
**DETERMINATIoNoFNoIIAZARDToAIRNAVIGATToN**
The Federal Aviation Administration has completed an aeronautical study
under the provisions of 49 U.S.C., Section 44118 and, if applicable, Title
74 of the code of Eederal Regulations, paxt l'7, concerning:
Structure TYPe; Antenna Tower
Location:
Latitude:
Longitude:
Hej-ghts:
Glenwood Sprgs, CO
39-31-57 NAD83
107 -20-32
102 feet above ground level- (AGL)
1563 feet above mean sea level (AMSL)
This aeronau stud revea provided
@any, is(are
See attachment for additional condition(s)or information.
on
fr@s, we recommend i-t be installed and maintained in accordance
60-1 AC70/7460-lIK.with EAA advisory Circular 7O/14
This determination expires on 4/17/2004 unless:
(a) extended, revised or terminated by the issuing office.
(b) the construction is subject to the licensinq authority of
the Eederal Communications Commj-ssion (FCC) and an
application for a construction permit has been filed , ds
required by the ECC, within 6 months of the date of this
determination. In such case, the determination expires on
the date prescribed by the FCC for completion of
construction, or the date the ECC denies the application.
NOTE: REQUEST FOR EXTENSION OE THE EFFECTIVE PERIOD OF THIS DETERMINATION
MUST BE POSTMARKED OR DELTVERED TO THIS OFEICE AT LEAST 15 DAYS PRTOR TO THE
EXPIRATION DATE.
This determination is based, in part, on the foregoinq description which
incfudes specific coordinates, heights, frequency(ies) and power. Any
chanqes in coordinates, heights, and frequencies or use of greater power will
void this determination. Any future construction or alteration, incJ-uding
increase to heights, power, or the addition of other transmitters, requires
separate notice to the EAA.
This determination does include temporary construction equipment such as
cranes, derricks, etc., which may be used during actual constluction of the
structure. However, this equipment shall not exceed the overafl heights as
indicated above. Equipment which has a height greater than the studied
structure requires separate notice to the FAA'
This determination concerns the effect of this structure on the safe and
efficient use of navigable airspace by aircraft and does not relieve the
sponsor of compliance responsibitities relating to any law, ordinance, or
rlgulation of any Eederal, State, or local government body.
A copy of this determination will be forwarded to the Eederal Communications
Commiision if the structure is subject to their Iicensing authority.
If we can be of further assistance, please contact our office at
(425)227-2537. On any future correspondence concerning this matter, please
refer to Aeronautical Study Number 2002-ANM-1761-OE.
( DNE)
Attachment ( s )
'James Riley
Specialist
2002-ANM-1761-OE
Conditional Statement
U The proponent agrees to electromagnetic conditions in letter dated October 10,2002.
Therefore" this determination is conditional in that upon receipt of notification from the
U Federal Communications Commission that harmful interference is being caused by the
licensee's transmitter, the licensee shall either immediately reduce the power to the point
of no interference, cease operation, or take such immediate corrective action as is
necessary to eliminate the harmful interference.
(:t Any additional broadcast stations at this location, or increases in effective radiated power
\-/ or antenna height, shall require another study.
as* x66l'allM-1761-oE
ERE9I ENCY
UNIT
ERP
ERP I'NIT
Frequency
MHz KW10
Erequency Attachment (DNE)
LOW
FREQT'ENCY
oo '1
Photograph of tower similar to proposed tower
taken at Meeker CO
I
2. Water / wastewater
The site is currently used only as an unmanned communications facility, visited on average once
a month. The site does not use water or generate waste water.
PowrDcruiqv *r Di*am
Powr
Deuity
(pV/cm)
power Density chart using FCC's FM Model program to predict power density for a given height
antenna. Thisshows that with an antenna 92feel above the ground, KMTS will not exceed the
public safety threshold of 200 uMsq-cm.
Di*em (m)
Terrain Profilc, Wcst to East at the KMTS Towcr
Roaring
Fork
Rivgr.I,
7t[tr
Eo
oE*,
ocr
60m
Hidland
Avenue
t
l{trrr 82
1
VallGyVieu,
Hospital
4000
Feel, Dislance
'{i ti'r_ff
h#j
,a
Scale
1 inch = 100 ft
\.\/\\\t618i t-
I\\\ \ _,--
\ -f
\t\I*\, l\'\
o -5
-
lMl{'t-0:-:Jffi tttr 0#m I'J{:I[BS
Map crealed wirh ToPo!6 @2002 National Geog:nphic (www natronalgeogaphi. comilopo)
\
Ht
mxExH=J-o-{oAao
5'o
€
i
!
t.
t
t
:
t
l
rl
:
,lt
\.
t-*r/f-
,*
d
i*tt""
r
/
f
f
\
.{
Ff,-*#
; ,irff
\-/'{1 tf*,
rl
5. Assessor's maP.
Adjacent ProPerty owners:
City of Glenwood SPrings
Bureau of Land Management
Glen Park Ranch LLC (Parcels 155 and '152)
PO Box 1150
Glenwood SPrings CO 81602
Leroy W Green (Parcel 153)
703 Silver Oak Drive
Glenwood SPrings CO 81601
0
*---*-r*--'
iit
*
rl
a
_'iI il!! ii*
i-Ft'i"!
I
I
I
'4 1l*
"i to'oiad,iH:i 6i ,..,
':: <)
t ll .l
1i
lrV
il,"f;
n' li':,. {-
'lii i ntTxHi
.,t:1- ',t i
ll7',ji; -( ,l-i*;tij
$
I
s
o
o
o
I
Property Information
Data t1pdated Quarterty with the last update released on 02/03/2004
rax information is updated as of noon
ff;X_ll3"rl;11;,"
be available for viewins bv 5 pm
Assessor
& Treasurer
Get Map
-iF-
Glen Park Ranch Limited
Primary
Liability ComPany
Po Box 1150
Glenwood Spgs, CO 81602-1150
, co 81602-1150
R006604
2L8517400152
t2201t.5
008
SECT,TWN,RNG: L7-6-89 DESC: SE. AKA PARCEL 2 GLEN PARK MNCH.
EXCEPT A TR OF LAND CONT. 1.5 AC AS DESC IN BLA BK T277 PG 503.
ALSO A TR OF LAND CONT 1.5 AC AS DESC IN BLA BK T27L PG 503.
BK:L202 PG:505 BKZT2O2 PG:477 BKIO474 PG:0357 BK:L27L PG:503
RECPT:584979 BK:L27t PG:502 RECPT:584978 BK:L27L PG:501
RECPT:584977 BK 1199 PG:912 RECPT 567149 BK:1199 PG:910
RECPT:567148 BK:0978 PG:0183 BK:0815 PGz0762 BK:0815 PG:0761
PRE : R0086 16 AND/THRU :A TO : R070032
$124,O8O.OO
Name:
Type:
Address:
i:'r r:tr:i*rt.*v
Address:
Account
number:
Parcel number:
Sub-division:
Condo:
Neighborhood:
Area:
Lega l:
Total Value:
2003 taxes
payable in
2004:
Search > Eeggllq > Detail
$2,t62.32
Garficld Cour:t1'
Amount Paid: $0.00
Assessed Value: $124,080.00
Land size:
Square feet:
No items found.
lmprov*me ntisi
No items found.
35.01
CCIpyrigirt €i Z0{rs Il4Etsh+i! {i e*mparry*. itrc. Ali Rights Reserved.
a-L
Assessor
& Trnss*lrer
Property fnformation
Data Updated Quarterly with the last update released on 02/03/2004
rax information is updated as of noon
ffiXjr;!1;;1l;1,"
be available for viewins by 5 pm
Get Map
"i&r''I
Searqh ) Results ) Detail
Name:
Type:
Address:
E la*eriir
Address:
Account number:
Parcel number:
Sub-division:
Condo:
Neighborhood:
Area:
Legal:
Total value:
2003 taxes
payable in 20O4=
Amount Paid:
Assessed Value:
Land size:
Glen Park Ranch Limited
Primary
Liability Company
Po Box 1150
Glenwood Spgs, CO 81602-1150
, co 81602-1150
R006607
218517400155
L220Lt.5
008
SECT,TWN,RNG: t7-6-89 DESC: SE. AKA PARCEL 6 GLEN PARK MNCH
BKz0474 PG:0357 BK:0815 PG:0761 BK:0815 PG=O762 BK:0978
PG:0183 BK:1199 PG:912 BK:1199 PG:910 BK:7202 PGz477
PRE:R080616
$124,O8O.OO
$2,L62.32
$0.00
$124,080.00
Colo ada
nL-/
Square feet:
F,: ;.: ; i::: i: r ii i :':
No items found.
!n:;:ii:.i+=c.::ii*:
No items found.
35.01
C*F-lri+i:t au;**3 ii4itcii*ii & **;n#*c"i"',, i**' Ailftrgl'it-< R*serveci.
Assessor
& Treasutr€r
Property fnformation
Data lJpdated Quarterly with the last update released on 02/03/2004
rax information is updated as of noon
ffflJl|rJ;X1;1,"
be available for viewing by 5 pm
$_eOICh > [es_!I!_tg > Detail
Name: Leroy W. Green
Type: Primary
Address: 703 Silver Oak Drive
Glenwood Springs, CO 81601-2842
Address:
, co 81601-2A42
R006605
218517400 153
722077.5
008
SECT,TWN,RNG: T7-6-89 DESC: SE. AKA PARCEL 3 GLEN PARK RANCH,
ALSO A TR OF LAND CONT, 1.5 AC AS DESC IN BLA BK L27L PG 503.
EXCEPT A TR OF LAND CONT. 1.5 AC AS DESC IN BLA BK T271PG 503.
ALSO A TR OF LAND CONT. 2.T7 AC AS DESC IN BLA BK 1271PG 5OB.
EXCEPT A TR OF IAND CONT. 2.77 AC AS DESC UB BLA BK L27T PG 5OB.
BK:L202 PG:55 BK:7202 PG:477 BK:0474 PG:0357 BK:L271 PG:508
RECPT:584982 BK:1277 PG:507 RECPT:584984 BK:1271 PG:506
RECPT: 584980 BK:L27 1 PG : 503 RECPT: 584979 BKtl27 L PG: 502
RECPT:584978 BK:727L PG:501 RECPT:584977 BK:12O7 PG:617
RECPT:5694L2 BK:1199 PG:912 RECPT:567149 BK:1199 PG:910
RECPT:567148 BK:0978 PG:0183 BK:0815 PG:0762 BK:0815 PG:0761
PRE: R080616 AND/THRU :A TO : R070032
$124,O8(,.OO
Get _Map,
rl"-.r:r:.
Account
number:
Parcel number:
Sub-division:
Condo:
Neighborhood:
Area:
Lega l:
Cr;ltrado
Total Value:
Garficld (-ountr,
2003 taxes
payable in $2,L62.32
2004:
Amount Paid: $0.00
i-ai i. ? *
Assessed ^-'-G;, $124,o8o.oo
Land size:
Square feet:
Buiidii'iti:i
No items
found.
!*rpr*v*;**ntis i
No items found.
35.01
C*pyright e 3S*3 i'*it,;heii &- C*rnpairr.i. int. Ali Rigrt':ts Rsserv*d.
lqtthhlag Oo., l82l-{0 Stdrt StrBat, Ir6rvet, Coto+rdo --?-?l
.,:r:r:i!,, --.,-
'-l
I
No.962. lf,AtBANrT ttorosmDu6 DmA
-Bnrltorn
is_7s,r"*.- | - | srra p7s
RED MoUNTATN RANCH PARTNERSHTp, d ltmtted partnef,ffilp, I -:._:".."::"-
Tms Drru Made thrr A *o
a"y "t
I um offiliitiittnr iiiItr*rh -! 'r - -4I ^ 'r J
Mycommlsslon
WITNESS my
couaty of Garfl el d aarl gteto of cotd. I t*[ tluuu*ullllll ttt
radorof tLeflntpart,and v' vvrv- I , 2 /, n.
M0UNTAIN STATES COIvIMUNICATIONS, INC I " d, o "lvluul\lA.ll\ J tAIEJ Lu,lvtul\luAI ruN5,,t?;rr*ooningunlzeilarrit
I
exlsting undor and by vlrtue of the lars of the state of col orado , I oofthe ceeondpert: I ''wlrNEssETE,orattheraftlparty
of ths first part, for and In conslderuuon of ths sum ofTEll D0LLARS and other good and valuab]e consldLrifion )ffiilIltUto the rald parrt y of the flrct-iart ln hanil patrl by ttre ian pafty of the seeond po$, the reaetpt ;.r"rf i,
hereby eonfessed and acknowledged, hag granted, bargalned, sold and conveyed, and by these presentrdo €Sgrant, bargiln, sell, convey and confirm, unto the rald party of the seeond part, lts suceerebrs an1"rrigns forover,
1u of lhe followlng rlescrlbed lot or parrel o{ lan4 sttuate,lylng anrl betrg ia the-- -- :"- -v'.vrv...E r.e'sr.uEs rvr vr p4rvsr or rEnq, truuauE, Iyug an[ Dexng ia ths
County of Gaff i el d and Steto of Colorado, to wtt:
NEr".SEk Section 17, Twp. 6 South, Range 89 tr. of the 6th;p.rM.
logether with an easement or right oi way to said property as granted byloSetner wlth an easement 0r right of way to said property as granted by theCity of_Glenwood Springs and reiorded at Book 42i,: pabe S2O ot''ttre Garfield
County Records. Reserving, however, two rights oi waj, 60 feet ln wldth for
access and utllity purposes through the aboie descflbbd property, and the rightto.use iointly-the access road as qranted by sald City oi Gienwood Sprlnos,which.ri.ghts of way are shown generally on the map ldintifled as ExhiS'11',[,rattached hereto and by reference made a part herebf; subJect to the restrlctive
covenants as described in Exhibit rrBrr attached hereto and bjl. reference made apart hereof; Also reservilo an easement or rlght of way foiutility purposes
24 feet in width alonq and ad.iacent to the exlerfon bo-undarv lihes. oh tho arrldt!.alo1g a1-d a{jacent to the exterlor boundary lines-of the above
TOGETEER wlth all and stngular ttre heredltoaente and eppruteianecs thercunto.hlo[glng or ln erywlee
appertalnlng, and the reverslon and rsverBlons, renalnder and rrrualnderu, rgtrts, lssuss anl rt6ita thtileof; and all
the estate, rlght, tltle, lnterert, elalm and demand rrhatrower of the gald part y o{ the first parg elther la lar
or equlty, of, ln and to the above bargalned premiser, wtttr the hereditemeats anrd appurtenances.
TO EAVE AND TO IIOLD the sald premlses above bargalned and described, wlth the appurtenarce3, unb tho
said party of the seeo;; ;#,"' i i.' lHfffriliihffiht'fi?ffi ffi ffJ"H'* TilH;"11*f,I,*" # HT tri:;the sald party of the second part, tts suceorlolr and arslgarr. that at tho tlne of the eorseallng and ileltrely ofthese presents, i t i s well solzed of the prenlsee abofe conveyed, as of good, sults, perfet, absoluta andlndefeaslble estate of tnheritance, ln law, in fee slmple, and haS gooal rlghg full power roa f"rrf"f authortty togrant, bargaln, aell and convey the ssme in maaner and fomr as aforosald, aard that tfte same aru fire and clear ftomall,former and other grants, bargalns, letes, llenl, tarei, arlsBgments and encumbranees of whatever klnd or nstulesoeyqr, EXCEPT, Patent reservations and exceptions, I975 geneiaT pibpeity-Hies,-
easements and rights of way of a public or private natuie, and iestrictlve
covenants described in Book 425 at Page 279 ln the Garfleld County Records.
ond the above bargdned preanlses in the qulet and puceftrl porsesloa of ths satd party of the second pailg t$
successors and asslgns, agalnst all and ererT lrerso! o! persons lewfully clalmlng or to clalm ths rhote ot afly part
thereo$ the cBId party of the first pert rhall and rilt TfAnRAl{t AND rOREVER DEf.DilD.thereof, the cBId party of the first pert rhall and wilt TrAnRAl{I AND ITOREVER DEF.DI{D.IN WITNESS WEEREOB The setd patt y of the ffust part ha g hercrunto geti tS handandreal thedayandyoarrhstabovewrftrju -
RED-MOUNTAiI-nAttCH pRifliERSXtp,
1 Limited Partnership
a
rt\- _/nL-/
No.992.WARRANTY DEED.-For Photolraphlc Rccord.-Bredlord Publhhlng Co., 182t-18 Etout Stt€ct, Denver, Colorado -6.69
o
I:iii
i$:L.
l{:
lr
*
.v
qg
t
M*ilu tlrh
!.i i
+l
' ,"1
U ,t 's' ,l
Colomdo, of the &cohd part:
' a, I a
WITNESSSTE, That the sstil D8r;y oltth. ltrrt part, for bnd ln consltlerafion of the iotti.f i .irEN DOLLARS AND OTHER VALUABLE CONSXDEhATTON --------s------DqfFfitqto the eald part y ol the flnt DBrt ln h6nd patd by ratrl part y of the rocond.Dart, tho receipt rhereof lE
hereby coilfesBed 6nd acknowlodggal, hs g grunted, batgalned, soli and coffieyed, ehd by thr.se presents do gs
Brant, bar88ln, eeII, cohvoy and eonflrm, unto the Bald psrt Y of tl|e second Daft, lts, helrs and asslg?s fop
evef, all the followlnr deEcrlbed lot or paicel of lamd, sltuate, lylng and belng ln the
County of Gaf f leLd and State of Colorado, to w{t:
Tpi 6-S., R. 89 W., 6th p.M.
Section 17: SW L/4 and SE L/4i
^Section 2A: Nw 1/4r NE L/4, N L/Z SE L/4 and
sE L/4 sE L/4
Together with all improvements thereon and allditch, waterr spring and pipeline rights and rightsof way developed and used in connection therewithand appurtenant thereto.
TOGETHER wtth all and slngulor the hereditaments and appurtenances thereto belonging, or ln ehlr$lse
appeltalnlng, and the reverslor and reverslons, rehalndet and rcmalnders, rents, lssues anal proflts thereof, 6ild Bll
the estate, rlght, tltle, lht€rest, clalm and dernand whatsoever of the sald pafty of the flrgt part, either in law
or equity, of, in and to the above bargained premises, with the hereclltsnemts and appurtenanees,
TO HAVE AND TO HOLD the said premlses above bargained and described with the appurtensheee, unto the
sald lart y - of. the second part, its heirs and asslgrrs forever. And the sald part y of the flrst part,for herself 7 her hehs, executols, and adminlstrators, do€S covenant, grant, bargaln, and aBres to afld
with the satd part f of the second pa$, its heirs and asslgns, that at the ttme of the ensealing and dellvery
of these pfesents, shg is well gelzed of the premlses above conveyed, as of good, sufe, perfect, absolute and
lndefeasible eBtate of inherltance, in law, in fee simple, and has good right, full power end lawful authority
t0 glant, bargaln, sell and convey ths sams ln manner and forrn as aforesaid, and that the same arg free and cleet
from all former and other grants, bargalns, saleg, lleng, tar(es, assesgments and encumbranees of whatever kind or
.ntrtu?e soeverT except and subject to L97]- general property taxes, U. S.Patent reservations and exceptions, eisements-and rithts of way,if dnyr and Governmentar rules and regulations, and it is agreadby- second partyJs aceeptance hereof ttat hurrting, trapping 5rmolesting of wild anlmals or r^riId bLrds shaLl n5i Ue iitoriea onsaid property,
and the above bargalned premlses in the qulet and peaceable possession of the sald part Y o the seeond part,its heirs and aeslgng agalnst all and €very person or p€rsons lawfully claimlng or to clalm the rrhole
or any part thereof, the said part Y of the first pa$ shell and will WARRANT AND FOREVEB DEF'END.
IN wITNEss WHERE0F', the raid part Y of the ftrst part has hereunto set h€r hsnd
and seal the day and year flrst above wrltten.
(sEAL)
.(sEAL)
COLORADO,
of Garflefd
was acknowledged before mep. sMrl[,H.
June 3
10th day of Decemb€r
,7973-. lflttness
. ' '('ffrtt$cr* r .' 'rrlh i .r . .r i^ '
ooO
,li
I
WHEREAS, bY
all of that
NOW, TiiEREFORE, for and
covenants and promises, the
lease dated March 26, 1964, the Lessor leased
:--evvv!real property deseribed in lease ;:ecorded
fook 357 .at page 407 of the G.arfieio Counry
in consideration of the .=o1lowing
lease above describei is
1led and termina.ied:
r. That Lessee, wi-trrin a per:od 01" tl-:ree (3) years i.ro:,l
e::eof ' sha1l have the ::lglht to raze, disi-na:rtre a::.1 r-iliLl.vG
sting sl<i rift .r:':d ,pp"::t"i'r.ri:t'ricir j-ti.:.i oii ;rrl i..".i',
c.lescribci in said Le.rsc ancl bo entit.ic.: ,{:o iu:aii: as
Y)fotcr-cy 'i11 :iloney --calizci f::cm rhe salc c:rc-:;.:i, p--0_
''vcr:' tlio samc sjraii bc acco:.rplisjrco i.j1..cr: t::c s..lr)e*:\.-sic:r
tr'lled. fOf feCord Oo-t- .lo ior?1 ^! ,, A,.fiJ6 E;t i 3; #3;?iiro"'i.13 ,rt33*"i:
,
ui33"l;x;
AGREEMENT
Tlirs TNDENTURE made and entered into tn*s I *y' aay of
LIFI, INC., .d Colorado corporation, hereinafter joint,ly
to as the Lessee.
WITNESSETH:
st, L967, by and bctween Ti-iE erTy oF cLENwooD spRrNGS, colo?.A.
nicipal Corporation', hereinafter called Lessor, and MAliGA.-:.-*, t.
l, GLonwood SnrinS.s, Colorado, successor in,interest io
oo
Book 427,Page ,27
of Lcssor and shaIl be carriecr out in such a manner as to disturb
foriage and the ground cover as little as possibre
debris and whatever shall be removecr and the hilr
restored to its natural condition as nearly as may ):e r:os'sibie.
2 - That Lessor anc lessee shalr erect a three-strand
barbed wire fence with posts set aL intervars no greater than io
teet in length extending across that portion of the bouncary 1^nes
between the NE]; and sE]; of Section 17, Tp. 6 S., R. g9 w. of the
6th P.M., which fence shall genera1l1, follow the existing fence
line heretofore e::ected along said line and whicn extencs approxi-
nateiy one-th:-rd of a mile in iength. rt is further aErced that
a gate in said fence shall be installed at such location as shaii
be directed by the Lessee. Lessee shalr be given the right to
inake improvem.er:ts orl such fence as she ceems advi-sabre..
3 ' That Lessor agr:ees that tire electricai oo\^,er iines
cxtendinE to il-:e top of r:he ski- hiil and leacii;rg tirence:o thc
sheiter nousc anc new ski lrft erected by Lessee shail be ieft
incact .r;:i powe-: croviced in saio r i:.es f or such pc::ioi,s o: t i;..,c
c1;- r--icre are users for sucn eiL.ctrical energlz and the J.].-..,g_ can
econor:.icaIly be provioed by Lessor.
the existing
and that ai1
sc I l- ancr
Lr., u L (r
.. r:'l-- ; J; O I
tl,. Tnat Lessee, by .[]-ris instrumenr., iocs .tcrcbi, Ert..,
sct ovcr unto Lessor alr of her right, ricic tr::.-r r.:-lrcr-\li.
;ri.:t ccrta:-, i:oadr,vev .l:it-.ilriiLtg. f :oi. :.tc \.,JS -e - ^i.. Ci: .
- - ;'lc :""t arca clcvc iopcci bv -c s s c!1 , r,vrr icrr s "r id ro r...\{,i\ . \.. -.:l
a cc-rsi in cxccss o-[ ;]6C,OOO.OO, proviiccr , ^tor,-r.riu_rr
ooo
agrees that Lessee, her.invitees, successors and assigns
I be given access free of charge to said roadway at all times
or maintain said roadway nor to conduct any snow removal
whatsoever.
rt is expressly understood and agreed that by execution
:ement of any of the provisions above set forth shall be by
dings at law or i.r' uqrrity and that breach of. any of the
covenants shall in nowise constitute grounds for ::evivai
lease the subject hereof.
WIIEREOF the parties ha.re hereunto sec the:-.:
day and year first above wriiter.
liiE CITY OF GLENIfOOD Sp,tii\GS, CCI,ORADO
terms of the
iN WITi\ESS
and seais the
rector of Finance
f the lease above described sha'l be cancelled ancr held for
t and both parties thereto, and successors in interest,
,l be forevei discharged'and released from any and aii further
ations and duties thereunder. it is further agreed that
25 February 2004
To Whom lt May Concern:
Mountain States Communications, lncorporated owns the 40 acre parcel
of land located in the NE % of the SE 1/c of Section 17, Township 6 South, Range
89 West of the 6th Principle Meridian, the deed to which is recorded in book 478,
page 340, hereafter referred to as the "Property".
Mountain States Communications, lncorporated hereby gives its fulland
complete permission to Colorado West Broadcasting, lncorporated to apply for a
Special Use Permit to upgrade the current communication tower on the Property,
and to build that tower.
Sincerely,
Mountain
Gabe Chenoweth
KMTS/KGLN Radio
323A8 South Glen Ave
Glenwood Springs, CO 81601
Dear Gabe,February 9,2044
As you know, in the late 80's the FCC, for the first time, began regulating the levels of radio
energy around broadcast transmitter sites. ln the mid 90's the standards were tightened when
the FCC eslablished a lower level of radio energy for public exposure, although the previous,
higher level of exposure still applies to informed workers at radio sites.
KMTS is licensed by the FCC to operate with 10 kilowatts of power with an antenna mounted
on a tower so that the center of the antenna is 11 meters (36 feet) above ground. This creates
a radio energy field that exceeds the standard. (Yourlower is actually 41feel tall; 36 feet is the
center line of the antenna)
The problem is that KMTS's tower is unusually short. That's not uncommon in the west, where
short towers on tall mountains were an efficient solution to transmitter site design.
Using the existing KMTS antenna, the attached analysis shows that the it would have to be
raised to 28 meters (92 feet) to reduce the energy at the ground below 200 microwatts/square
centimeter, which is the FCC eslablished level for public exposure. lf the center line of the
antenna was at 92 feet, the overall height of the new tower would be 102 feet. You'll notice that
the level of radio energy begins dropping off rapidly 20 meters away from the tower and quickly
reaches negligible levels.
I understand your concern about minimizing the visual impact of such a change on the public.
No doubt, that was the intention when the existing short tower was chosen in the firs1 place.
While your existing 41 foot tower is relatively inconspicuous next to the 66 foot cross, a new
tower would be much more visible if it was built in the same location.
However if the new tower was constructed further back from the lip of the mountain, you could
increase the height without increasing the visual impact on the city of Glenwood Springs. A
terrain profile (attached) showsthat the site is elevated 19.8 degrees above Highway 82, and
almost due wesl of Valley View Hospital. The view would change slightly at different locations,
but I selected Highway 82 as typical for this analysis.
Since the view slope is 19.8 degrees, a 102 foot tower will have the same visual impact as the
existing tower if it is moved west, further back from the edge of the mountain by 172 feet. This
is shown on the detailed terrain profile, also attached. Locations east of Highway 82 will see
slightly more of the tower, locations to the west will see somewhat less.
Although these terrain profiles can be computer generated, lhese were scaled by hand from the
USGS 7.5 minute topographic map of Glenwood Springs because of the detail required.
Please call if you have any further questions.
Sincerely,
?t
o
F<P
w
4.3
-F{P
l!-7
@
\.Fo
o
Ot
1't
x
=oo
of.
o
o
o3{ooo
(t,t,:.
(o
ln
ooo
o)o
@
o
&,
cot
or
ogJon Banks
Federal Comm u nications Commission
Office of Engineering & Technology
Evaluating Compliance with FCC
Guidelines for Human ExPosure to
Radiofrequency Electromagnetic Fields
OET Bulletin 65
Edition 97-01,
August 1997
nL/
o
OET BULLETIN 65
Edition 97 -01
August 1997
The first edition of this bulletin was issued as OST Bulletin No.65 in October
1985. This is a revised version of that original bulletin.
NOTE: Mention of commercial products does not constitute endorcement by the Federol Communbutbns
Commission or by the authorc.
ffipH6e
t -l
t_J
rI
\- -/
ACKNOWLEDGEMENTS
The following individuals and organizations from outside the FCC reviewed an early draft of this
bulletin. Their valuable comments and suggestions greatly enhanced the accuracy and usefulness
of this document, and their assistance is gratefully acknowledged.
Joseph A. Amato, Maxwell RF Radiation Safety, Ltd.
Edward Aslan, Lockheed Martin Microwave (Narda)
Ameritech Mobile Communications, Inc.
Dr. Tadeusz M. Babij, Florida International University
Dr. Quirano Balzano, Motorola
David Baron, P.E., Holaday Industries, Inc.
Howard I. Bassen, U.S. Food and Drug Administration
Clarence M. Beverage, Communications Technologies, Inc.
Dr. Donald J. Bowen, AT&T Laboratories
Cellular Telecommunications Industry Association
Dr. C.K. Chou, City of Hope National Medical Center
Jules Cohen, P.E., Consulting Engineer
Dr. David L. conover, National Institute for occupational Safety & Health
Cohen, DipPell and Everist, P.C.
Robert D. Culver, Lohnes and Culver
Fred J. Dietrich, Ph.D.' Globalstar
Electromagnetic Energy Association
Professor Om P. Gandhi, University of Utah
Robert Gonsett, Communications General Corp.
Hammett & Edison, Inc.
Norbert Hankin, U.S. Environmental Protection Agency
James B. Hatfield, Hatfield & Dawson
Robert Johnson
Dr. John A. Leonowich
Dr. W. Gregory Lotz, National Institute for Occupational Safety & Health
Frederick O. Maia, National Volunteer Examiners (Amateur Radio Service)
Ed Mantiply, U.S. Environmental Protection Agency
Robert Moore
Dr. Daniel Murray, Okanagan University College
Dr. John M. Osepchuk, Full Spectrum Consulting
Professor Wayne Overbeck, California State University, Fullerton
Personal Communications Industry Association
Ronald C. Petersen, Lucent Technologies
David B. PoPkin
Kazimierz Siwiatq P.E.
Richard A. Tell, Richard Tell Associates, Inc.
Rory Van Tuyl, Hewlett-Packard Laboratories
Louis A. Williams, Jr., Louis A. Williams, Jr. and Associates
Contributions from the following FCC staff members are also acknowledged:
Kwok Chan, Errol Chang, William Cross, Richard Engelman, Bruce Franca and Jay Jackson
TABLE OT CONTf,NTS
INTRODUCTION I
DEFINITIONSANDGLOSSARYOFTERMS.... .......2
Section 1: BACKGROUND INFORMATION
FCC Implementation of NEPA
FCC Guidelines for Evaluating Exposure to RF Emissions
Applicability of New Guidelines
Mobile and Portable Devices
Operations in the Amateur Radio Service
Section 2: PREDICTION METHODS . . . 18
Equations for Predicting RF Fields
Relative Gain and Main-Beam Calculations . . . .
Aperture Antennas
Special Antenna Models
Multiple-Transmitter Sites and Complex Environments . .
Evaluating Mobile and Portable Devices
Section 3: MEASURING RF FIELDS
Reference Material
Instrumentation
Field Measurements
Section 4: CONTROLLING EXPOSURE TO RF FIELDS 52
Public Exposure: Compliance with General Population/Uncontrolled
MPELimits....
Occupational Exposure: Compliance with OccupationaUControlled
MPELimits....
6
7
t2
t4
l5
19
22
26
30
32
40
44
44
45
49
52
55
REFERENCES
APPENDIX
APPENDIX
A: RF Exposure Guidelines
B:SummaryoflgS6MassMediaBureauPublicNoticeon
RF Compliance
FIGURES
Main-Beam Exposure (No Reflection)
Main-Beam Exposure (With Reflection)
Cassegrain Antenna
Single tower, co-located antennas, groundJevel exposure (at 2 m)
Antennas on multiple towers contributing to RF field at point of
....... 38
interest
Single roof-top antenna, various exposure locations
Single tower, co-located antennas, on-tower exposure
77
FIGURE 1:
FIGURE 2:
FIGURE 3:
FIGURE 4:
FIGURE 5:
FIGURE 6:
FIGURE 7:
25
26
38
39
39
lll
INTRODUCTION
This revised OET Bulletin 65 has been prepared to provide assistance in determining
whether proposed or existing transmitting facilities, operations or devices comply with limits for
human exposure to radiofrequency (RF) fields adopted by the Federal Communications
Commission (FCC). The bulletin offers guidelines and suggestions for evaluating compliance.
However, it is not intended to establish mandatory procedures, and other methods and
procedures may be acceptable if based on sound engineering practice.
In l996,the FCC adopted new guidelines and procedures for evaluating environmental
effects of RF emissions. The new guidelines incorporate two tiers of exposure limits based on
whether exposure occurs in an occupational or "controlled" situation or whether the general
population is exposed or exposure is in an "uncontrolled" situation. In addition to guidelines for
evaluating fixed transmitters, the FCC adopted new limits for evaluating exposure from mobile
and portable devices, such as cellular telephones and personal communications devices. The
FCC also revised its policy with respect to categorically excluding certain transmitters and
services from requirements for routine evaluation for compliance with the guidelines.
This bulletin is a revision of the FCC's OST Bulletin 65, originally issued in 1985.
Although certain technical information in the original bulletin is still valid, this revised version
updates other information and provides additional guidance for evaluating compliance with the
the new FCC policies and guidelines. The bulletin is organized into the following sections:
Introduction, Definitions and Glossary, Background Information, Prediction Methods, Measuring
ap Fields, Controlling Exposure to RF Fields, References and Appendices. Appendix A
provides a srmlmary of the new FCC guidelines and the requirements for routine evaluation.
Additional information specifically for use in evaluating compliance for radio and television
broadcast stations is included in a supplement to this bulletin (Supplement A). A supplement for
the Amateur Radio Service will also be issued (Supplement B), and future supplements may be
issued to provide additional information for other services. This bulletin and its supplements
may be revised, as needed.
In general, the information contained in this bulletin is intended to enable an applicant to
make a reasonably quick determination as to whether a proposed or existing facility is in
compliance with the limits. In addition to calculations and the use of tables and figures, Section
4, dealing with controlling exposure, should be consulted to ensure compliance, especially with
respect to occupational/controlled exposures. In some cases, such as multiple-emitter locations,
measurements or a more detailed analysis may be required. In that regard, Section 3 on
measuring RF fields provides basic information and references on measurement procedures and
instrumentation.
For further information on any of the topics discussed in this bulletin, you may contact
the FCC's ft!. safety group at: *1 202 418-2464. Questions and inquiries can also be
e-mailed to: rfsafety@fcc.gov. The FCC's World Wide Web Site provides information on FCC
decision documents and bulletins relevant to the RF safety issue. The address is:
www. fcc. gov/oeVrfsafety.
DEFINITION,S AND GLOSSARY OF TERMS
The following specific words and terms are used in this bulletin. These definitions are
adapted from those included in the American National Standards Institute (ANSI) 1992 RF
exposure standard [Reference l], from NCRP Report No. 67 [Reference 19] and from the FCC's
Rules (47 CFR $ 2.1 and $ 1.1310).
Average (temporal) power. The time-averaged rate of energy transfer.
Averaging time. The appropriate time period over which exposure is averaged for purposes of
determining compliance with RF exposure limits (discussed in more detail in Section l).
Continuous exposure. Exposure for durations exceeding the corresponding averaging time.
Decibel (dB). Ten times the logarithm to the base ten of the ratio of two power levels.
Duty factor. The ratio of pulse duration to the pulse period of a periodic pulse train. Also, may
be a measure of the temporal transmission characteristic of an intermittently transmitting RF
source such as a paging antenna by dividing average transmission duration by the average period
for transmissions. A duty factor of 1.0 corresponds to continuous operation.
Effective radiated power (ERP) (in a given direction). The product of the power supplied to
the antenna and its gain relative to a half-wave dipole in a given direction.
Equivalent Isotropically Radiated Power (EIRP). The product of the power supplied to the
antenna and the antenna gain in a given direction relative to an isotropic antenna.
Electric field strength (E). A field vector quantity that represents the force (F) on an
infinitesimal unit positive test charge (q) at a point divided by that charge. Electric field strength
is expressed in units of volts per meter (V/m).
Energy density (electromagnetic field). The electromagnetic energy contained in an
infinitesimal volume divided by that volume.
Exposure. Exposure occurs whenever and wherever a person is subjected to electric, magnetic
or electromagnetic fields other than those originating from physiological processes in the body
and other natural phenomena.
Exposure, partial-body. Partial-body exposure results when RF fields are substantially
nonuniform over the body. Fields that are nonuniform over volumes comparable to the human
body may occur due to highly directional sources, standing-waves, re-radiating soruces or in the
near field. See RF "hot spot".
Far-field region. That region of the field of an antenna where the angular field distribution is
essentially independent of th. distance from the antenna. In this region (also called the free
,pu." r"gion), tie field has a predominantly plane-wave character, i.e., locally uniform
distribution of electric field sirength and magnetic field strength in planes transverse to the
direction of propagation.
Gain (of an antenna). The ratio, usually expressed in decibels, of the power required at the
input of a loss-free reference antenna to the power supplied to the input of the given antenna to
p-d.r"., in a given direction, the same field strength or the same power density at the same
distance. When not specified otherwise, the gain refers to the direction of maximum radiation.
Gain may be considered for a specified polarization. Gain may be referenced to an isotropic
antenna (dBi) or a half-wave dipole (dBd).
General population/uncontrolled exposure. For FCC purposes, applies to human exposure to
RF fields when the general public is exposed or in which persons who are exposed as a
consequence of theii employment may not be made fully aware of the potential for exposure or
cannot exercise control ou.i th.i, exposure. Therefore, members of the general public always
fall under this category when exposure is not employment-related.
Hertz(Hz). The unit for expressing frequency, (fl. One hertz equals one cycle per second'
Magnetic field strength (H). A field vector that is equal to the magnetic flux density divided by
the fermeability of the medium. Magnetic field strength is expressed in units of amperes per
meter (A/m).
Maximum permissible exposure (MPE). The rms and peak electric and magnetic field
strength, their squares, or the plane-wave equivalent power densities associated with these fields
to which a person may be exposed without harmful effect and with an acceptable safety factor.
Near-field region. A region generally in proximity to an antenna or other radiating
structure, in which the electric and magnetic fields do not have a substantially plane-wave
character, but vary considerably from point to point. The near-field region is further subdivided
into the reactive near-field region, which is closest to the radiating stmcture and that contains
most or nearly all of the stored energy, and the radiating near-field region where the radiation
field predominates over the reactive field, but lacks substantial plane-wave character and is
compiicated in struchre. For most antennas, the outer boundary of the reactive near field region
is commonly taken to exist at a distance of one-half wavelength from the antenna surface.
OccupationaUcontrolled exposure. For FCC purposes, applies to human exposure to RF fields
when persons are exposed as a consequence of their employment and in which those persons who
are exposed have been made fully aware of the potential for exposure and can exercise control
over their exposure. Occupational/controlled exposure limits also apply where exposure is of a
transient nature as a result of incidental passage through a location where exposure levels may be
above general population/uncontrolled limits (see definition above), as long as the exposed
p.rron hu, been made ful1y aware of the potential for exposure and can exercise conffol over his
or her exposure by leaving the area or by some other appropriate means.
peak Envelope Power (PEP). The average power supplied to the antenna transmission line by a
radio transmitter during one radiofrequency cycle at the crest of the modulation envelope taken
under normal operating conditions.
Power density, average (temporal). The instantaneous power density integrated over a source
repetition period.
Power density (S). Power per unit area norrnal to the direction of propagation, usually
expressed in units of watts per square meter (Wm2) or, for convenience, units-such as milliwatts
p.i ,qrur. centimeter (mW7cm')-or microwatts per square centimeter (pWcm2). For plane
waves, power density, electric field strength (E) and magnetic field strength (H) are related by
the impedance of free space, i.e.,377 ohms, as discussed in Section I of this bulletin. Although
many irr*"y instruments indicate power density-units ("far-field equivalent" power density), the
acruil quantities measured are E or E2 or H or H2.
Power density, peak. The maximum instantaneous power density occurring when power is
transmitted.
Power density, plane-wave equivalent or far-field equivalent. A commonly-used terms
associated with any electromagnetic wave, equal in magnitude to the power density of a plane
wave having the same electric (E) or magnetic (H) field strenglh'
Radiofrequency (RF) spectrum. Although the RF spectrum is formally defined in terms of
frequency as extending from 0 to 3000 GHz, for purposes of the FCC's exposure guidelines, the
frequency range of interest in 300 kHz to 100 GHz.
Re-radiated field. An electromagnetic field resulting from currents induced in a secondary,
predominantly conducting, object by electromagnetic waves incident on that object from one or
more primary radiating structures or antennas. Re-radiated fields are sometimes called
"reflected" or more correctly "scattered fields." The scattering object is sometimes called a "re-
radiator" or "secondary radiator".
4
RF "hot spot." A highly localized area of relatively more intense radio-frequency radiation that
manifests itself in two principal ways:
(l) The presence of intense electric or magnetic fields immediately adjacent to
conductive objects that are immersed in lower intensity ambient fields (often referred to
as re-radiation), and
(2) Localizedareas, not necessarily immediately close to conductive objects, in which
there exists a concentration of RF fields caused by reflections and/or narrow beams
produced by high-gain radiating antennas or other highly directional sources- In both
tur"., the fields are characterizedby very rapid changes in field strength with distance.
RF hot spots are normally associated with very nonuniform exposure of the body (partial
body exposure). This is not to be confused with an actual thermal hot spot within the
absorbing bodY.
Root-mean-square (rms). The effective value, or the value associated with joule heating, of a
periodic electromagnetic wave. The rms value is obtained by taking the square root of the mean
of the squared value of a function.
Scattered radiation. An electromagnetic field resulting from currents induced in a secondary,
conducting or dielectric object by electromagnetic waves incident on that object from one or
more primary sources.
Short-term exposure. Exposure for durations less than the corresponding averaging time.
Specific absorption rate (SAR). A measure of the rate of energy absorbed by (dissipated in) an
incremental mass contained in a volume element of dielectric materials such as biological tissues'
SAR is usually expressed in terms of watts per kilogram (Wkg) or milliwatts per gram (mWg).
Guidelines for human exposure to RF fields are based on SAR thresholds where adverse
biological effects may occur. When the human body is exposed to an RF field, the SAR
experienced is proportional to the squared value of the electric field strength induced in the body.
Wavelength (1). The wavelength (l) of an electromagnetic wave is related to the frequency (/)
and velocity (y) by the expression y :72. lnfree space the velocity of an electromagnetic wave
is equal to ihe speed of light, i.e., approximately 3 x 108 m/s.
Section 1: BACKGROUND INFORMATION
FCC Implementation of NEPA
The National Environmental Policy Act of 1969 (NEPA) requires agencies of the Federal
Government to evaluate the effects of theii actions on the quality of the human environment.r To
meet its responsibilities under NEPA, the Commission has adopted requirements for evaluating
the environmental impact of its actions.2 One of several environmental factors addressed by
these requirements is human exposure to RF energy emitted by FCC-regulated transmitters and
facilities.
The FCC's Rules provide a list of various Commission actions which may have a
significant effect on the environment. If FCC approval to construct or operate a facility would
likely result in a significant environmental effect included in this list, the applicant for such a
facility must submit an "Environmental Assessment" or "EA" of the environmental effect
including information specified in the FCC Rules. It is the responsibility of the applicant to
make an initial determination as to whether it is necessary to submit an EA.
If it is necessary for an applicant to submit an EA that document would be reviewed by
FCC staff to determine whether the next step in the process, the preparation of an Environmental
Impact Statement or "EIS," is necessary. An EIS is only prepared if there is a staffdetermination
that the action in question will have a significant environmental effect. If an EIS is prepared, the
ultimate decision as to approval of an application could require a full vote by the Commission,
and consideration of the issues involved could be a lengthy process. Over the years since NEPA
implementation, there have been relatively few EIS's filed with the Commission. This is because
most environmental problems are resolved in the process well prior to EIS preparation, since this
is in the best interest of all and avoids processing delays.
Many FCC application forms require that applicants indicate whether their proposed
operation would constitute a significant environmental action under our NEPA procedures.
When an applicant answers this question on an FCC form, in some cases documentation or an
explanation of how an applicant determined that there would notbe a significant environmental
effect may be requested by the FCC operating bureau or office. This documentation may take
the form of an environmental statement or engineering statement that accompanies the
application. Such a statement is not an EA, since an EA is only submitted if there is evidence for
a significant environmental effect. In the overwhelming number of cases, applicants attempt to
mitigate any potential for a significant environmental effect before submission of either an
environmental statement or an EA. This may involve informal
National Environmental Policy Act of 1969,42 U'S.C. Section 4321, et seo.
See 47 CFR $ l.l30l, et seq.
consultation with FCC staff, either prior to the filing of an application or after an application has
been filed, over possible means of avoiding or correcting an environmental problem.
FCC Guidelines for Evaluating Exposure to RF Emissions
In 1985, the FCC first adopted guidelines to be used for evaluating human exposure to
p3 emissions., The FCC revised and updated these guidelines on August 1,7996, as a result of a
rule-making proceeding initiated in 1993.a The new guidelines incorporate limits for Maximum
permissible Exposure (MPE) in terms of electric and magnetic field strength and power density
for transmitters operating at frequencies between 300 kHz and 100 GHz' Limits are also
specified for localized ("partial body") absorption that are used primarily for evaluating exposure
due to transmitting devices such as hand-held portable telephones. Implementation of the new
guidelines for mobile and portable devices became effective August 7,1996. For other
Ipplicants and licensees a ffansition period was established before the new guidelines would
apply.5
The FCC's MPE limits are based on exposure limits recommended by the National
Council on Radiation Protection and Measurements (NCRPf and, over a wide range of
frequencies, the exposure limits developed by the Institute of Electrical and Electronics
Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI) to
3 SeeReportandOrder,GENDocketNo.Tg-144, 100FCC 2d543 (1985); andMemorandumOpinionand
order, 5g ni za r 128 (1985). The guidelines originally adopted by the FCC were the 1982 RF protection guides
issued by the American National Standards Institute (ANSD.
a
See Report and Order, ET Docket \3-62,FCC 96-326, adopted August 7, 1996,61 Federal Register 41,006
(1996), I I FCC Record 15,123 (lgg7). The FCC initiated this rule-making proceeding in 1993 in response to the
iggZ ievision by ANSI of its earlier guidelines for human exposure. The Commission responded to seventeen
petitions for rectnsideration filed in this docket in two separate Orders: First Memorandum Opinion and Order,
FCC 96487,adopted December 23,1996,62 Federal Register 3232 (1997),1I FCC Record 17,512 (1997); and
Second Memorandum Opinion and Order and Notice of Proposed Rulemaking, adopted August 25, 1997 .
5 This transition period was recently extended. With the exception of the Amateur Radio Service, the date
now established for the end of the transition period is October 15,1997. See Second Memorandum Opinion and
Order and Notice of Proposed Rule Making, ET Docket 93-62, adopted August 25, 1997 . Therefore, the new
guidelines will appiy to applications filed on or after this date. For the Amateur Service only, the new guidelines
iritt uppty to appiications filed on or after January l, 1998. In addition, the Commission has adopted a date certain
of Seitember i,2000, by which time all existing facilities and devices must be in compliance with the new
guidelines (see Second Memorandum Opinion and Order).
6 See Reference 20, "Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields,"
NCRp Report No. 86 (1986), National Council on Radiation Protection and Measurements (NCM), Bethesda, MD.
The NCRi is a non-profit corporation chartered by the U.S. Congress to develop information and recommendations
concerning radiation protection.
o replace the 1982 ANSI guidelines.T Limits for localized absorption are based on
refommendations of boih ANSI/IEEE and NCRP. The FCC's new guidelines are summarized in
Appendix A.
In reaching its decision on adopting new guidelines the Commission carefully considered
the large number of .o*-"rts submitted in its rule-making proceeding, and particularly those
submitied by the U.S. Environmental Protection Agency (EPA), the Food and Drug
Administration (FDA) and other federal health and safety agencies. The new guidelines are
based substantially on the recommendations of those agencies, and it is the Commission's belief
that they represent a consensus view of the federal agencies responsible for matters relating to
public safety and health.
The FCC's limits, and the NCRP and ANSI/IEEE limits on which they are based, are
derived from exposure criteria quantified in terms of specific absorption rate (SAR).8 The basis
for these limits is a whole-body averaged SAR threshold level of 4 watts pff kilogram (4 W&g),
as averaged over the entire mass of the body, above which expert organizations have determined
that potenti ally hazardous exposures may occur. The new MPE limits are derived by
incorporating iafety factors that lead, in some cases, to limits that are more conservative than the
limits originally adopted by the FCC in 1985. Where more conservative limits exist they do not
arise from a fundamental change in the RF safety criteria for whole-body averaged SAR, but
from a precautionary desire to protect subgroups of the general population who, potentially, may
be more at risk.
The new FCC exposure limits are also based on data showing that the human body
absorbs RF energy at some frequencies more efficiently than at others. As indicated by Table I
in Appendix A, the most restrictive limits occur in the frequency range of 30-300 MHz where
wtroie-Uoay absorption of RF energy by human beings is most efficient. At other frequencies
whole-body absorption is less efficient, and, consequently, the MPE limits are less restrictive.
MPE limits are defined in terms of power density (units of milliwatts per centimeter
squared: mWcm2), electric field strength (units of volts per meter: V/m) and magnetic field
stiength (units of amperes per meter: A/m). In the far-field of a transmitting antenna, where the
electric field vector (E), the magnetic field vector (H), and the direction of propagation
7 See Reference /, ANSIAEEE C95.1-1992, "Safety Levels with Respect to Human Exposure to Radio
Frequency Electromagnetic Fields, 3 kHz to 300 GHz." Copyright l992,The Institute of Electrical and Electronics
Engineeri, Inc., New York, NY. The 1992 ANSVIEEE exposure guidelines for field strength and power density are
similar to those of NCRP Report No. 86 for most frequencies except those above 1.5 GHz.
8 Specific absorption rate is a measure of the rate of energy absorption by the body. SAR limits are specified
for both whole-body exposure and for partial-body or localized exposure (generally specified in terms of spatial
peak values).
can be considered to be all mutually ofthogonal ("plane-wave" conditions), these quantities are
related by the following equation.e
o'2S= o =3'7.'7Hz
377 0
where: S : power densitY (mWcm2)
E = electric field strength (V/m)
H: magnetic field strength (A/m)
In the near-field of a transmitting antenna the term "far-field equivalent" or "plane-wave
equivalent" power density is often used to indicate a quantity calculated by using the near-field
,ulu., of E2 or H2 as if they were obtained in the far-field. As indicated in Table I of Appendix
A, for near-field .*poru.., the values of plane-wave equivalent power density are given in some
cases for reference purposes only. These values are sometimes used as a convenient comparison
with MpEs for higher frequencies and are displayed on some measuring instruments.
The FCC guidelines incorporate two separate tiers of exposure limits that are dependent
on the situation in which the exposure takes place and./or the status of the individuals who are
subject to exposure. The decision as to which tier applies in a given situation should be based on
the application of the following definitions.
Occupational/controlled exposure limits apply to situations in which persons are exposed
as a consequlnce of their employment and in which those persons who are exposed have been
made fully aware of the potential for exposure and can exercise control over their exposure.
Occupational/controlledixposure limits also apply where exposure is of a transient nature as a
resuli of incidental passage through a location where exposure levels may be above general
population/uncontrolled ii-itr (see below), as long as the exposed person has been made fully
u*ur" ofthe potential for exposure and can exercise control over his or her exposure by leaving
the area or by some other appropriate means. As discussed later, the occupationaVcontrolled
exposure limits also apply io amateur radio operators and members of their immediate
household.
General population/uncontrolled exposure limits apply to situations in whjch the general
public may be exposed or in which persons who are exposed as a consequence of their
imployment may not be made fully aware of the potential for exposure or cannot exercise control
over their exposure. Therefore, members of the general public would always be considered
under this category when exposure is not employment-related, for example, in the case of a
telecommunications tower that exposes persons in a nearby residential area'
, Note that this equation is written so that power density is expressed in units of mWcm2. The impedance
of free space, 377 ohms, is used in deriving the equation'
(1)
For purposes of applying these definitions, awareness of the potential for RF exposure in
a workplace or similar "rriror-"rt can be provided through specific training as part of an RF
,afety p.og.r-. Warning signs and labels can also be used to establish such awareness as long as
it
"V
pr.rlie informatiorr, i" u prominent manner, on risk of potential exposure and instructions
on mltfroOs to minimize such exposure risk.ro However, warning labels placed on low-power
consumer devices such as cellular telephones are not considered sufficient to achieve the
awareness necessary to qualifu these devices as operating under the occupational/controlled
category. In those situations ihe general population/uncontrolled exposure limits will apply.
A fundamental aspect of the exposure guidelines is that they apply to power densities or
the squares of the electric and magnetic field strengths that are spatially averaged over the body
dimensions. Spatially averaged Rr n.ta levels most accurately relate to estimating the whole-
toOy ur..uged SAR it ut *iti result from the exposure and the MPEs specified in Table I of
apli,rrai. i ur"based on this concept. This means that local values of exposures that exceed the
stated MpEs may not be related to non-compliance if the spatial average of RF fields over the
body does not exceed the MPEs. Further discussion of spatial averaging as it relates to field
*"**.-rnts can be found in Section 3 of this bulletin and in the ANSI/IEEE and NCRP
reference documents noted there.
Another feature of the exposure guidelines is that exposures, in terms of power density,
E2 or H2, may be averaged over certain periods of time with the average not to exceed the limit
for continuous exposur.." A. shown in Table I of Appendix A, the averaging time for
occupational/controlled exposures is 6 minutes, while the averaging time for general
popuiation/uncontrolled exposures is 30 minutes. It is important to note that for general
populatior/uncontrolled exposures it is often not possible to control exposlres to the extent that
ar".ugirrg times can be uppti"a. In those situations, it is often necessary to assume continuous
exposure.
As an illustration of the application of time-averaging to occupational/controlled
exposure consider the following. The relevant interval for time-averaging for
ociupational/controlled exposures is six minutes. This means, for example, that during any
given six-minute period a worker could be exposed to two times the applicable power density
iimit for three minutes as long as he or she were not exposed at all for the preceding or following
three minutes. Similarly, a worker could be exposed at three times the limit for two minutes as
long as no exposur" o".rt, during the preceding or subsequent four minutes, and so forth'
to Fo,
"*urnple,
a sign warning of RF exposure risk and indicating that individuals should not remain in the
area for more than a certain period of time could be acceptable. Reference [3] provides information on acceptable
waming signs.
,, Note that although the FCC did not explicitly adopt limits for peak power density, guidance on these types
of exposures can be found in Section 4.4 of the ANSI/IEEE C95.1-1992 standard'
l0
This concept can be generalized by considering Equation (2) that allows calculation of
the allowable time(s) for exposure at [a] given power density level(s) during the appropriate
time-averaging interval to meet the exposure criteria of Table 1 of Appendix A. The sum of the
products of tt i exposure levels and the allowed times for exposure must equal the product of the
appropriate MPE limit and the appropriate time-averaging interval.
D s"*ot"*p = sri*irtrus
power density level of exposure (mWcm2)
appropriate power density MPE limit (mWcm2)
allowable time of exposure for S""o
appropriate MPE averaging time
(2)
where:
For the example given above, if the MPE limit is I mWcm2, then the right-hand side of
the equation becomei 6 mW-min/cm'11 mWcm2 X 6 min). Therefore, if an exposure level is
determined tobe 2 mWcm2, the allowed time for exposure at this level during any six-minute
interval would be a total of 3 minutes, since the left ;ide of the equation must equal 6 (2 mWlcrt
X 3 min). Of course, many other combinations of exposure levels and times may be involved
during a given time-averaging interval. However, as long as the sum of the products on the left
side olthi equation equals the right side, the average exposure will comply with the MPE limit.
It is very important to remember that time-averaging applies to any interval of too. Therefore, in
the above eiample, consideration would have to be given to the exposure situation both before
and after the allowed three-minute exposure. The time-averaging interval can be viewed as a
"sliding" period of time, six minutes in this case.
Another important point to remember concerning the FCC's exposure guidelines is that
they constitute exposure limits (not emission limits), and they are relevant only to locations that
are accessible to workers or members of the public. Such access can be restricted or controlled
by appropriate means such as the use of fences, warning signs, etc., as noted above. For the case
oi o.irputional/controlled exposure, procedures can be instituted for working in the vicinity of
RF souices that will prevent exposures in excess of the guidelines. An example of such
procedures would be resfficting the time an individual could be near an RF source or requiring
that work on or near such sources be performed while the ffansmitter is turned off or while power
is appropriately reduced. In the case ofbroadcast antennas, the use ofauxiliary antennas could
prevent ixcessive exposrues to personnel working on or near the main antenna site, depending on
ihe separation between the main and auxiliary antennas. Section 4 of this bulletin should be
.orruit"d for further information on controlling exposure to comply with the FCC guidelines.
su,
o-
t"*
too
11
Applicability of New Guidelines
The FCC's environmental rules regarding RF exposure identiff particular categories of
existing and proposed transmitting facilities, operations and devices for which licensees and
applicints ari required to conduct an initial environmental evaluation, and prepare an
E-nvironmental Assessment if the evaluation indicates that the transmitting facility, operation or
device exceeds or will exceed the FCC's RF exposure guidelines. For transmitting facilities,
operations and devices not specifically identified, the Commission has determined, based on
calculations, measurement data and other information, that such RF sources offer little potential
for causing exposures in excess of the guidelines. Therefore, the Commission "categorically
excluded"lppiicants and licensees from the requirement to perform routine, initial
environmenial evaluations of such sources to demonstrate compliance with our guidelines.
However, the Commission still retains the authority to request that a licensee or an applicant
conduct an environmental evaluation and, if appropriate, file environmental information
pertaining to an otherwise categorically excluded RF source if it is determined that there is a
iossibilifr for significant environmental impact due to RF exposure.r'
In that regard, all transmitting facilities and devices regulated by this Commission that
are the subject of an FCC decision or action (e.g., grant of an application or response to a petition
or inquiryjare expected to comply with the appropriate RF radiation exposure guidelines, or, if
not, to frie an Environmental Assessment (EA) for review under our NEPA procedures, if such is
required. It is important to emphasize that the categorical exclusions are not exclusions from
compliance but, rather, exclusions from performing routine evaluations to demonstrate
"o.rrpliun"".
Normally, the exclusion from performing a routine evaluation will be a sufficient
basis for assuming compliance, unless an applicant or licensee is otherwise notified by the
Commission or has reason to believe that the excluded transmitter or facility encompasses
exceptional characteristics that could cause non-compliance'
It should also be stressed that even though a transmitting source or facility may not be
categorically excluded from routine evaluation, no further environmental processing is required
orr"Jit has been demonstrated that exposures are within the guidelines, as specified in Part I of
our rules. These points have been the source of some confusion in the past among FCC licensees
and applicants, some of whom have been under the impression that filing an EA is always
required.
In adopting its new exposure guidelines, the Commission also adopted new rules
indicating which transmitting facilities, operations and devices will be categorically excluded
from peJorming routine, initial evaluations. The new exclusion criteria are based on such
factors as type of service, antenna height, and operating power. The new criteria were adopted in
an attemptio obtain greater consistency and scientific rigor in determining requirements for RF
evaluation across the various FCC-regulated services.
See 47 CFR $$ 1.1307(c) and (d).
12
Routine environmental evaluation for RF exposure is required for transmitters, facilities
or operations that are included in the categories listed in Table 2 of Appendix A or in FCC rule
parts 2.1091 and 2.l}g3 (for portable and mobile devices). This requirement applies to some,
tut not necessarily all, transmitters, facilities or operations that are authorized under the
following parts of our rules: 5, 15,21(Subpart K),22 (Subpart E),22 (Subpart H),24,25,26,
27 ,73,74 (Subparts A, G, I, and L), 80 (ship earth stations), 90 (paging operations and
Specialized Mobile Radio), 97 and l0l (Subpart L). Within a specific service category,
conditions are listed in Table 2 of Appendix A to determine which transmitters will be subject to
routine evaluation. These conditions are generally based on one or more of the following
variables: (l) operating power, (2) location, (3) height above ground of the antenna and
characteristics of the antenna or mode of transmission. In the case of Part 15 devices, only
devices that transmit on millimeter wave frequencies and unlicensed Personal Communications
Service (PCS) devices are covered, as noted in rule parts 2.1091 and 2.1093 (see section on
mobile and portable devices of Appendix A).
Transmitters and facilities not included in the specified categories are excluded from
routine evaluation for ftF exposure. We believe that such transmitting facilities generally pose
little or no risk for causing exposures in excess of the guidelines. However, as noted above, in
exceptional cases the Commission may, on its own merit or as the result of a petition, require
enviionmental evaluation of transmitters or facilities even though they are otherwise excluded
from routine evaluation. Also, at multiple-transmitter sites applications for non-excluded
transmitters should consider significant contributions of other co-located transmitters (see
discussion of multiple-transmitter evaluation in Section 2).
If a transmitter operates using relatively high power, and there is a possibility that
workers or the public could have access to the transmitter site, such as at a rooftop site, then
routine evaluation is justified. In Table 2 of Appendix A, an attempt was made to identiff
situations in the various services where such conditions could prevail. In general, at rooftop
transmitting sites evaluation will be required if power levels are above the values indicated in
Table 2 of Appendix A. These power levels were chosen based on generally "worst-case"
assumptions where the most stringent uncontrolled/general population MPE limit might be
exceeded within several meters of transmitting anteruras at these power levels. In the case of
paging antennas, the likelihood that duty factors, although high, would not normally be expected
io be 100% was also considered. Of course, if procedures are in place at a site to limit
accessibility or otherwise control exposure so that the safety guidelines are met, then the site is in
compliance and no further environmental processing is necessary under our rules.
Tower-mounted ("non-rooftop") antennas that are used for cellular telephone, PCS, and
Specialized Mobile Radio (SMR) operations warrant a somewhat different approach for
evaluation. While there is no evidence that typical installations in these services cause gtound-
level exposures in excess of the MPE limits, construction of these towers has been a topic of
ongoing public controversy on environmental grounds, and we believe it necessary to ensure that
theie is no likelihood of excessive exposures from these antennas. Although we believe there is
no need to require routine evaluation of towers where antennas are mounted high above the
ground, out of an abundance of caution the FCC requires that tower-mounted
l3
installations be evaluated if anteruras are mounted lower than l0 meters above ground and the
total power of all channels being used is over 1000 watts effective radiated power (ERP), or 2000
W ERP for broadband PCS.r3 These height and power combinations were chosen as thresholds
recognizing that a theoretically "worst case" site could use many channels and several thousand
watti of power. At such power levels a height of l0 meters above ground is not an unreasonable
distance for which an evaluation generally would be advisable. For antennas mounted higher
than 10 meters, measurement data for cellular facilities have indicated that ground-level power
densities are typically hundreds to thousands of times below the new MPE limits.
In view of the expected proliferation of these towers in the future and possible use of
multiple channels and power levels at these installations, and to ensure that tower installations
are properly evaluated when appropriate, we have instituted these new requirements for this
limited category of tower-mounted antennas in these services. For consistency we have
instituted similar requirements for several other services that could use relatively high power
levels with antennas mounted on towers lower than l0 meters above ground.
Paging sysrems operated under Part22 (Subpart E) and Part 90 of our rules previously
have been categorically exempted from routine Rf evaluation requirements. However, the
potential exists that the new, more restrictive limits may be exceeded in accessible areas by
ielatively high-powered paging transmitters with rooftop antennas.'o These transmitters may
operate with high duty factors in densely populated urban environments. The record and our
own data indicate the need for ensuring appropriate evaluation of such facilities, especially at
multiple transmitter sites. Accordingly, paging stations authorized under Part22 (Subpart E) and
Part 90 are also subject to routine environmental evaluation for RF exposure if an antenna is
located on a rooftop and if its ERP exceeds 1000 watts'
Mobile and Portable Devices
As noted in Appendix A, mobile and portable transmitting devices that operate in the
Cellular Radiotelephone Service, the Personal Communications Services (PCS), the General
Wireless Communications Service, the Wireless Communication Service, the Satellite
Communications services, the Maritime Services (ship earth stations only) and Specialized
Mobile Radio Service authorized, respectively, under Part22 (Subpart H), Part 24,Part25,Part
26,Part27,Part 80, and Part 90 of the FCC's Rules are subject to routine environmental
evaluation for RF exposure prior to equipment authorization or use. Unlicensed PCS, NII and
millimeter wave devices are also subject to routine environmental evaluation for RF exposure
'3 For broadband PCS, 2000 W is used as a threshold, instead of 1000 W, since at these operating frequencies
the exposwe criteria are less restrictive by about a factor of two.
'o For example, under Part 90, paging operations in the 929-930 MHz band may operate with power levels as
high as 3500 W ERP.
t4
prior to equipment authorization or use. All other mobile, portable, and unlicensed transmitting
ierices are normally categorically excluded from routine environmental evaluation for RF
exposure (see Section 2 and Appendix A for flrther details)'
For purposes of these requirements mobile devices are defined by the FCC as transmitters
designed to be used in other than fixed locations and to generally be used in such a way that a
sepaiation distance of at least 20 centimeters is normally maintained between radiating structures
and the body of the user or nearby persons. These devices are normally evaluated for exposure
potential with relation to the MPE limits given in Table I of Appendix A.
The FCC defines portable devices, for purposes of these requirements, as transmitters
whose radiating structurei are designed to be used within 20 centimeters of the body of the user.
As explained later, in Section 2 and in Appendix A, portable devices are to be evaluated with
respect to limits for specific absorption rate (SAR).
Operations in the Amateur Radio Service
In the FCC's recent Report and Order, certain amateur radio installations were made
subject to routine evaluation for compliance with the FCC's RF exposure guidelines." Also,
u.ut.* licensees will be expected to demonstrate their knowledge of the FCC guidelines
through examinations. Applicants for new licenses and renewals also will be required to
demo-nstrate that they have read and that they understand the applicable rules regarding RF
exposure. Before causing or allowing an amateur station to transmit from any place where the
operation of the station cluld cause human exposure to RF radiation levels in excess of the FCC
grid"lir", amateur licensees are now required to take certain actions. A routine RF radiation
Jvaluation is required if the transmitter power of the station exceeds the levels shown in Table I
and specifie d in 47 cFR $ g7.13(c)(1).16 Otherwise the operation is categorically excluded from
routine RF radiation evaluation, except as a result of a specific motion or petition as specified in
Sections 1.1307(c) and (d) of the FCC's Rules, (see earlier discussion in Section I of this
bulletin).
The Commission's Report and Order instituted a requirement that operator license
examination question pools will include questions concerning RF safety at amateur stations. An
additional five questions on RF safety will be required within each of three written examination
elements. The Commission also adopted the proposal of the American Radio
r5 seepara.160 of Report and order,ET Dkt 93-62. See also,47 CFR $ 97.13, as amended.
16 These levels were chosen to roughly parallel the frequency of the MPE limits of Table I in Appendix A'
These levels were modified from the Commission's original decision establishing a flat 50 W power threshold for
routine evaluation of amateur stations (see Second Memorandum Opinion and Order, ET Docket 93-62,FCC 97-
303, adopted August 25,1997)-
l5
O TABLE l. Power thresholds for routine evaluation of amateur radio stations.
Wavelength Band Transmitter Power
(watts)
MF
160 m 500
IIF
80m 500
75m s00
40m 500
30m 425
20m 225
17m 125
15m 100
12m 75
l0m 50
YIIF (alt bands)50
UIIF
70 cm 70
33 cm 150
23 cm 200
13 cm 250
SIIF (all bands)250
EIIF (alt bands)250
t6
Relay League (ARRL) that amateur operators should be required to certiff, as part of their
license upp'ti"uiion process, that they have read and understand our bulletins and the relevant
FCC rules.
When routine evaluation of an amateur station indicates that exposure to RF fields could
be in excess of the exposure limits specified by the FCC (see Appendix A), the licensee must
take action to correct ihe problem and ensure compliance (see Section 4 of this bulletin on
controlling exposure). Such actions could be in the form of modifying patterns of operation,
relocating antennas, revising a station's technical parameters such as frequency, power or
emission type or combinations of these and other remedies'
In complying with the Commission's Report and Order, amateur operators should follow
a policy of systematic avoidance of excessive RF exposure. The Commission has said that it will
continue to iely upon amateur operators, in constructing and operating their stations, to take steps
to ensure that iheir stations comply with the MPE limits for both occupationaVcontrolled and
general public/uncontrolled situations, as appropriate. In that regard, amateur radio operators and
members of their immediate household are considered to
be in a "controlled environment" and are subject to the occupational/controlled MPE limits-
Neighbors who are not members of an amateur operator's household are considered to be
."rrb"r, of the general public, since they cannot reasonably be expected to exercise control over
their expos*". in those cases general population/uncontrolled exposure MPE limits will apply.
In order to qualifu for use of the occupational/controlled exposure criteria, appropriate
restrictions on access to high RF field areas must be maintained and educational instmction in
RF safety must be provided to individuals who are members of the amateur operator's household.
persons who are not members of the amateur operator's household but who are present
temporarily on an amateur operator's property may also be considered to fall under the
occupational/controlled designation provided that appropriate information is provided them
about RF exposure potential if transmitters are in operation and such persons are exposed in
excess of the general population/uncontrolled limits.
Amateur radio facilities represent a special case for determining exposure, since there are
many possible antenna types that could be designed and used for amateur stations. However,
,.r.iul relevant points can be made with respect to analyzing amateur radio antennas for
potential exposure that should be helpful to amateur operators in performing evaluations.
First of all, the generic equations described in this bulletin can be used for analyzing
fields due to almost all antennas, although the resulting estimates for power density may be
overly-conservative in some cases. Nonetheless, for general radiators and for aperture antennas,
if the user is knowledgeable about antenna gain, frequency, power and other relevant factors, the
equations in this section can be used to estimate field strength and power density as described
"uili.r. In addition, other resources are available to amateur radio operators for analyzing fields
near their antennas. The ARRL Radio Amateur Handbook
t7
contains an excellent section on analyzing amateur radio facilities for compliance with RF
guidelines (Reference [4] ). Also, the FCC and the EPA conducted a study of several amateur
radio stations in 1990 that prorides a great deal of measurement data for many types of antennas
commonly used by amateur operators (Reference t10l )'
Amateur radio organizations and licensees are encouraged to develop their own more
detailed evaluation models and methods for typical antenna configurations and power/frequency
combinations. The FCC is working with the amateur radio community to develop a supplement
to this bulletin that will be designed specifically for evaluating amateur radio installations. For
example, the supplement will contain information on projected minimum exclusion distances
from typical amateur antenna installations. The supplement should be completed soon after
releasi of tnir bulletin. Once the amateur radio supplement is released by the FCC it will be
made available for downloading at the FCC's World Wide Web Site for "RF safety." Amateur
radio applicants and licensees are encouraged to monitor the Web Site for release of the
supplement. The address is: www.fcc.gov/oet/rfsafety. Information on availability of the
.rrppt.m.rt, as well as other M-related questions, can be directed to the FCC's "RF Safety
Program" at (202) 418-2464 or to: rfsafety@fcc.gov.
Section 2: PREDICTION METHODS
The material in this section is designed to provide assistance in determining whether a
given facility would be in compliance with guidelines for human exposure to RF radiation. The
Ialculationai methods discussed below should be helpful in evaluating a particular exposure
situation. However, for certain transmitting facilities, such as radio and television broadcast
stations, a specific supplement to this bulletin has been developed containing information and
compliance guidelinei specific to those stations.rT Therefore, applicants for radio and television
broa-dcast faiilities may wish to first consult this supplement that concentrates on AM radio, FM
radio and television broadcast antennas. Applicants for many broadcast facilities should be able
to determine whether a given facility would be in compliance with FCC guidelines by simply
consulting the tables and figures in this supplement. However, in addition, with respect to
occupational/controlled exposure, all applicants should consult Section 4 of this bulletin
conclrning controlling exposures that may occur during maintenance or other procedures carried
out at broadcast and other telecommunications sites'
Applicants may consult the relevant sections below, which describe how to estimate field
strength and power density levels from typical, general radiators as well as from aperrure
ti Supplement A to OET Bulletin 65, Version 97-01, Additional Informationfor Radio and Television
Broadcast Siations. This supplement can be downloaded from the FCC's RF Safety World Wide Web Site:
www.fcc.gov/oet/rfsafety. For further information contact the RF safety program at: +1 (202) 418-2464-
l8
antennas such as microwave and satellite dish antenaas. The general equations given below can
be used for predicting field strength and power density in the vicinity of most antennas, including
those used for pugirg und in the iommercial mobile radio service (CMRS). They can also be
used for making coniervative predictions of RF fields in the vicinity of antennas used for
amateur radio transmissions, as discussed earlier.
Equations for Predicting RF Fields
Calculations can be made to predict RF field strength and power density levels around
typical pp sources. For example, in the case of a single radiating antenna, a prediction for power
j.nsity in the far-field of the antenna can be made by use of the general Equations (3) or (a)
below[for conversion to electric or magnetic field strength see Equation (l) in Section 1]. These
equations are generally accurate in the far-field of an antenna but will over-predict power density
inthe near field, where they could be used for making a "worst case" or conservative prediction'
^PG
4xR2
where: S = power density (in appropriate units, e.g' mWcm2)
P : power input to the antenna (in appropriate units, e.g., mW)
G : power gain of the antenna in the direction of interest relative to an isofropic radiator
R: distance to the center of radiation of the antenna (appropriate units, e.g', cm)
or:
EIRP
4xR2
where: EIRP = equivalent (or effective) isotropically radiated power
When using these and other equations care must be taken to use the correct units for all
variables. For example, in Equation 1l;, if power density in units of mWcm2 is desired then
power should be expressed in milliwatts and distance in cm. Other units may be used, but care
must be taken to use correct conversion factors when necessary. Also, it is important to note that
the power gain factor, G, in Equation (3) is normally numeric gain. Therefore,
3)
(4)
t9
when power gain is expressed in logarithmic terms, i.e., dB, a conversion is required using the
relation:
dB
G=10 10
For example, a logarithmic power gain of 14 dB is equal to a numeric gain of 25.12.
In some cases operating power may be expressed in terms of "effective radiated power"
or "ERP" instead of EIRP. gRp is power referenced to a half-wave dipole radiator instead of to
an isotropic radiator. Therefore, if ERP is given it is necessary to convert ERP into EIRP in
order to use the above equations. This is easily done by multiplying the ERP by the factor of
1.64, which is the gain ola half-wave dipole relative to an isotropic radiator. For example, if
ERP is used in Equation (4) the relation becomes:
EIRP L.64 ERP O.4T ERP
4nR2 4xR2 ttR2
For a truly worst-case prediction of power density at or near a surface, such as at ground-
level or on a rooftop , lOOo reflection of incoming radiation can be assumed, resulting in a
potential doubling of predicted field strength and a four-fold increase in (far-field equivalent)
power density. In that case Equations (3) and (4) can be modified to:
(s)
(2) 2 pe PG _ EIRP
tcR2
(6)
4nRz nR2
In the case of FM radio and television broadcast antennas, the U.S. Environmental
Protection Agency (EPA) has developed models for predicting ground-level field strength and
power density [Reference l1]. The EPA model recommends a more realistic approximation
for ground reflection by assuming a maximum 1.6-fold increase in field strength leading to an
20
increase in power density of 2.56 (1.6 X I .6). Equation (4) can then be modified to:
2.55 EIRP O .64 EIRPS--=4nR2 TERz
If ERP is used in Equation (7), the relation becomes:
(7)
0.64 EIRP--=
xR2
(0.54) (r.e+) enp
xR2
_ 1.05 ERr
xR2
(8)
It is sometimes convenient to use units of microwatts per centimeter squared (pWcnf)
instead of mWcm2 in describing power density. The following simpler form of Equation (8) can
be derived if power density, S, I io be expressed in units of pWcm2:
33.4 ERP$=-
R2
where: S = power densitY in PWcm2
ERP = power in watts
R: distance in meters
An example of the use of the above equations follows. A station is transmitting at a
frequency of 100 MHz with a total nominal ERP (including all polarizations) of 10 kilowatts
(10,000 watts) from a tower-mounted antenna. The height to the center of radiation is 50 meters
ubou, ground-level. Using the formulas above, what would be the calculated "worst-case" power
densitithat could be expeited at a point 2 meters above ground (approximate head level) and at a
distance of 20 meters from the base of the tower? Note that this type of analysis does not take
into account the vertical radiation pattern of the antenna, i.e., no information on directional
characteristics of signal propagation is considered. Use of actual vertical radiation pattern data
for the antenna *ould mostiitety significantly reduce groundJevel exposure predictions from
those calculated below (see lateidisiussion), resulting in a more realistic estimate of the actual
exposure levels.
From simple trigonomefiry the distance R can be calculated to be 52 meters [square root
of: (48)2 + 120)2i,uso-ing essentially flat terrain. Therefore, using Equation (9), the
(e)
2t
calculated conservative "worst case" power density is:
s=33 .4 (10, 000 watts) -about L24 VW/ cm2
$2 il2
By consulting Table I of Appendix A it can be determined that the limit for general
population/uncontrol-led exposure uf f OO MHz is 0.2 mW/c# or 200 pW/cm2. Therefore, this
fafculation shows that even under worst-case conditions this station would comply with the
general population/uncontrolled limits, at least at a distanc e of 20 meters from the tower. Similar
Jalcutations could be made to ensure compliance at other locations, such as at the base of the
tower where the shortest direct line distance, R, to the ground would occur.
Relative Gain and Main-Beam Calculations
The above-described equations can be used to calculate fields from a variety of radiating
antennas, such as omni-directional radiators, dipole antennas and antennas incorporating
directional arrays. However, in many cases the use of equations such as Equations (3) and (a)
will result in an overly conservative "worst case" prediction of the field at a given point.
Alternatively, if information concerning an antenna's vertical radiation pattern is known, a
relative field factor (relative gain) derived from such a pattern can be incorporated into the
calculations to arrive at a more accurate representation of the field at a given point of interest.
For example, in the case of an antenna pointing toward the horizon, if the relative gain in the
main beam is 1.0, then in other directions downward from horizontal the field may be
significantly less than 1.0. Therefore, radiation from the antenna directly toward the ground may
bJsignificantly reduced from the omni-directional case and a more realistic prediction of the
field can be obtained for the point of interest.
For example, in the calculation above, it can be shown from trigonometry that the
depression angleielow horizontal of the vector corresponding to the distance, R, is about 68o.
Foi purposes of illustration, assume that the antenna in this example has its main beam pointed
approximately toward the horizon and, at a depression angle of 68o, the field relative to the main
beam (relativl gain) is -6 dB (a factor of 0.5 in terms of field strength and 0.25 in terms of
power density). In that case the calculation above can be modified giving a more
22
accgrate representation of the power density at the ground-level point of interest, as follows.
33.4 F2 Ep.Pj--=
R2
33 .4 (0.5)' (to, 000 watts)= about 3l vW/cm2
(52 m)2
where: F = the relative field factor (relative numeric gain)
In general, Equation (9) can be modified to:
33.4 (F2) ERP (10)s=
R2
where: S : power density in pWcm2
F : relative field factor (relative numeric gain)
ERP: power in watts
R: distance in meters
When the point of interest where exposure may occur is in or near the main radiated beam
of an antenna, Equation (3) or its derivatives can be used. In other words, the factor, F, in such
cases would be assumed to be 1.0. Such cases occur when, for example, a nearby building or
rooftop may be in the main beam of a radiator. For convenience in determining exposures in
such situati,ons, Equation (3) has been used to derive Figures 1 and2. These figures allow a
quick determination of the power density at a given distance from an antenna in its main beam
for various levels of ERP.[8 Intermediate ERPs can be estimated by interpolation, or the next
highest ERP level can be used as a worst case approximation.
Figure 1 assumes no reflection off of a surface. However, at a rooftop location where the
main-beam may be directed parallel and essentially along or only slightly above the surface of
the roof, there may be reflected waves that would contribute to exposure. Therefore,^Figure 2
was derived for the latter case using the EPA-recommended reflection factor of (1.6)'?:2.56 (see
earlier discussion), and the values shown are more conservative. When using Figures I or 2 a
given situation should be considered on its own merits to determine which figure is more
appropriate. For rooftop locations it is also important to note that exposures inside a building
.u, U" expected to be reduced by at least 10-20 dB due to attenuation caused by building
materials in the walls and roof.
To convert to EIRP use the relation: EIRP: ERP X 1.64.
23
t8
(nH
C)
C)tr
CBtrtrc)otr
tr
o
fr.{
o)()
tr
cg
U2
a
-H
.-
{JIotrc)il
a
q)
Lart)oaX
rd
-LI
6lq)
EI-:.-
c\,
OOOOOFi-Fr.OO-!-'.oqaao=oOOFr
OFIF{ (truc716ur) filsueq rehrod
e/ ./ .'
"f" /s)r /.'^s7 ^9. ' t
rY/
"7 .4.' /' \ssy 4f. /
oooo
oe8.8F{E
EoL
(D'2' .EiiEEAE! 0iioctEtr=F4 Ar,ue
-avEA EF{lE Ecrl.iT.-r ttvHAfrr l'i
odo.
-3E'Z
^' c)IJ .\
Lq)
'o
Ci
rl
cl
frl&,)()
-h
oooOOr-rOFr
('ruc716ur) .&rsueq re^tod
/
/,.
"""y *d" /' /
7' ^"tq .y /
Ho.-
'4.)cJq)
r.i
c)il
ff+..-t
(l)
Lra-U2oaXri
-H
6t(l)
Fl
AI.-
6ttlz
Aperture Antennas
Aperture antennas include those used for such applications as satellite-earth stations,
poinfto-point microwave radio and various types of radar applications. Generally, these types of
antennas have parabolic surfaces and many have circular cross sections. They are characterized
by their high gain which results in the transmission of power in a well-defined collimated beam
with little angular divergence. Systems using aperlure antennas operate at microwave
frequencies, i.e., generally above 900 MHz.
Those systems involved in telecommunications applications operate with power levels
that depend on the distance between transmit and receive antenras, the number of channels
required (bandwidth) and antenna gains of transmit and receive antennas. The antennas used
typically have circular cross sections, where antenna diameter is an important characteristic that
determines the antenna gain. With regard to some operations, such as satellite-earth station
transmitting antennas, the combination of high transmitter power and large antenna diameter
(high gain) produces regions of significant power density that may extend over relatively large
distances in the main beam. Many "dish" type anteruras used for satellite-earth station
transmissions utilize the Cassegrain design in which power is fed to the antenna from a
waveguide located at the center of the parabolic reflector. Radiation from this source is then
incident on a small hyperbolic sub-reflector located between the power feed and the focal point
of the antenna and is then reflected back to the main reflector resulting in the transmission of a
collimated beam. An example of this is illustrated in Figure 3.
lcollimarcd
lseam
FIGURE 3. Cassegrain Antenna
Because of the highly directional nature of these and other aperture antennas, the
likelihood of significant human exposure to RF radiation is considerably reduced. The power
densities existing at locations where people may be typically exposed are substantially less
26
than on-axis power densities. Factors that must be taken into account in assessing the potential
for exposure are main-beam orientation, antenna height above ground, location relative to where
people live or work and the operational procedures followed at the facility.
Satellite-earth uplink stations have been analyzed and their emissions measured to
determine methods to estimate potential environmental exposure levels. An empirical model has
been developed, based on antenna theory and measurements, to evaluate potential environmental
exposure from these systems [Reference 15]. In general, for parabolic aperture antennas with
circular cross sections, the following information and equations from this model can be used in
evaluating a specific system for potential environmental exposure. More detailed methods of
analysis are also acceptable. For example, see References [18] and [21].
Antenna Surface. The maximum power density directly in front of an antenna (e.g., at the
antenna surface) can be approximated by the following equation:
s surrace (11)
where: S,u.ro"" = maximum power density at the antenna surface
P: power fed to the antenna
A: physical area ofthe aperhrre anteffra
Near-Field Region. In the near-field, or Fresnel region, of the main beam, the power density
can reach a maximum before it begins to decrease with distance. The extent of the near-field can
be described by the following equation (D and I in same units):
4P
A
-D2fi---nr 4L (12)
where: \r: extent of near-field
D: maximum dimension of antenna (diameter if circular)
,i. = wavelength
The magnitude of the on-axis (main beam) power density varies according to location in
the near-field. However, the maximum value of the near-field, on-axis, power density can
27
be expressed by the following equation:
s-- L6\P
nt
TED'
where: Sor: maximum near-field power density
rl : aperture efftciency, typically 0.5-0.75
P = power fed to the antenna
D = antenna diameter
(13)
Aperhrre efficiency can be estimated, or a reasonable approximation for circular apertures
can be obtained from the ratio of the effective aperture area to the physical area as follows:
n=
(#)
(+)(14)
where: n = aperture efficiency for circular apertures
G : power gain in the direction of interest relative to an isotropic radiator
l, = wavelength
D : antenna diameter
If the antenna gain is not known, it can be calculated from the following equation using
the actual or estimated value for aperture efficiency:
(15)
where: rl : aperture efficiency
G: power gain in the direction ofinterest relative to an isotropic radiator
.L : wavelength
4 = physical area ofthe antenna
28
Transition Region. Power density in the transition region decreases inversely with distance
from the antenna, while power density in the far-field (Fraunhofer region) of the antenna
decreases inversely with the square of the distance. For purposes of evaluating RF exposure, the
distance to the beginning of the far-field region (farthest extent of the transition region) can be
approximated by the following equation:
R,,_ 0.5 D2
),(16)
The transition
Equation (12), to \.
Rn= distance to beginning of far-field
D = antenna diameter
l: wavelength
region will then be the region extending from \, calculated from
If the location of interest falls within this transition region, the on-axis
$.=E
Srt Rnt
(17)
power density can be determined from the following equation:
where: S, = power density in the transition region
So, = maximum power density for near-field calculated above
Rr= extent of near-field calculated above
R = distance to point of interest
Far-Fietd Region. The power density in the far-field or Fraunhofer region of the antenna pattern
decreases inversely as the square of the distance. The power density in the far-field region of the
radiation pattern can be estimated by the general equation discussed earlier:
PG
"ft 4xR2 (l 8)
Su: power density (on axis)
P = power fed to the antenna
G : power gain of the antenna in the direction of interest relative to an isotropic radiator
R = distance to the point of interest
29
In the far-field region, power is distributed in a series of maxima and minima as a
function of the off-axis angle (defined by the antenna axis, the center of the antenna and the
specific point of interest). ior constant phase, or uniform illumination over the aperture, the main
beam will be the location of the greatest of these maxima. The on-axis power densities calculated
from the above formulas represent the maximum exposure levels that the system can produce.
Off-axis power densities will be considerably less.
For off-axis calculations in the near-field and in the transition region it can be assumed
that, if the point of interest is at least one antenna diameter removed from the center of the main
beam, the iower density at that point would be at least a factor of 100 (20 dB) less than the value
calculated for the equivalent distance in the main beam (see Reference [15] ).
For practical estimation of RF fields in the off-axis vicinity of aperture antennas, use of
the antenna radiation pattern envelope can be useful. For example, for the case of an earth
station in the fixed-saiellite service, the Commission's Rules speciff maximum allowable gain
for antenna sidelobes not within the plane of the geostationary satellite orbit, such as at ground
level.re In such cases, the rules require that the gain of the antenna shall lie below the envelope
defined by:
32 - l}Slogro(e)l dBi .fo, 1o < 0 < 48o
and: - 10 dBi fo, 4E"< e < 1E0o
Where: 0 = the angle in degrees from the axis of the main lobe
dBi : dB relative to an isotropic radiator
Use of the gain obtained from these relationships in simple far-field calculations, such as
Equation 18, will generally be sufficient for estimating RF field levels in the surrounding
en-vironment, sinci the apparent aperture of the antenna is typically very small compared to its
frontal area.
Special Antenna Models
There are various antenna types for which other models and prediction methods could be
useful for evaluating the potential for exposure. To discuss models for each of the numerous
types of antennas in existence would be beyond the scope of this bulletin. However, some
specific cases and applications will be mentioned. In addition, a model that
30
re See 47 CFR 25.209 (a)(2).
t_)
n\- -i
o
was developed for FM radio broadcast antennas is discussed in Supplement A to this bulletin.2o
Prediction methods have been developed for certain specialized antennas used for paging,
cellular radio and personal communications services (PCS). In 1995, a study was performed for
the FCC by Richaid Tell Associates, Inc., that included developing prediction methodology for
RF fields in the vicinity of such antennas, particularly those that may be
located on rooftops (see References [29] and also l22l). In that study it was found that at
distances close to these antennas a power density model based on inverse distance was more
accurate than predictions based on the typical far-field equations such as Equations (3) and(a)
above. In other words, in these equations the factor R could be substituted for the factor R2 for a
more realistic approximation of the true power density close to the antennas. The distance over
which this relation holds appears to vary with the antenna under study, but can extend for several
meters according to the Tell study.
Tell has observed that the use of a cylindrical model can be useful in evaluating RF fields
near vertical collinear dipole antennas similar to those used for cellular, PCS, paging and two-
way radio communications.2r This model can also be used in estimating near-field exposures
adjlcent to television and FM radio broadcast antennas where workers may be located during
tower work. In general, this model is a more accurate predictor of exposure very close to an
antenna where "far-field" equations, such as Equation l, may significantly overpredict the RF
environment. However, as one moves away from an antenna the cylindrical model becomes
overly conservative and the far-field model becomes more accurate. The exact distance
("crossover point") where this occurs is not a simple value but depends on characteristics of the
antenna ,u"h ur aperrure dimension and gain. One can determine this crossover point by
calculating and plotting power densities using a far-field model and the cylindrical model
described below and finding the distance where the predictions coincide.
For Tell's cylindrical model, spatially averaged plane-wave equivalent power densities
parallel to the antenna may be estimated by dividing the net antenna input power by the surface
area of an imaginary cylinder surrounding the length of the radiating antenna. While the actual
power density will vary along the height of the antenna, the average value along its
20 Additional Information for Radio and Television Broadcast Stations, Supplement A to OET Bulletin 65,
Version 97-01. This supplement will be made available for downloading from the FCC RF Safety Web Site:
www.fcc.gov/oeUrfsafety. Otherwise contact the FCC RF Safety Program ati (202) 418'2454..
'' Tell, Richard A. ( 1996). EME Design and Operation Considerations for Wireless Antenna Sites.
Technical report prepared for the Cellular Telecommunications Industry Association, Washington, D.C. 20036.
31
length will closely follow the relation given by the following equation.
Ds=:-
2nRh (1e)
power density: net power input to the antenna
distance from the antenna
aperture height ofthe antenna
For sector-type antennas, power densities can be estimated by dividing the net input
power by that portion of a cylindrical surface area colresponding to the angular beam width of
the antenna. For example, for the case of a l20-degree azimuthal beam width, the surface area
should correspond to ll3 that of a full cylinder. This would increase the power density near the
antenna by a iactor of three over that for a purely omni-directional antenna. Mathematically, this
can be represented by Equation (20) in which the angular beam width, 0"*, can be taken as the
appropriate azimuthal "power dispersion" angle for a given reflector. For example, a
c-onservative estimate could be obtained by using the 3 dB (half-power) azimuthal beam width
for a given sectorized antenna.
where: S :
Pn"'
R:
h:
" (#)D
.rIEE
"Rh
(20)
where: S = powerdensity
Pn", : net Power inPut to the antenna
0r* : beam width of the antenna in degrees
R : distance from the antenna
h : aperture height ofthe antenna
Equation (20) can be used for any vertical collinear antenna, even omni-directional ones.
For omni-directional antennas, 0r* would be 360 degrees and Equation (20) reduces to the
simpler Equation (19) above.
Multiple-Transmitter Sites and Complex Environments
It is common for multiple RF emitters to be co-located at a given site. Antennas are often
clustered together at sites that may include a variety of RF sources such as radio and television
broadcast towers, CMRS antennas and microwave antennas. The FCC's exposure guidelines are
meant to apply to any exposure situation caused by transmitters regulated by
32
the FCC. Therefore, at multiple-transmitter sites, all significant contributions to the RF
environment should be considered, not just those fields associated with one specific source.
When there are multiple transmitters at a given site c<lllection of pertinent technical information
about them will be n"."rrury to permit an analysis of the overall RF environment by calculation
or computer modeling. However, if this is not practical a direct measurement survey may prove
to be more expedient-for assessing compliance (see Section 3 of this bulletin that deals with
measurements for more information).
The rules adopted by the FCC specifu that, in general, at multiple transmitter sites actions
necessary to bring the area into compliance with the guidelines are the shared responsibility of all
licensees whose transmitters produci field strengths or power density levels at the area in
qr".il", i" excess of SYoof tire exposure limit (in terms of power density o;th,e-;Cuare of the
j."ari" or magnetic field strengthj applicable to their particular transmitter.zz When performing
an evaluation for compliance riith ttre rcc's RF guidelines all significant contributors to the
ambient pp environmfnt should be considered, including those otherwise excluded from
ferforming routine RF evaluations, and applicants are expected to make a good-faith effort to
consider ti'ese other transmitters. For purposes of such consideration, significance can be taken
io *.un any transmitter producing moie tian 5o/o of the applicable exposure limit (in terms of
po** density or the square of the-electric or magnetic fieldstrength) al accessible locations.
The percentage contributions are then added to ditermine whether the limits are (or would be)
"*".Ld"d. f the Vtpg limits are exceeded, then the responsible party or parties, as described
below, must take action to either bring the area into compliance or submit an EA'
Applicants and licensees should be able to calculate, based on considerations of
frequency, power and antenna characteristics the distance from their transmitter where their
;6;i prftirr", un pp field equal to, or greater than, the 57o threshold limit. The applicant or
licensee then shares responsibility for compliance in any accessible area or areas within this 5%
"contour" where the appropriate limits are found to be exceeded.
The following policy applies in the case of an application for a proposed transmitter,
facility or modificatio" ("oi otherwise excluded from performing a routine RF evaluation) that
would cause non-compliance atan accessible area previously in compliance. In such a case, it is
the responsibility of the applicant to either ensure compliance or submit an EA if emissions from
the applicant's transmitteior facility would result in an exposure level at the non-complying area
that exceeds 5% of the exposure limits applicable to that transmitter or facility in terms of power
density or the square of the electric or magnetic field strength'
For a renewal applicant whose transmitter or facility (not otherwise excluded from
routine evaluation) contributes to the RF environment at an accessible area not in compliance
with the guidelines the following policy applies. The renewal applicant must submit an EA if
emissioni from the applicant's transmitter or facility, at the area in question, result in an exposure
level that exceeds 5%o of the exposure limits applicable to that particular transmitter
'2 See 47 C.F.R. 1.1307(bX3), as amended.
JJ
in terms of power density or the square of the electric or magnetic field strength. In other words,
although the renewal appiicant may only be responsible for a fraction of the total exposure
(greati tha1 SYo),the afplicant (along with any other licensee undergoing renewal at the same
iime) will trigger the EA process, unless suitable corrective measures are taken to prevent non-
"o-pliun""
U"nor" preparation of an EA is necessary. In addition, in a renewal situation if a
determination of non-compliance is made, other co-located transmitters contributing more than
the S%othreshold level muit share responsibility for compliance, regardless of whether they are
categorically excluded from routine evaluation or submission of an EA.
Therefore, at multiple-transmitter sites the various responsibilities for evaluating the RF
environment, taking actions to ensure compliance or submitting an EA may lie_either with a
newcomer to the siie, with a renewal applicant (or applicants) or with all significant users,
depending on the situation. In general, an applicant or licensee for a transmitter at a multiple-
transmitter site should seek answers to the following questions in order to determine compliance
responsibility.
(1) New transmitter proposed for a multiple-transmitter site.
o Is the transmitter in question already categorically excluded from routine
evaluation?
o lf yes, routine evaluation of the application is not required.
. If not excluded,is the site in question already in compliance with the FCC guidelines?
o lf no,the applicant must submit an EA with its application notifuing the Commission
of the non-"o-pying situation, unless measures are to be taken to ensure compliance.
Compliance is the responsibility of licensees of all transmitters that contribute to non-
.o11ptyirg area(s) in excess of the applicable 5% threshold at the existing site. If the
e*i.tirg rlt ir su6sequently brought into compliance withoul consideration of the new
applicant then the next two questions below apply.
o If yes,would the proposed transmitter cause non-compliance at the site in question?
o lf-yes,the applicant must submit an EA (or submit a new EA in the situation described
aUore; with its application notiffing the Commission of the potentially non-complying
situation, unless -"u.rr", will be taken by the applicant to ensure compliance' In this
situation, it is the responsibility of the applicant to ensure compliance, since the existing
site is already in compliance.
o lf no,no further environmental evaluation is required and the applicant certifies
compliance.
34
(2) Renewal applicant at a multiple-transmitter site
o Is the transmitter in question already categorically excluded from routine
evaluation?
o lf yes,routine evaluation of the application is not required.
o If not excluded, is the site in question already in compliance with the FCC guidelines?
o If no,the applicant must submit an EA with its application notiffing the Commission
of the non-compying situation, unless measures are taken to ensure compliance.
Compliance is the responsibility of licensees of all transmitters that conffibute to non-
complying area(s) in excess of the applicable 5% threshold.
o If yes, no further environmental evaluation is necessary and the applicant certifies
compliance.
The Commission expects its licensees and applicants to cooperate in resolving problems
involving compliance at multiple-transmitter sites. Also, owners of transmitter sites are expected
to allowipplicants and licensees to take reasonable steps to comply with the FCC's requirements.
When feasible, site owners should also encourage co-location and corrrmon solutions for
controlling access to areas that may be out of compliance. In situations where disputes arise or
where licensees cannot reach agreement on necessary compliance actions, a licensee or applicant
should notifu the FCC licensing bureau. The bureau may then determine whether appropriate
FCC action is necessary to facilitate a resolution of the dispute.
The FCC's MPE limits vary with frequency. Therefore, in mixed or broadband RF fields
where several sogrces and frequencies are involved, the fraction of the recommended limit (in
terms of power density or square of the electric or magnetic field strength) incurred within each
frequency interval should be determined, and the sum of all fractional contributions should not
excled 1.0, or 1}0oh in terms of percentage. For example, consider an antenna farm with radio
and UHF television broadcast ffansmitters. At a given location that is accessible to the general
public it is determined that FM radio station X contributes 100 pWcm2 to the total power
density (which is 50% of the applicable 200 pWcnf MPE limit for the FM frequency band).
Also, assume that FM station Y contributes an additional 50 pWcm2 (25% of its limit) and that a
nearby UHF-TV station operating on Channel 35 (center frequency :599 MHz) contributes 200
pWcm2 at the same location (which is 50% of the applicable MPE limit for this frequency of 400
pWcm2). The sum of all of the percentage contributions then equals l25o/o, and the location is
not in compliance with the MPE limits for the general public. Consequently, measures must be
taken to bring the site into compliance such as restricting access to the area (see Section 4 of this
bulletin on controlling exposure).
35
As noted above, in such situations it is the shared responsibility of site occupants to take
whatever actions are necessary to bring a site into compliance. In the above case, the allocation
of responsibility could be generally based on each station's percentage contribution to the overall
po*.i density at the problem location, although such a formula for allocating responsibility is
not an FCC requirement, and other formulas may be used, as appropriate.
When attempting to predict field strength or power density levels at multiple transmitter
sites the general equations discussed in this section of the bulletin can be used at many sites,
depending on the complexity of the site. Individual contributions can often be determined at a
given location using these prediction methods, and then power densities (or squares of field
strength values) can be added together for the total predicted exposure level.
In addition, time-averaging of exposures may be possible, as explained in Section I of this
bulletin. For sites involving radio and television broadcast stations, the methods described in
Supplement A for broadcast stations can be used in some circumstances when a site is not overly
complex. Also, for wireless communications sites, some organizations have developed
commercially-available software for modeling sites for compliance purposes."
When considering the contributions to field strength or power density from other RF
sources, care should be taken to ensure that such variables as reflection and re-radiation are
considered. In cases involving very complex sites predictions of RF fields may not be possible,
and a measurement survey may be necessary (see Section 3 of this bulletin).
The following example illustrates a simple situation involving multiple antennas. The
process for determining compliance for other situations can be similarly accomplished using the
techniques described in this section and in Supplement A to this bulletin that deals with radio and
television broadcast operations. However, as mentioned above, at very complex sites
measruements may be necessary.
In the simple example shown in Figure 4 it is desired to determine the power density at a
given location X meters from the base of a tower on which are mounted trvo antennas. One
antenna is a CMRS antenna with several channels, and the other is an FM broadcast antenna.
The system parameters that must be known are the total ERP for each antenna and the operating
frequencies (to determine which MPE limits apply). The heights above ground level for each
antenna, Hl and H2, must be known in order to calculate the distances, Rland R2, from the
antennas to the point of interest. The methods described in this section (and in Supplement A for
FM antennas) can be used to determine the power density contributions of each antenna at the
location of interest, and the percentage contributions (compared to the applicable MPE limit for
that frequency) are added together as described above to determine if the location complies with
the applicable exposure guidelines. If the location is accessible
to the public, the general/population limits apply. Otherwise occupationaVconffolled limits
should be used.
23 For example, the following two U.S. companies have recently begun marketing such software: (l) Richard
Tell Associates, Inc., telephone: (702) 645-3338; and (2) UniSite, telephone: (972) 348-7632.
36
Another type of complex environment is a site with multiple towers. The same general
process may be used to determine compliance as described above, if appropriate.
birt*""r from each transmitting antenna to the point of interest must be calculated, and RF
levels should be calculated at the point of interest due to emissions from each fiansmitting
antenna using the most accurate model. Limits, percentages and cumulative percent of the limit
may then be determined in the same manner as for Figure 4. Figure 5 illustrates such a situation.
Another situation may involve a single antenna that creates significant RF levels at more
than one type of location. Figure 6 illustrates such a situation where exposures on a rooftop as
well as on the ground are possible. The same considerations apply here as before and can be
applied to predict RF levels at the points of interest. As mentioned previously, with respect to
rooftop environments, it is also important to remember that building attenuation can be expected
to reduce fields inside of the building by approximately 10-20 dB.
Situations where tower climbing is involved may be complicated and may require
reduction of power or shutting down of transmitters during maintenance tasks (also see Section 4
of this bulletin on controlling exposure). Climbing of AM towers involves exposure due to RF
currents induced in the body of the climber, and guidelines are available for appropriate power
reduction (see Supplement A, Section l, dealing with AM broadcast stations). For FM, TV and
other antennas that may be mounted on towers, the highest exposures will be experienced near
the active elements of each antenna and may require shutting offor greatly reducing power when
a worker passes near the elements.
The equations in this section can also be used to calculate worst-case RF levels either
below or above antennas that are side-mounted on towers. In the example shown in Figure 7, a
more complicated situation arises when a worker is climbing an AM tower on which are
side-mounted two other antennas. In this case the safest and most conservative approach would
be to consult Supplement A, Section l, for the appropriate AM power level to use and then to
ensure that the transmitters for the other antennas are shut down when the climber passes near
each side-mounted antenna's elements.
37
r-l\- _/
Point of Interest
Figure 4. Single tower, co-located antennas, ground-level exposure (at 2 m).
FIGLIRE 5. Antennas on multiple towers contributing to RF field at point of interesL
38
n[/
\
RI
R2
X1
Point of Interest
L_l
Antenna I
o
FIGURE 6. Single roof-top antenna, various exposure locations.
FIGURE 7. Single tower, co-located antennas, on-tower exposure.
Antenna j (AM tower)
39
llll
illl
llll
IIII
llll
llll
Evaluating Mobile and Portable Devices
portable and mobile devices present something of a special case with respect to
evaluating RF exposure. The user oisuch a device would most likely be in the near vicinity of
the RF.uiiutor, and the predictive methods described above may not apply in all cases'
Therefore, evaluation of .*porrrr. due to these devices requires special consideration' The FCC's
rules for evaluating portabli and mobile devices for pp compliance are contained in 47 CFR
$$2.1091 and2.1093 (see Appendix A).
The new FCC guidelines differentiate between devices according to their proximity to
exposed persons. tn ttiat regard, "portable" devices are defined as those devices that are designed
to be used with any part of the radiating structure of the device in direct contact with the body of
the user or within 20 cmof the body of the user under normal conditions of use. This category
would include such devices as hand-held cellular telephones that incorporate the radiating
antenna into the handpiece. "Mobile" devices are defined by the FCC as transmitting devices
designed to be used in other than fixed locations that would normally be used with radiating
struJtures maintained 20 cm or more from the body of the user or nearby persons. In this
context, the term "fixed location" means that the device is physically secured at one location and
is not able to be easily moved to another location'
Examples of mobile i"ri"es, as defined above, would include transportable cellular telephones
("bugi phones), cellular telephones and other radio devices that use vehicle-mounted antennas
and certain other transportabte transmitting devices. Transmitting devices designed to be used by
consumers or workersihat can be easily re-located, such as wireless devices associated with a
personal computer, are considered to be mobile devices if they meet the 20 centimeter separation
requirement.
Evaluation of exposure from a portable or mobile device depends on how the device is to
be used. With respect to portable deviies, both the 1992 ANSI IIE,EE standard and the NCRP
exposure criteria, upo, *-hi.h the FCC guidelines are based, permit devices designed to be used
inihe immediate viiinity of the body, such as hand-held telephones, to be excluded from
compliance with the limits for field strength and power denllty provided that such devices
"olnpty
with the limits for specific absorption rate (SAR). Therefore, portable devices, as
defi"ei by the FCC, are to be evaluated with respect to SAR not MPE limits. For most
.on.urr..-type devices, such as hand-held cellular telephones, the appropriate SAR limit is 1'6
watt/kg as uu"raged over any one gram of tissue, defined as a tissue volume in the shape of a
cube (see Appendix A for details).
The selection of the 21-cmvalue for differentiating between "portable" and "mobile"
devices is based on the specification in the 1992 ANSI IIEEE standard that20 cm should be the
minimum separation distance where reliable field measurements to determine adherence to
MpEs can bi made.2o Therefore, although at closer distances a determination of SAR is
2a Although ANSyIEEE does not explicitly state a rule for determining when SAR measurements are
preferable to MpE measurements, we believe that the 20 cm distance is appropriate based on Sec. a'3(3) of
ANSI/IEEE C95.1-1992,
40
normally a more appropriate measure of exposure, for "mobile'' devices, as defined above,
complairce "un
be
"uairated
with respect to MPE limits, and the generic equations of this
secti,on, such as Equations (3) and (4), can be used for calculating exposure potential'
For portable devices SAR evaluation is routinely required by the FCC prior-to equipment
authorization or use for the following categories: (1) portable telephones or portable telephone
devices to be used in the Cellular Radiotelephone Service authorized under Part22, Subpart H of
the FCC's rules or to be used in the Private Land Mobile Radio Services for SMR systemsunder
iurt gO of our rules; (2) portable devices to be used in the Personal Communications Services
ipCSl authorized "naliiart 2a; Q) portable devices that operate in the General Wireless
bommunications Services or the Wireless Communications Service authorized under Pafis26
ia Zl;(4) portable devices to be used for earth-satellite communication authorized under Part
iS *a'pnrt gO; ana (5) portable unlicensed PCS, portable unlicensed MI and portable
millimeter-*ur" d"ri""i authorized under Part li of our rules (see Appendix A for specific rule
parts).
Mobile devices, as defined above, are to be evaluated with respect to the MPE limits
specifiedinTable I ofAppendixA(andin4TCFR$ 1.1310). Evaluationpriortoequipment
authorization or use is rouiinely required for the following mobile transmitters if the operating
frequency is 1.5 GHz or belowand the effective radiated power (EPJ) of the station, in its
normal ctnfiguration, will be 1.5 watts or greater, or if the operating frequency is above 1.5 GHz
and the ERp is 3 watts or more: (l) mobile telephones or portable telephone devices to be used
in the Cellular Radiotelephone Service authorized under Part2z Subpart H of the FCC's rules or
to be used in the Private Land Mobile Radio Services for SMR systems under Part 90 of our
rules; (2) mobile devices to be used in the Personal Communications Services (PCS) authorized
undei ifiZq;(3) mobile devices that operate in the General Wireless Communications Services
or the Wireless Communications Senice authorized under Parts 26 afi,27; (4) mobile devices to
be used for earth-satellite communication authorized under Partzs and Part 80; and (5)
unlicensed pCS, unlicensed NII and millimeter-wave mobile devices authorized under Part l5 of
our rules.
Although the FCC's exposure criteria apply to portable and mobile devices in general, at
this time routine evaluation for compliance is not required for devices such as "push-to-talk"
portable radios and "push to talku mobile radios used in taxicabs, business, police and fire
vehicles and used by amateur radio operators. These transmitting devices are excluded from
routine evaluation because their duty factors (percentage of time during use when the device is
transmitting) are generally low and, for mobile radios, because their antennas are normally
mounted on th. body of a vehicle which provide some shielding and separation from the user.
This significantly reduces the likelihood of human exposure in excess of the RF safety guidelines
due to emissions from these tansmitters. Duty factors associated with transmitting devices that
are not "push-to-talk," such as transportable cellular telephones ("bag" phones) or cellular
telephonls that use vehicle-mounted antennas, would be generally higher, and these devices are
subject to routine evaluation. Although we are not requiring routine evaluation of all portable and
,nolil" devices, under Sections 1.1307(c) and 1.1307(d) of the FCC's Rules,47 CFR 1.1307(c)
and (d), the Commission reserves the right to require
4l
rtL_/
a evaluation for environmental significance of any device (in this case with respect to SAR or
compliance with MPE limits).
The following guidelines should be used to determine the application of the exposure
criteria to portable aiimobile devices in general. First of all, devices may generally be
evaluated tased on whether they are designed to be used under occupationaVcontrolled or
;";.; population/uncontroiled conditions. Devices that are designed specifically to be used in
ihe workplace, such as many hand-held, two-way portable radios, would be considered as
operating in an occupationaVcontrolled environment and the applicable limits for controlled
environments would upply. On the other hand, devices designed to be purchased and used
primarily by consumeis, iuct, as cellular telephones and most personal communications devices,
would be considered to operate under the general population/uncontrolled category, and limits
for uncontrolled environments would apply. Devices that can be used in either environment
would normally be required to meet uncontrolled exposure criteria.
In situations where higher exposure levels may result from unusual or inappropriate use
of a device, instructional matirial should be provided to the user to caution against such usage'
witt ,.g.a to mobile devices that are not hind-held, labels and instructional material may be
useful ai when a minimum separation distance is desired to be maintained. For example, in the
case of a cellular "bag" phone a prominent warning label as well as instnrctional information on
minimum required ai-starrces for compliance would be an acceptable means of ensuring that the
device is used safelY.
With respect to evaluating portable devices, various publications are available that
describe appropriate measurement techniques and methods for determining SAR for compliance
prrpo....rt'The use of appropriate numerical and computational techniques, such as FDTD
anaiysi., may be accepta-bie for demonstrating compliance with SAR values. Studies have
indicated that such techniques can be used to determine energy absorption characteristics in
exposed subjects 1e.g., see Reference [2a]). However, in- order for numerical techniques to be
uuiid th. Uasic comp-utational algorithm and modeling of the portable device should be validated,
and appropriate mohels of the human body should be used which will provide reasonable
accurate estimates of SAR. Accurate models of the adult human body exist at the present time,
but developing models of devices may be more problematic. In general, numeri_cal device and
antenna -oa"fr should represent the actual device under test and should be confirmed
accordingly, e.g., with apiropriate techniques, analytical data, published data or far-field
radiation Patterns'
For purposes of evaluating compliance with localized SAR guidelines, portable devices
should be tested or evaluated based on normal operating positions or conditions. Because of the
location of the antenna, the antenna may be closer to the body, e.g', the head, when the
,t Forexample,seesectionsofANSI/IEEECg5.3-lgg2andNCRPReportNo. llg,discussedbelow,that
describe SAR evaluation techniques. Also, see References [5], [7], [12], [13], U4l, [16], U71,1231and [24]' Other
organizations are developing information on SAR evaluation procedures, and SAR evaluation services and systems
are commercially available.
42
r-'IL-/
nL-/
device is held against the left side of the head or body versus when it is held against the right
side. In such cases, there will be differences in coupling to the body resulting in higher SARS
when the device is held on one side rather than the other. Since various users may hold these
devices in either position, both positions should be tested to determine compliance.
Industry groups and other organizations are expected to develop product performance
standards ard other information to ensure compliance with SAR criteria in the future. This effort
will be very helpful in facilitating the provision of compliance guidelines and services to
manufactuiers and others. In that regard, a sub-committee sponsored by the IEEE has been
recently formed to develop specific and detailed recommendations for experimental and
numerital evaluation of SAR from portable devices.2u FCC staff participate as members of this
sub-committee, and it is expected that the FCC will be able to use the recommendations made by
this group to provide future guidance on SAR evaluation.2T In the meantime, the FCC expects to
perioaicatty iisue statements or guidance on compliance with SAR requirements pending the
'i.r.rur." oiury recommended piotocols or guidelines from the IEEE or other organizations.
Inquiries with respect to FCC iequirements for SAR evaluation should be directed to the FCC's
laboratory in Columbia, Maryland, telephone: (301) 725-1585'
For portable devices operating at frequencies above 6 GHz special considerations are
necessary. The localized SAR criteria used by the FCC, and specified in the ANSI/IEEE 1992
standard, only apply at operating frequencies tetween 100 kHz and 6 GHz.28 For portable
devices that operate above 6 GHz(e.g., millimeter-wave devices) localized SAR is not an
appropriate -Lum for evaluating exposure. At these higher frequencies, exposure from portable
Al"icis should be evaluated in terms of power density MPE limits instead of SAR. Power
density values can be either calculated or measured, as appropriate.
If power density is to be measured at these higher frequencies to show compliance of
portable devices, a queition arises as to an appropriate minimum distance at which to make such
u -.ur*.-ent. Th; ANSVIEEE 7992 standard specifies 20 cmas a minimum separation
distance for such measurements. The guidelines delineated in NCRP No. 86 indicated that
measurements should be made at least 5 cm "from any object in the field."ze The more recent
NCRP Report 119 seems to endorse the 20 cm value, at least for the case of
26 IEEE Standards Coordinating Committee 34 0EEE SCC34), sub-committee II. For further information
contact the IEEE at 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331.
2i It should also be noted that in February 1997 the European Committee for Electrotechnical Standardization
released a CENELEC document entitled, "Considerations for Human Exposure to EMFs from Mobile
Telecommunications Equipment (MTE) in the Frequency Range 30 MHz - 6 GHz." This document contains
information and guidance on techniques for evaluating SAR compliance for RF devices'
28 ANSI/IEEE c95.1-1992, Section 4.2.
2e See Reference [20], NCRP Report No. 86 at Section 17.5.
43
"secondary" sources.30 In some cases, for example, near an open-ended waveguide or consumer
device operating at a millimeter-wave frequency, a20 cm separation requirement from the
primary-radiating source for measurements would not be practical for determining exposue
potential. Thereiore, in such cases a 5 cm separation requirement can be justified to allow for
lvaluation of potential exposure at distances closer than 20 cm. Some research relevant to this
issue has been done in the VHF band that indicates there is no practical reason why a 5 cm
minimum distance cannot be used for measuring power density.3r Since a 5 cm separation
distance is already built-in to many isotropic broadband RF probes, performing measurements at
this distance is straightforward.
In view of these facts, it is appropriate to evaluate both mobile and portable devices that
operate at frequencies above 6 GHzfor compliance with FCC RF guidelines in terms of the FCC
Mpg U-it. for power density. In that regard, it is appropriate to make measurements of power
density at a minimum distance of 5 cm from the radiator of a portable device to show
compliance.
Section 3: MEASURING RF FIELDS
Reference Material
In some cases the prediction methods described in Section 2 of this bulletin cannot be
used, and actual measurements of the RF field may be necessary to determine whether there is a
potential for human exposure in excess of the MPE limits specified by the FCC. For example, in
a situation such as an antenna farm, with multiple users the models discussed previously would
not always be applicable. Measurements may also be desired for cases in which predictions are
slightly greater or slightly less than the threshold for excessive exposure or when fields are likely
to be seriously distorted by objects in the field, e.g., conductive structures.
Techniques and instrumentation are available for measuring the RF environment near
broadcast and other transmitting sources. In addition, references are available which provide
detailed information on measurement procedures, instrumentation, and potential problems.
Two excellent references in this area have been published by the IEEE and by the NCRP. The
ANSI/IEEE document (ANSI/IEEE C95.3-1992) is entitled, "Recommended Practice for the
Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave,"
30 Reference [21], NCRP Report I l9 at Section 3.3.6.
3' R.A. Tell, "An Investigation of RF Induced Hot Spots and their Significance Relative to Determining
Compliance with the ANSI Radiofrequency Protection Guide.' Report prepared for the National Association of
Broadcasters, July 3, 1989.
44
(Reference [2]) and the NCRp publication (NCRP Report No. 119) is entitled, "A Practical
buide to the Determination of Human Exposure to Radiofrequency Fields" (Reference t2l] ).
Both of these documents contain practicai guidelines and information for performing field
measurements in broadcast and oiher environments, and the FCC strongly encourages their use'
Other selected references are given in the reference section of this bulletin.
Instrumentation
Instruments used for measuring radiofrequency fields may be either broadband or
narrowband devices. A typical broadband instrument responds essentially uniformly and
instantaneously over a wide frequency range and requires no tuning. A narrowband instrument
may also operate over a wide frequer"y ru.rg., but the instantaneous bandwidth may be limited
to onty a few kiloh errz, andthe divice must be tuned to the frequency of interest' Each type of
instrument has certain advantages and certain disadvantages, and the choice of which instrument
to use depends on the situation where measurements are being made.
Al1 instruments used for measuring RI fields have the following basic components: (1)
an antenna to sample the field, (2) a detector to convert the time-varying output of the antenna to
a steady-state or siowly varying signal, (3) electronic circuitry to process the signal, and (4) a
readoui device to display the measured field parameter in appropriate units'
The antennas most commonly used with broadband instruments are either dipoles that
respond to the electric field (E) or loops that respond to the magnetic field (H). Surface area or
displacement-current sensors that respond to the E-field are also used. ln order to achieve a
uniform response over the indicated frequency range, the size of the dipole or loop must be small
compared to ttre wavelength of the highest frequency to be measured. Isotropic broadband probes
contain three mutually orthogonal dipoles or loops whose outputs are summed so that the
response is independint of orientation of the probe. The output of the dipoles or loops is
converted to a proportional steady-state voltage or current by diodes or thermocouples, so that
the measured parameter can be displayed on the readout device.
As described in the first edition of this bulletin, there are certain characteristics which are
desirable in a broadband survey instrument. The major ones are as follows:
(l) The response of the instrument should be essentially isotropic, i.e., independent of
orientation, or rotation angle, of the probe.
(2) The frequency range of the instrument and the instruments response over that range
should be known. Generally this is given in terms of the error of response between certain
frequency limits, e.g. , t 0.5 dB from 3 to 500 MHz'
(3) Out-of-band response characteristics of the instrument should be specified by the
manufacturer to assist the user in selecting an instrument for a particular application.
45
For example, regions ofenhanced response, or resonance, at frequencies outside ofthe band of
interest could reiult in error in a measurement, if signals at the resonant frequency(ies) are
present during the measurement.
(a) The dynamic range of the instrument should be at least + l0 dB of the applicable
exposure guideline.
(5) The instrument's readout device should be calibrated in units that correspond to the
quantity actually being measured. An ele-ctric field probe responds to E or E2, and a
,rrugo"ii. field probe risponds to H or H2, equally well in both the near-field and far-field'
However, a readout device calibrated in units of power density does not read true power
density if measurements are made in the near-field. This is because under plane-wave
conditions, in which E, H, and power density are related by a constant quantity (the wave
impedance which, for free space, is equal to 377 ohms), do not exist in the near-field
whire the wave impedance is complex and generally not known. Readout devices
calibrated in "power density" actually read "far-field equivalent" power density or
"plane-wave equivalent" power density (see discussion of MPE limits in Section 1 of this
bulletin).
(6) The probe and the attached cables should only respond to the parameter being
*iurrr"d, €.g. , o loop antenna element should respond to the magnetic field and should
not interact significantly with the electric field.
(7) Shielding should be incorporated into the design of the instrument to reduce or
eliminate electromagnetic interference.
(8) There should be some means, e.g., an alarm or test switch to establish that the probe
is operating correctly and ttrat none of the elements are burned out. Also, a means should
be provided to alert the user if the measured signal is overloading the device.
(9) When the amplitude of the field is changing while measurements are being made, a
';peak-hold" circuit may be useful. Such a change in amplitude could result either from
variation in output from the source or from moving the probe through regions of the field
that are non-uniform.
(10) For analog-type meters, the face of the meter should be coated with a transparent,
conductive film to prevent false readings due to the accumulation of static charge in the
meter itself. Also, the outer surface of the probe assembly of electric-field survey
instruments should be covered with a high-resistance material to minimize elrors due to
static charge buildup.
(l l) The instnrment should be battery operated with easily replaceable orrechargeable
batteries. A test switch or some other means should be provided to determine whether the
batteries are properly charged. The instrument should be capable of operating
46
within the stated accuracy range for a time sufficient to accomplish the desired measurements
without recharging or replacing the batteries.
(12) The user should be aware of the response time of the insrument i.e., the time
required for the instrument to reach a stable reading.
(13) The device should be stable enough so that frequent readjustnent to zero
("rezeroing") is not necessary. If not equipped with automatic zeroingcapability, devices
must be zeroed with the probe out of the field, either by shielding them or turning offthe
pp source(s). Either method is time consuming, making stability an especially desirable
feature.
(14) If the instrument is affected by temperafire, humidity, pressure, etc., the extent of
the effect should be known and taken into account.
(15) The sensor elements should be sufficiently small and the device should be free from
spurious responses so that the instrument responds correctly to the parameter being
measured, both in the near-field and in the far-field.It should be emphasized that an
instrument with a readout expressed in terms of power density will only be correct in the
far-field. However, the term "far-field equivalent" or "plane-wave equivalent" power
density is sometimes used in this context and would be acceptable as long as its meaning
is understood and it is appropriately applied to the situation of interest (see discussion in
Section l).
(16) The instrument should respond to the average (rms) values of modulated fields
independent of modulation characteristics. With respect to measurements of pulsed
sources such as radar transmitters, many commercially-available survey instruments
cannot measure high peak-power pulsed fields accurately. In such cases, the instnrment
should be chosen carefully to enable fields close to the antenna to be accurately
measured.
(17) The instnrment should be durable and able to withstand shock and vibration
associated with handling in the field or during shipping. A storage case should be
provided.
(18) The accuracy of the instrument should not be affected by exposure to light or other
forms of ambient RF and low-frequency elecfiomagnetic fields.
(19) The markings on the meter face should be sufficiently large to be easily read at
arm's length.
(20) Controls should be clearly labeled and kept to a minimum, and operating procedures
should be relatively simple.
47
(21) Typical meters use high-resistance leads that can be particularly susceptible to
flexure noise when measuring fields at relatively low intensities. Therefore, when a
broadband isotropic meter is used for measuring power density levels that fall into the
lower range of detectability of the instrument (e.g., a few pWcm2;, the meter should
exhibit low noise levels if such measurements are to have any meaning.
(22) When measuring fields in multiple-emitter environments, the ability of many
commonly available RF broadband survey meters to accurately measure multiple signals
of varying frequencies may be limited by how the meter sums the outputs of its diode
detectors. This can lead to over-estimates of the total RF field that may be significant.
Although such estimates can represent a "worst case," and are allowable for compliance
purposes, users of these meters should be aware of this possible source of error.
A useful characteristic of broadband probes used in multiple-frequency RF environments
is a frequency-dependent response that corresponds to the variation in MPE limits wittt
frequency. Broadband probes having such a "shaped" response permit direct assessment of
compliance at sites where RF fields result from antennas transmitting over a wide range of
frequencies. Such probes can express the composite RF field as a percentage of the applicable
MPEs.
Another practical characteristic of some RF field instruments is their ability to
automatically determine spatial averages of RF fields. Because the MPEs for exposure are given
in terms of spatial averages, it is helpful to simplif,i the measurement of spatially variable fields
via data averaging as the survey is being performed. Spatial averaging can be achieved via the
use of "data loggers" attached to survey meters or circuitry built into the meter.
Narrowband devices may also be used to characterize RF fields for exposure assessment.
In contrast to broadband devices, narrowband instruments may have bandwidths of only a few
hundred kilohertz or less. Narrowband instruments, such as field-strength meters and spectrum
analyzers, must be tuned from frequency to frequency, and the field level at each frequency
measured. Spectrum analyzers can be scanned over a band of frequencies, and the frequency and
peak-amplitude information can be stored and printed for later analysis. The results of all
narrowband measurements may then be combined to determine the total field.
As with broadband instruments, narrowband devices consist of basically four
components: an antenna, cables to carry the signal from the antema, electronic circuitry to
process the output from the antenna and convert it to a steady-state signal proportional to the
parameter being measured, and a readout device. Narrowband instruments may use various
antennas, such as rods (monopoles), loops, dipoles, biconical, conical log spiral antennas or
aperture antennas such as pyramidal homs or parabolic reflectors. A knowledge of the gain, the
antenna factor, or the effective area for a particular antenna provides a means for determining the
appropriate field parameter from a measurement of voltage or power. Cable
48
loss also should be taken into account. Tunable field strength meters and spectrum analyzers are
appropriate narrowband instruments to use for measuring anterma terminal voltage or power at
selected frequencies. Each has certain advantages and disadvantages.
Field Measurements
Before beginning a measurement survey it is important to characterize the exposure
situation as much as possible. An attempt should be made to determine:
(l) The frequency and maximum power of the RF source(s) in question, as well as any
nearby sources.
(2) Duty factor, if applicable, of the source(s).
(3) Areas that are accessible to either workers or the general public.
( ) The location of any nearby reflecting surfaces or conductive objects that could
produce regions of field intensification ("hot spots").
(5) For pulsed sources, such as radar, the pulse width and repetition rate and the antenna
scanning rate.
(6) If appropriate, antenna gain and vertical and horizontal radiation patterns.
(7) Type of modulation of the source(s).
(8) Polarization of the antenna(s).
(9) Whether measurements are to be made in the near-field, in close proximity to a
leakage source, or under plane-wave conditions. The type of measurement needed can
influence the type of survey probe, calibration conditions and techniques used.
If possible, one should estimate the maximum expected field levels, in order to facilitate
the selection of an appropriate survey instrument. For safety purposes, the electric field (or the
far-field equivalent power density derived from the E-field) should be measured first because the
body absorbs more energy from the electric field, and it is potentially more hazardous. In many
cases it may be best to begin by using a broadband instrument capable of accurately measuring
the total field from all sources in all directions. If the total field does not exceed the relevant
exposure guideline in accessible areas, and if the measurement technique employed is
sufficiently accurate, such a determination would constitute a showing of compliance with that
particular guideline, and further measurements would be unnecessary.
49
When using a broadband survey instnrment, spatially-averaged exposure levels may be
determined by slowly moving the probe while scanning over an area approximately equivalent to
the vertical cross-section (projected area) of the human body. An average can be estimated by
observing the meter reading during this scanning process or be read directly on those meters that
provide spatial averaging. Spatially averaging exposure is discussed in more detail in the
ANSL/IEEE and NCRP documents referenced above. A maximum field reading may also be
desirable, and, if the instrument has a "peak hold" feature, can be obtained by observing the peak
reading according to the instrument instructions. Otherwise, the maximum reading can be
determined by simply recording the peak during the scanning process.
The term "hot spots" has been used to describe locations where peak readings occur.
Often such readings are found near conductive objects, and the question arises as to whether it is
valid to consider such measurements for compliance purposes. According to the ANSI C95.3
guidelines (Reference [2]) measurements of field strength to determine compliance are to be
made, "at distances 20 cm or greater from any object." Therefore, as long as the 20 cm criterion
is satisfied, such peak readings should be considered as indicative of the freld at that poinl
However, as far as averoge exposure is concerned such localized readings may not be relevant if
accessibility to the location is restricted or time spent at the location is limited (see Section 4 of
this bulletin on controlling exposure). It should be noted that most broadband survey instnrments
already have a 5 cm separation built into the probe.
In many situations there may be several RF sources. For example, a broadcast antenna
farm or multiple-use tower could have several types of RF sources including AM, FM, and TV,
as well as CMRS and microwave antennas. Also, at rooftop sites many different tlpes of CMRS
antennas are commonly present. In such situations it is generally useful to use both broadband
and narrowband instrumentation to fully characteize the electromagnetic environment.
Broadband instrumentation could be used to determine what the overall field levels appeared to
be, while narrowband instrumentation would be required to determine the relative contributions
of each signal to the total field if the broadband measurements exceed the most restrictive portion
of the applicable MPEs. The "shaped" probes mentioned earlier will also provide quantification
of the total field in terms of percentage of the MPE limits.
In cases where personnel may have close access to intermittently active antennas, for
example at rooftop locations, measurement surveys should attempt to minimize the uncertainty
associated with the duty cycle of the various communications transmitters at the site to arrive at a
conservative estimate of maximum possible exposure levels.
At broadcast sites it is important to determine whether stations have auxiliary, or stand-
by, antennas at a site in addition to their main antennas. In such cases, either the main ant€nna or
the auxiliary antenna, which may be mounted lower to the ground, may result in the highest RF
field levels in accessible areas, and contributions from both must be properly evaluated.
At frequencies above about 300 MHz it is usually sufficient to measure only the electric
field (E) or the mean-squared electric field. For frequencies equal to or less than 30
50
rl
MHz, for example frequencies in the AM broadcast band, measurements for determining
compliance with MPE limits require independent measurement of bothE field and the magnetic
field (H). For frequencies between 30 and 300 MHz it may be possible through analysis to show
that measurement of only one of the two fields, not both, is sufficient for determining
compliance. Further discussion of this topic can be found in Sections 4.3(2) and 6.6 of Reference
It]. At sites with higher frequency sources, such as UHF-TV stations, only E-field
measurements should be attempted since the loop antennas used in H-field probes are subject to
out-of-band resonances at these frequencies.
In many situations a relatively large sampling of data will be necessary to spatially
resolve areas of field intensification that may be caused by reflection and multipath interference.
Areas that are normally occupied by personnel or are accessible to the public should be examined
in detail to determine exposure potential.
If narrowband instrumentation and a linear antenna are used, field intensities at three
mutually orthogonal orientations of the antenna must be obtained at each measurement point.
The values of E2 or H2 will then be equal to the sum of the squares of the corresponding,
orthogonal fi eld components.
If an aperture antenna is used, unless the test antenna responds uniformly to all
polarizations in a plane, €.g., d conical log-spiral antenna, it should be rotated in both azimuth
and elevation until a maximum is obtained. The antenna should then be rotated about its
longitudinal axis and the measurement repeated so that both horizontally and vertically polarized
field components are measured. It should be noted that when using aperture antennas in reflective
or near-field environments, significant negative errors may be obtained.
When making measurements, procedures should be followed which minimize possible
sources of error. For example, when the polarization of a field is known, all cables associated
with the survey instrument should be held perpendicular to the electric field in order to minimize
pickup. Ideally, non-conductive cable, e.g., optical fiber, should be used, since substantial error
can be introduced by cable pick-up.
Interaction of the entire instrument (probe plus readout device) with the field can be a
significant problem below approximately 10 lvlIlz, and it may be desirable to use a
self-contained meter or a fiber-optically coupled probe for measuring electric field at these
frequencies. Also, at frequencies below about 1 MHz, the body of the person making the
measurement may become part of the antenna, and error from probe/cable pickup and
instrument/body interaction may be reduced by supporting the probe and electronics on a
dielectric structure made of wood, styrofoam, etc. In all cases, it is desirable to remove all
unnecessary personnel from an area where a survey is being conducted in order to minimize
errors due to reflection and field perturbation.
In areas with relatively high fields, it is a good idea to occasionally hold the probe fixed
and rotate the readout device and move the connecting cable while observing the meter reading.
Alternatively, cover the entire sensor of the probe with metal foil and observe the
51
meter reading. Any significant change usually indicates pickup in the leads and interference
problems. When a field strength meter or spectrum analyzer is used in the above environments,
ihe antenna cable should occasionally be removed and replaced with an impedance matched
termination. Any reading on the device indicates pickup or interference.
As noted previously, substantial errors may be introduced due to zero drift. If a device is
being used which requires zeroing, it should frequently be checked for drift. This should be done
wlttr ttre probe shielded with metal foil, with the probe removed from the field or, ideally, with
the source(s) shut off.
With regard to compliance with the FCC's guidelines in mixed or broadband fields where
several sources and frequencies are involved, the fraction or percentage of the recommended
limit for power density (or square of the field strength) incurred within each frequency interval
should be determined, and the sum of all contributions should not exceed 1.0 or 100% (see
discussion of this topic in Section I of this bulletin). As mentioned before, probes with "shaped"
responses may be useful in these environments.
Section 4: CONTROLLING EXPOSURE TO RF FIELDS
Public Exposure: Compliance with General Population/Uncontrolled MPE Limits
Studies have indicated that the majority of the United States population is normally
exposed to insignificant levels of RF radiation in the ambient environment (e.g. see References
l2)l and [30]). However, there are some situations in which RF levels may be considerably
t igt ". than the median background, and in those cases preventive measures may have to be taken
to control exposure levels.
As discussed in Section 1 of this bulletin (also see Appendix A), the FCC's guidelines for
exposure incorporate two tiers of limits, one for conditions under which the public may be
exposed ("general population/unconffolled" exposure) and the other for exposure situations
usually involving workers ("occupational/controlled" exposure). Exposure problems involving
members of the general public are generally less cornmon than those involving persons who may
be exposed at their place of employment, due to the fact that workers may be more likely to be in
close proximity to an RF source as part of their job. However, if potential exposure of the
general public is a problem there are several options available for ensuring compliance with the
FCC RF guidelines.
In general, in order for a transmitting facility or operation to be out of compliance with
the FCC's RF guidelines an area or areas where levels exceed the MPE limits must, first of all, be
in some way accessible to the public or to workers. This should be obvious, but there is often
confusion over an emission limit, e.g., a limit on field strength or power density
52
at a specified distance from a radiator that always applies, and an exposure limit, that applies
uny*i.r. people may be located. The FCC guidelines speciff exposure limits not emission
limits, andthat distinction must be emphasized. This is why the accessibility issue is key to
determining compliance. The MPE limits indicate levels above which people may not be safely
exposed regardless of the location where those levels occur. When accessibility to an area where
excessive livels is appropriately restricted, the facility or operation can certiff that it complies
with the FCC requirements.
Restricting access is usually the simplest means of controlling exposure to areas where
high pp levels may be present. Methods of doing this include fencing and posting such areas or
tolting out unauthorized persons in areas, such ai rooftop locations, where this is practical.32
There may be situations where RF levels may exceed the MPE limits for the general public in
remote -"ur, such as mountain tops, that could conceivably be accessible but are not likely to be
visited by the public. In such cases, common sense should dictate how compliance is to be
achieved. If the area of concern is properly marked by appropriate warning signs, fencing or the
erection of other permanent barriers may not be necessary.33
In some cases, the time-averaging aspects of the exposure limits may be used by placing
appropriate restrictions on occupancy in high-field areas. However, such restrictions are often
not possible where continuous exposure of the public may occur. In general, time averaging of
"*po.r..r is usually more practical in controlled situations where occupational exposure is the
only issue.
Although restricting access may be the simplest and most cost-effective solution for
reducing public exposure, other methods are also available. Such methods may be relevant for
reducing exposure for both the general public and for workers. For example, modifications to
antennai, elevating antennas on roof-top installations or incorporation of appropriate shielding
can reduce RF fields in locations accessible to the public or to workers.
32 Standard radiofrequency hazard warning signs are commercially available from several vendors. They
incorporate the format recommended by the American National Standards Institute (ANSD as specified in ANSI
Cg5.2-1g82(Reference [3]). Although the ANSI format is recommended, it is not mandatory. Complaints have
been received conceming the lack of color durability in outdoor environments of the yellow kiangle specified by
ANSI. In that regard, longJasting and clearly visible symbols are more important than the exact color used, and the
use of the ANSI format with more durable colors may be more practical in certain environments. When signs are
used, meaningful information should be placed on the sign advising of the potential for high RF fields. In some
cases, it may be appropriate to also provide instructions to direct individuals as to how to work safely in the RF
environment of concem. U.S. vendors of RF warning and hazard signs include: National Association of
Broadcasters (800-368-5644), EMED Co., Inc. (800-442-3633) and Richard Tell Associates (702{45-3338).
33 Regarding this issue, the Commission's Mass Media Bureau released a Public Notice, on January 28, 1986,
entitled "Further Guidance for Broadcasters Regarding Radiofrequency Radiation and the Environment," (No.
2218). ThisNotice lists several typical exposure situations around broadcast sites and explains what is expected of
broadcast licensees and applicants with respect to ensuring compliance with the FCC's RF guidelines. This Notice
may be useful as guidance for other antenna sites. A summary of the major points of the 1986 Public Notice are
included as Appendix B of this bulletin. Also, another Public Notice, dealing primarily with occupational exposure,
was issued by the Mass Media Bureau on August 19.1992 (No. 24a79).
53
With regard to antennas used for FM broadcast stations, the EPA found that there are
several corrective measures that may be taken to reduce ground-level field strength and power
density (Reference Il l]). Some of ihese findings may also be relevant to other similar types of
urrt"r-u ,yrtems. EiA's examination of measurid elevation patterns for several different types of
FM antennas has shown that some antennas direct much less radiation downward than others.
Therefore, in some cases a change of antenna may be an appropriate way to reduce groundJevel
fields below a given level.
A more expensive, but also effective, approach for FM antennas involves modiffing the
array pattern by reducing the spacing between the radiating elements. The pattern of an FM
ante.nna is the iroduct oithe eGment pattern and the array pattern. FM antennas typically use
one-wavelength spacing between elements. Because the wave from each element adds in phase
with all the Jher il"-*tr, at points directly beneath the elements the array pattem results in
downward radiation that can bi significant and, in the case of dipole elements, could equal that in
the main beam. If the spacing is reduced to one-half wavelength spacing (for an antenna with an
even number of bays),lach *are will have a counterpart which is out-of-phase. This will result
in a significant reduction in the energy radiated toward the ground.
The disadvantage of this method is that the shorter aperture that will occur with one-half
wavelength spacing."du.r, the overall gain of the antenna. To maintain the original gain of the
antenna,-the number of elements (bays) has to be increased and, usually, doubled. Alternatively,
the spacing between elements could be reduced so that waves from element (n) and from element
(N/2 + n; ire exactly out of phase, where n is a particular element in an array with a total of N
bays.
Use of the latter method would result in a smaller increase in the total number of bays
that would be necessary. However, EPA has noted that feeding such an array would be more
difficult since the lengih of the transmission line between bays determines phasing. For one-half
wave spacing, EPA suggests that criss-crossing the transmission line or turning alternate
elements upside down will yield proper phasing.
The EPA's report (Reference [ 1]) contains a table showing suggested interbay spacings
required to reduce downward radiation in the array pattern of FM antennas. Unfortunately, the
opii-rr.., spacing may differ for different types of antennas. Coupling effects may occur at
spacings oi l"r, iha, on" wavelength that are not easy to predict theoretically. EPA has studied
t6r prlbtr*, and Reference p ll also contains figures showing the effects of altering spacing for
three types of FM antenna elements.
Another possible method for reducing downward radiation that has been suggested
involves using 1.5-wavelength spacing between elements. This method reportedly results in little
significant change in antenna gain.
Other actions that could be taken to reduce the potential for excessive exposure would be
raising the height of an FM or TV antenna or relocating a broadcast tower. However, such
54
actions would have to take into account other factors including signal coverage, land use
limitations, and air traffic safetY.
In the case of television broadcast antennas, the EPA identified trvo methods for reducing
potential exposure, besides the obvious method of restricting access discussed above. The first
,o"ur*. that might be taken, as with FM antennas, would be a change of antenna. EPA verified,
for example, thut *uy, for VHF-TV antennas can be designed to minimize downward radiation
to as littli asTo/oof the main beam field. However, such antennas apparently are at least twice as
expensive as standard antennas. Antennas used for UHF-TV have very high gain in the main
beam and radiate relatively little directly down toward the ground. Therefore, these antennas
already are designed for minimum downward radiation. The remaining option for both VHF-TV
and UHF-TV antennas would be an increase in antenna height above ground. However, this
could involve the same difficulties as discussed above with regard to FM broadcast facilities.
With respect to AM radio broadcast stations, monopole antennas are used for
transmissiorrr. ihe MPE limits in the AM broadcast band (see Appendix A) are given in terms
of electric and magnetic field strength, since significant exposures always occur in the near-field
of these antenna systems. Electric and magnetic field strengths near monopole antennas decrease
rapidly with increasing distance, and normally the MPE limi! can only be exceeded very close-
in to these antennas. iherefore, exposure problems due to AM radio antennas are usually those
involving workers or others who have access to the immediate vicinity of these antennas (see
discussion below).
Occupational Exposure: Compliance with OccupationaUControlled MPE Limits
Exposure to RF fields in the workplace or in other controlled environments usually
presents different problems than does exposure of the general public. For example, with respect
io a giren Rf tranimitting facility, a worker at that facility would be more likely to be close to
the radiating source than would a person who happens to live nearby. Although restricting
access to high ftf. field areas is also a way to control exposures in such situations, this may not
always be possible. In some cases a person's job may require him or her to be near an RF source
for some part of the workday. Depending on the level and time of exposure this may present a
problem with respect to compliance with the MPE limits'
In general, a locked rooftop or other appropriately restricted area that is only accessible to
workers *ho -, "aware of' and "exercise control over" theit exposure would meet the criteria
for occupationaVcontrolled exposure, and protection would be required at the applicable
occupatironal/controlled MPE limits for those individuals who have access to the rooftop.
persons who are only "transient" visitors to the rooftop, such as air conditioning technicians, etc.,
could also be considered to fall within the occupational/controlled criteria as long as they also are
"made aware" of their exposure and exercise control over their exposure (see Appendix A for
definitions of exposure tiers and MPE limits).
55
C
r-L-
As explained in Section I of this bulletin, the MPE limits adopted by the FCC ate time'
averagedexposue limits. This means that the exposure duration should be taken into account
when-evaluuiirg u given exposure situation, and this is especially relevant for cases of
occupational/controUed exposure. For example, a person walking into an area where RF fields
"*"""d the absolute tvtpp iimit (in terms of field strength or power density) might not exceed the
time-averagedMPElimit as long as the exposure was for an appropriately short period of time
(relative to the time-averaging inlerval). However, if that person were to remain in the area for
an extended period it is more probable that the time-averaged limit would be exceeded.
Therefore, in order to comply with the FCC's guidelines, in some situations it may be necessary
to limit exposure in certain areas to specific periods of time. For example, in workplace
situations where extended maintenance tasks must be performed in areas where RF fields exceed
MpE limits, the work may have to be divided up and carried out during several intervals of time
so that the time-averaged exposure during each interval is acceptable. The actual exposure time
allowed during uny gir.n inierval would have to be determined by use of the appropriate
averaging ti." rp".ifred in the guidelines (six-minutes for occupational exposure) as explained
in Section l.
In addition to time-averaging, other means are available for controlling exposures in
occupational or controlled environments. These include reducing or shutting offpower when
work is required in a high RF area, switching to an auxiliary transmitter (if available) while work
on a main iystem is in progress or incorporating appropriate shielding techniques to reduce
exposure.
In multiple-transmitter environments, reducing power or RF shielding may be especially
important for allowing necessary work procedures to be carried out. For example, on-tower
.*foru.., due to nearby co-located transmitting sources may be more significant when work on
another station's tower is required. In such complex environments power reduction agleements
may often be necessary to ensure that all licensees are aware of the potential for their station to
expose other individuals at the site and site occupants are generally jointly responsible for
compliance with FCC guidelines (see discussion of multiple-transmitter sites in Section 2 of this
bulletin).
Although reduction of power at broadcasting and other telecommunications sites is one
approach to reducing personnel exposure, this may not always be possible. For example,
measurements have shown that relatively high RF fields may exist in the immediate vicinity of
high-powered antennas such as those used at FM broadcast stations (Reference [25]). If power
reduction or other measures are not practical, alternative means for protecting personnel from
excessive exposure may be necessary when access to these areas is required. In such instances,
the use of radiofrequency protective clothing may facilitate compliance with RF exposure
guidelines even in the presence of intense RF fields.
Radiofrequency protective clothing has become commercially available in recent years
that appears to effectively attenuate fields over a broad frequency band. This clothing has been
manufactured into RF protective suits that cover the entire body of the user and allow him or her
to perform maintenance and other procedures in the presence of RF fields that may
56
o
o
o
exceed MpE limits. A recent study performed for the FCC by Richard Tell Associates, fnc.,
concluded that if properly used by appropriately trained personnel, and with adequate coupling to
ground potential, RF protective suits can provide significant reduction in whole-body RF
absorption (Reference [29]).
Recently, direct measurements of reduction in SAR afforded by one RF protective suit
were completei using a full-size human phantom filled with a dielectric fluid having the RF
absorption characteriitics of biological tissue.3o The SAR was determined by scanning the
interior of the body of the phantom with a robotically contolled miniature, isotopic electric-
field probe with and without the suit covering the phantom. Near-field exposure conditions were
duplicated at frequencies of 150 MHz,450 MHz and 835 MHz The measurement results
suiported the contention that the protective suit provides a nominal minimum reduction in SAR
of l0 times or more. These measurements also were consistent with measurement data obtained
by the Deutsche Telekom Technologiezentrum (German Telekom)'35
Another observation from the tests performed by Tell is that the peak SAR in the
unprotected head of the phantom clothed with the protective suit did not reach the SAR limit of 8
1ry7kg (localized partial-body exposure limit for occupationaVcontrolled environments) until the
150-M'Hz near-fiild exposure was 23 times the most restrictive whole-body averaged MPE limit
of 1.0 mWcmz. At 450 Wlz,the maximum field incident on the unprotected head was found to
be more than I I times the applicable MPE limit of 1.5 mWcm2, and, at 835 MHz, more than 3
times the MPE limit of 2.8 mWcm2. Such data suggest that, at least in some environments,
complete coverage of the body may not be necessary for compliance with MPE limits.
In general, the use of RF protective clothing may be considered an acceptable mitigation
technique ior occupational exposures as long as sufficient precautions are taken to comply with
all of the clothing manufacturer's recommendations and caveats and to ensure that use of the
clothing is confined to RF environments for which it is designed in terms of RF field intensity
and frequency range. As with any personal protective equipment, RF protective clothing should
be considered as a method of choice only when other engineering or administative controls
cannot be used to reduce exposure or are otherwise impractical. Those employing or supervising
the wearer should ensure that the wearer has full knowledge of the proper use and limitations of
the protective clothing being used. Also, users should be knowledgeable of the approximate RF
environment before spending a prolonged period of time in areas where RF fields are believed to
significantly exceed MPE limits. Users of RF protective clothing are cautioned that in addition
tJevaluating RF field intensity and frequency considerations, they should routinely visually
inspect the clothing material for
34 Te[, fuchard A. (1996). SAR Evaluation of the Naptex* Suitfor Use in the YHF and UHF
Telecommunications Bands. Presented at the International RF Safety Workshop, Schwangarl Germany, September
25-26.
35 Heinrich, W. ( I 996). Test Method for Determining the Attentuation of RF-protective Clothing. Presented
at the International RF Safety Workshop, Schwangau, Germany, September 24-26.
57
o
r-\L-/
indications of substantial wear, such as tears and rips, that may reduce the clothing's
effectiveness in reducing exposure. When users are climbing towers, special caution is advised
regarding possible safety hazards from RF shocks and burns, trip hazards, decreased
*IUifityTugility and reduced visibility (if a protective hood is worn) that may occur while
climbing.
In addition to the issue of protective clothing, Tell's 1995 study for the FCC investigated
the use of RF personal monitors that have become commercially available in recent years. These
monitors are waming devices that are worn by the user and alert him or her by an audible or
visible signal to the presence of RF fields that approach the MPE limits for
occupatiJraVcontrolled exposure. The Tell study concluded that such devices can act as reliable
RF dltectors and the devici tested generally responded in accordance with the manufacturer's
specifications. Such devices could be especially useful in areas where multiple transmitters are
located and it may not be easy or possible to predict the presence of high RF fields. Work
procedures could be instituted requiring the wearer of such a device to leave an area or take other
precautions when the device alerts that an RF field approaching the MPE limit is present. These
monitors can be a valuable component of an RF safety program. However, they should be
viewed only as waming devices and should not be viewed as protective devices-
For workers who must occupy areas near AM broadcast antennas, MPE limits are
normally only exceeded very close to an antenna. Even for a 50 kW transmitter, distances from
an antenna oil"5 than fifteen meters are required befbre field strengths are likely to approach the
FCC limits (References [26] and [33]). For multiple-tower arrays the spacing between adjacent
antennas would not be less than 35 meters, so that, as one antenna is approached, the contribution
of field strength from other antennas in the array would decrease to relatively insignificant levels.
However, if work on or immediately adjacent to a tower is required it may be necessary to
designate zones within which a worker may remain for specified periods of time appropriate for
compliance with the FCC limits.
Tuning circuits for AM broadcast antennas have been identified as a source of locally
intense magnitic fields (Reference [31]). These magnetic fields decrease rapidly with distance
from the tuning circuits but should be carefully considered when evaluating exposure very near
the base of AM towers or at other locations where such coils may be located. It should be
possible to locate the tuning circuits in such a way as to greatly reduce the potential for
i"por,r.". exceeding the FCC magnetic field limits. For example, separating the circuits from
normally accessible areas by a few meters should provide sufficient protection. Time-averaging
exposure near such coils is another method for complying with the MPE limits.
Probably the most cofitmon means by which workers at AM radio stations may be
exposed in excess of the FCC exposure guidelines occurs when persons must climb actively
transmitting AM antennas to perform maintenance tasks. Measurement surveys and studies
conducted by the FCC and the EPA have clearly indicated that significant RF currents exist in
the body of a person climbing such a tower (References 16),127), [28] and [32]). As addressed
by the 1992 ANSI/IEEE standard, such currents can cause significant levels of RF
58
absorption in the body that can be well in excess of allowable SAR thresholds (see discussion in
Section I of this bulletin).
Although the FCC RF exposure guidelines did not specifically adopt limits on RF body
currents, evaluation of such currents is the only practical means to control exposue of persons
climbing transmitting AM radio towers. The FCC and EPA studies referenced above include
data and models that allow a correlation to be made between the power fed into an AM antenna
and the potential current that will be induced in the body of a person climbing the antenna. This
current can be correlated with the appropriate limit on whole-body absorption specified by the
FCC's guidelines and thereby can be used as a guideline for the appropriate power reduction that
an AM sktion must undertake when a person is on a tower. Further information and guidance on
controlling such exposures can be found in Supplement A to this bulletin that is designed for
radio and television broadcast applications.
With regard to maintenance of FM and TV broadcast transmitters and antennas, two
situations are of particular interest and should be noted. Because currents and voltages in power
amplifier cabinets can be lethal, it is common practice that cabinet doors be closed when the
transmitter is on. However, it may not be recognized that at multiple station locations high RF
field strengths can be encountered even when the transmitter being worked on is completely shut
down. This is because the antenna for a particular station is likely to pick up high levels of
energy from other stations. That energy can be conducted to the final amplifier cubicle and
produce high field strengths and high voltages in the vicinity of the cubicle. Therefore, if
measurements are made in a multistation environment this factor should be evaluated. If such
induced field strength levels are found to be a problem, it should be possible to reduce them to
acceptable levels by either opening the RF transmission line leading to the antenna or by
bypassing the center conductor to ground ofthe coaxial line wherever access can be conveniently
achieved.
With regard to protecting personnel at paging and cellular antenna sites, Motorola, in
association with Richard Tell Associates, Inc., has developed a video for electromagnetic energy
awareness that is focused on wireless telecommunications service providers. Although this video
was originally produced for Motorola's use and is copyrighted, Motorola has decided to make
this vidio commercially available to other interested industrial users.36 Also, as mentioned
earlier, software has been developed by various organizations for use in estimating RF levels and
ensuring compliance at transmitter sites, particularly rooftop sites used for personal wireless,
cellular and paging services.3'
36 The title of the video is: "EME Awareness for Antenna Site Safety," @Motorola, 1996. Copies are
available in the U,S.A. from Stephen Tell Productions (702-396-5912), or from Narda Microwave Corporation,
(516) 231-1700 (Narda Part No. 42929000).
37 See footnote 23.
59
REFERENCES
NOTE: References with NTIS Order Numbers are available from the U.S. Department of
Commerce, National Technical Information Service at: 1-800-553-6847 (toll-free in U.S.A.)
or 1-703-4874650.
I l] American National Standards Institute (ANSI), "Safety Levels with Respect to
Human Exposure to Radio Frequency Electromagnetic Fields,3ldlzto 300 GHz,"
ANSL/IEEE C95.1-1992 (previously issued as IEEE C95.1-1991). Copynght 1992 by the
Institute of Electrical and Electronics Engineers, Inc. (IEEE), New York, N.Y. 10017. For copies
contact the IEEE: l-800-678-4333 or l-908-981-1393.
[2] American National Standards Institute (ANSI), "Recommended Practice for the
Measurement of Potentially Hazardous Elechomagnetic Fields - RF and Microwave."
ANSI/IEEE C95.3-1992. Copyright l992,The Institute of Electrical and Electronics Engineers,
Inc. (IEEE), New Yorh NIY 10017. For copies contact the IEEE: l-800-6784333 or l-908-981-
1393.
t3] American National Standards Institute (ANSI), "AmericanNational Standard Radio
Frequency Radiation HazardWarning Symbol," ANSI C95.2-1982. Copyright 1982, The
Institute of Electrical and Electronics Engineers, Inc., (IEEE). For copies contact the IEEE: l-
800-678-4333 or l-908-98 l-1393.
t4] American Radio Relay League (ARRL), "RF Radiation Safet5r," The ARRL Radio
Amateur Handbook For Radio Amateurs. Copyright 1992 ARRL, Newington, CT 061l l, USA.
t5] Balzano, Q., Garay O. and Manning, T.J. "Electromagnetic energy exposure of
simulated users of portable cellular telephones," IEEE Transactions on Vehicular Technologt,
Vol. 44 (3), pp. 390403,1995.
t6l Cleveland, R.F., Jr., E.D. Mantiply and R.A. Tell; "A Model for Predicting Induced
Body Current in Workers Climbing AM Towers." Presented at the Twelfth Annual Meeting,
Bioelecffomagnetics Society, San Antonio, Texas, 1990 (Abstracts, p. 77).
17) Dimbylow, P.J. and S.M. Mann, USAR Calculations in an Anatomically Realistic
Model of the Head for Mobile Communication Transceivers at 900 MHz and 1.8 GHz," Phys.
Med. Biol. 39(12): 1537 -1553 (1 994).
t8l Federal Communications Commission (FCC), "Guidelines for Evaluating the
Environmental Effects of Radiofrequency Radiation," Notice of Proposed Rule Making, ET
Docket No. 93-62, 8 FCC Rcd 2849 (1993).
60
t9] Federal Communications Commission (FCC), "Guidelines for Evaluating the
Envirorunental Effects of Radiofrequency Radiation," Report and Order, ET Docket93-62,FCC
96-326, adopted August 1,1996. 6l Federal Register 41006 (1996)'
tl0] Federal Communications Commission (FCC), "Measurements of Environmental
Electromagnetic Fields at Amateur Radio Stations," FCC Report No. FCC/OET ASD-9601,
February tggO. fCC, Office of Engineering and Technology (OET), Washington, D.C. 20554.
NTIS Oider No. pB96-145016. Copies can also be downloaded from OET's Home Page on the
World Wide Web at: http://www.fcc.gov/oeV.
Il l] Gailey, P. C., and R.A. Tell, "An Engineering Assessment of the Potential Impact of
Federal Radiation Protection Guidance on the AM, FM, and TV Broadcast Services," U.S.
Environmental Protection Agency, Report No. EPA 520/6-85-011, April 1985. NTIS Order No.
PB 85-245868.
U2) Gandhi, O.P., "Some Numerical Methods for Dosimetry: Extremely Low
Frequencies to Microwave Frequencies," Radio Science, vol. 30(1), pp.16l'177 (1995)'
tl3l Gandhi, O.P. and J.Y. Chen, "Electromagnetic Absorption in the Human Head from
Experimental6-GHzHandheld Transceivers," IEEE Trans. EMC, 37 547-558 (1995).
tl4] Gandhi, O.P., G. Lazzi and C.M. Furse, "EM Absorption in the Human Head and
Neck for Mobile Telephones at 835 and 1900 MHz," IEEE Trans. on Microwave Theory and
Techniques, 44 (10), pp I 884- I 897, October I 996.
t15] Hankin, N., "The Radiofrequency Radiation Environment: Environmental Exposure
Levels and RF Radiation Emitting Sources," U.S. Environmental Protection Agency,
Washington, D.C. 2M60. Report No. EPA 520/1-85-014, July 1986.
[16] Kuster, N., and Q. Balzano, "Energy Absorption mechanism by biological bodies in
the neaifield of Dipole antennas above 300 MHz. IEEE Transactions on Vehicular Technology,
4 1 ( I ), 17 -23, F ebruary 1992.
U7l Kuster, N., Q. Balzano and J. Lin, Eds., Mobile Communications Safetv, Chapman
and Hall, London, 1997.
tl8] Lewis, R.L. and A.C. Newell, "An Efficient and Accurate Method for Calculating
and Representing Power Density in the Near-Zone of Microwave Antennas." NBSIR Report No.
85-3036 (December 1985).
tl9] National Council on Radiation Protection and Measurements (NCM),
"Radioiequency Electromagnetic Fields; Properties, Quantities and Units, Biophysical
Interaction, and Measurements," NCRP Report No. 67, 1981. Copyright NCRP, Bethesda, MD
20814,USA. For copies contact: NCRP Publications at 1-800-229-2652.
6t
LZOI National Council on Radiation Protection and Measurements (NCRP), "Biological
Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," NCRP Report No.
86, 1986. Copyright NCRP, Bethesda, MD, 20814, USA. For copies contact NCRP
Publications: I -800-229 -2652.
l21l National Council on Radiation Protection and Measurements (NCRP), "A Practical
Guide to the Determination of Human Exposure to Radiofrequency Fields," NCRP Report No.
llg,lgg3. Copyright NCRP, Bethesda, MD 20814. For copies contact: NCRP Publications at:
1-800-229-2652.
l22l Petersen, R. and P. Testagrossa, "Radio-Frequency Electromagnetic Fields
Associated with Cellular-Radio Cell-Site Antennas." Bioelectromagnetics,13527 (1992).
l23l Schmid, T., O. Egger and N. Kuster, "Automated E-Field Scanning System for
Dosimetric Assessments," IEEE Trans. Microwave Theory and Techniques,44(1): 105-113,
January 1996.
l}4l Sullivan, D.M., O.P. Gandhi and A. Taflove, "Use of the Finite-Difference Time-
Domain Method for Calculating EM Absorption in Man Models," IEEE Trans. on Biomedical
Engineering, 35(3): 179-l86,March 1988.
[25] Tell, R.A., "A Measurement of RF Field Intensities in the Immediate Vicinity of an
FM Broadcast Station Antenna," Technical Note ORPIEAD-76-2, U. S. Environmental
Protection Agency, January 1976. NTIS Order No. PB 257698.
126) Tell, R.A., "Electric and Magnetic Fields and Contact Currents Near AM Standard
Broadcast Radio Stations," Richard Tell Associates, Inc., Las Vegas, NV. Contracted by Federal
Communications Commission (FCC), Office of Engineering and Technology, Washington, D.C.
20554. FCC Reference No. FCC/OET RTA 89-01, August 1989. NTIS Order No. PB89-
234850.
t27l Tell, R.A., "Induced Body Cunents and Hot AM Tower Climbing: Assessing
Human Exposure in Relation to the ANSI Radiofrequency Protection Guide," Richard Tell
Associates, Inc., Las Vegas, NV. Contracted by Federal Communications Commission (FCC),
Office of Engineering and Technology, Washington, D.C. 20554. FCC Reference No. FCC/OET
RTA 91-01, October 1991. NTIS Order No. PB92-125186.
l28l Tell, R.A., "RF Current Reduction Provided by Work Gloves at AM Radio
Broadcast Frequencies," Richard Tell Associates,Inc., Las Vegas, NV. Contracted by Federal
Communications Commission (FCC), Offrce of Engineering and Technology, Washingon, D.C.
20554. FCC Reference No. FCC/OET RTA 93-01, September 1993,NTIS OrderNo. PB94-
tt704l
129) Tell, R.A., "Engineering Services for Measurement and Analysis of
Radiofrequency (RF) Fields," Richard Tell Associates, Inc., Las Vegas, NV. Contracted by
62
Federal Communications Commission (FCC), Offrce of Engineering and Technology,
Washington, D.C.20554. FCC Report No. OET/RTA 95-01, June 1995. NTIS OrderNo. PB
95-253829.
t30l Tell, R. A. and E. D. Mantiply, "Population Exposure to VHF and UHF Broadcast
Radiation in the United States," Proceedings of the IEEE. Vol. 68(l), pages 6-12, January 1980.
t3l] Tell, R.A., and G.G. Gildore, "Assessing Personnel Exposure to Magnetic Fields
Associatedwith AM Radio Broadcast Tower Matching Networks," p. 505-508' NAB
Engineering Conference Proceedings, National Association of Broadcasters, Broadcast
Engineering Conference, Las Vegas, NV, April 8-12, 1988.
t32l U.S. Environmental Protection Agency, Office of Radiation Programs,
"Radiotiequency Electromagnetic Fields and Induced Currents in the Spokane, Washington
Area,', EpA Reiort No. EPA/520/6-88/008, June 1988, NTIS Order No. PB88-244.8191A5.
t33] U.S. Environmental Protection Agency, Office of Radiation Programs, "Electric and
Magnetic fi"ta, Near AM Broadcast Towers," EPA Report No. EPA/52016-911020, July 1991.
NTIS Order No. PB92-l 01427.
63
APPENDIX A
SUMMARY OF RF E}(POST]Rtr GIIIDELIFTES
This appendix summarizes the policies, guidelines and requirements that were adopted
by the FCC on-August 1, 1996, amending Part I of Title 47.of the code of Federal
Regulations, and fuither amended by action of the Commission on August 25, 1997 (see 47
CFL Sections 1.1307(b), 1.1310, 2.1091 and2.1093, as amended). Commission actions
granting construction permits, licenses to transmit or renewals thereof, equipment
authoriiations or modifications in existing facilities, require the preparation of an
Environmental Assessment (EA), as described in 47 CFR Section 1.1311, if the particular
facility, operation or transmitter would cause human exposure to levels of radiofrequency
(RF) eleitromagnetic fields in excess of these limits. For exact language, see the relevant
FCC rule sections.
FCC implementation of the new guidelines for mobile and portable devices became
effective August 7,1996. For other applicants and licensees a transition period was
established before the new guidelines would apply. With the exception of the Amateur Radio
Service, the date established forthe end of the transition period is October 15,1997.
Therefore, the new guidelines will apply to applications filed on or after this date. For the
Amateur Service only, the new guidelines will apply to applications frled on or after January
1, 1998.
Summary of Station and Transmitter Requirements
Applications to the Commission for construction permits, licenses to transmit or
,"n"*ulsiirereof, equipment authorizations or modifications in existing facilities must contain
a statement or certification confirming compliance with the limits unless the facility,
operation, or transmitter is categorically "*ilud"d from routine evaluation, as discussed below'
Technical information showing the basis for this statement must be submitted to the
Commission uPon request.
The FCC-adopted limits for Maximum Permissible Exposure (I{PE) are generally
based on recommenOlO exposure guidelines published by the National Council on Radiation
protection and Measur"..rrt, (NCRP) in "Biological Effects and Exposure Criteria for
Radiofrequency Electromagnetic Fields," NCRP Report No. 86, Sections 17.4-1,17.4.1.1,
17.4.2 and 17.4.3. Copyright NCRP, 1986, Bethesda, Maryland 20814. In the frequency
range from 100 MHz to 1SOO M]Hz, exposure limits for field strength and power density are
alsJgenerally based on the MpE limits found in Section 4.1 of , "IEEE Standard for Safety
64
Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to
300 GHz," ANSI/IEEE Cg5.l-lggz, Copyright 1992by the Institute of Electrical and Electronics
Engineers, Inc., New York, New York 10017, and approved for use as an American National
Standard by the American National Standards Institute (ANSI)'
The FCC's MPE limits for field strength and power density are given in Table I (and in
47 CFR $ 1.1310) Figure I is a graphical representation of the limits for plane-wave (far-field)
equivaleit powerdensity versus fr.qr.n.y. The FCC's limits are generally applicable to all
facilities, operations und t.urr-itteis regulated by the Commission, and compliance is expected
with the appropriate guidelines. However, routine determination of compliance with these
exposure ii-iti (routine environmental evaluation), and preparation of an EA if the limits are
exceeded, is required only for facilities, operations and transmitters that fall into the categories
listed in Table 2, or those specified below under the headings "mobile," "unlicensed" or
"portable" devices. All othir facilities, operations and transmitters are categorically excluded
from routine evaluation or preparing an EA for RF emissions, except that the Commission may,
on its own merits or as the iesult of a petition, complaint or inquiry, require RF environmental
evaluation of transmitters or facilities even though they are otherwise excluded [see 47 CFR
Sections 1.1307(c) and (d)l'
For purposes of Table 2, the term "building-mounted antennas" means antennas mounted
in or on a U.,itairg structure that is occupied as a workplace or residence. The term "power" in
column 2 of Table 2 refers to total operating power of the transmitting operation in question in
terms of effective radiated power (ERP), equivalent isotropically radiated power (EIRP), or peak
envelope power (PEP), as defined in 47 CFR. $ 2.1. For the case of the Cellular Radiotelephone
Service,4T CFR $ 22, Subpart H, the Personal Communications Service,4T CFR $ 24, and
Specialized Mobile Radio Service,4T CFR $ 90, the phrase "total power of all channels" in
.olrr-rr 2 of Table 2 means the sum of the ERP or EIRP of all co-located simultaneously
operating transmitters owned and operated by a single licensee.
When applying the criteria of Table 2, radiation in all directions should be considered.
For the case of transmitting facilities using sectorized transmitting antennas, applicants and
licensees should apply the criteria to all transmitting channels in a given sector, noting that for a
highly directional antenna there is relatively little contribution to ERP or EIRP summation for
other directions.
For purposes of calculating EIRP of an MDS station, the power level refers to the
cumulative EIRP of all channels. Further, this power limit assumes conventional NTSC
transmissions with 10% aural power, and refers to peak visual power. MDS stations employing
other than NTSC transmissions, e.g., digital transmissions, must apply the appropriate NTSC
peak visual to average power conversion factor for their modulation scheme in order to
determine whether the EIRP power criteria is exceeded'
In general, as specified in 47 C.F.R. 1. 1307(b), as amended, when the FCC's guidelines
are exceede d in an aciessible area due to the emissions from multiple fixed transmitters the
following policy applies. Actions necessary to bring the area into compliance
65
with the guidelines are the shared responsibility of atl licensees whose transmitter's contribution
to the RFenvironm ent at the non-complying area exceeds 5% of the exposure limit (that applies
to their particular transmitter) in terms of power density or the square of the electric or magnetic
field strength. This applies regardless of whether such transmitters would, by themselves,
normally bl excluded from performing a routine environmental evaluation. Owners of
transmitter sites are expected to allow applicants and licensees to take reasonable steps to comply
with the FCC's requirements and, where feasible, should encourage co-location of transmitters
and common solutions for controlling access to areas where the RF exposure limits might be
exceeded.
The following policy applies in the case of an application for a proposed transmitter,
facility or modification (not otherwise excluded from performing a routine RF evaluation) that
would cause non-compliance atan accessible area previously in compliance. In such a case, it is
the responsibility of the applicant to submit an EA if emissions from the applicant's transmitter
or faciiity would cause non-compliance at the area in question. However, this applies only if the
applicani's transmitter causes exposure levels at the area in question that exceed 5% of the
"*porr." limits applicable to that particular transmitter in terms of power density or the square of
the electric or magnetic field strength.
For a renewal applicant whose transmitter or facility (not otherwise excluded from
routine evaluation) contributes to the RF environment at an accessible area not in compliance
with the guidelines the following policy applies. The renewal applicant must submit an EA if
emissioni from the applicant's transmitter or facility, at the area in question, result in exposure
levels that exceed 5% of the exposure limits applicable to that particular transmitter in terms of
power density or the square of the electric or magnetic field strength. In other words, although
the renewal applicant may only be responsible for a fraction of the total exposure (greater than
5%o),the applicant (along with any other licensee undergoing renewal at the same time) will
trigger the-EA process, unless suitable corrective measures are taken to prevent non-compliance
before an EA is necessary. In addition, in a renewal situation if a determination of non-
compliance is made, other co-located transmitters contributing more than the 5o/o threshold level
musi share responsibility for compliance, regardless of whether they are categorically excluded
from routine evaluation or submission of an EA'
66
Tabte 1. LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (ndPE)
(A) Limits for OccupationaVControlled Exposure
Frequency
Range
(MHz)
Electric Field
Strenglh (E)
(V/m)
Magnetic Field Power DensitY
Strength (H) (S)
(A/m) (mWcm2)
Averaging Time
lel2, lul2 or S
(minutes)
0.3-3.0
3.0-30
30-300
300-1500
1500-100,000
614
t842tf
61.4
1.63
4.89|t
0- 163
(100)*
(9oo/f)*
1.0
f/300
5
6
6
6
6
6
(B) Limits for General Population/Uncontrolled Exposure
Frequency
Range
(MHz)
Electric Field
Strength (E)
(V/m)
Magnetic Field Power DensitY
Strength (H) (S)
(A/m) (mW/cm2)
Averaging Time
pf,lul2 or S
(minutes)
0.3- 1.34
1.34-30
30-300
300-l 500
1500-100,000
6r4
8241f
n.5
1.63
2.t9lf
0.073
(100)*
(180/f)*
0.2
f/1s00
1.0
30
30
30
30
30
f : frequency in MHz *Plane-wave equivalent power density
NOTE l: OccupationaL/controlled limits apply in situations in which persons are exposed as a
consequence of their employment provided those persons are fully aware of the potential for
exposrtre and can exercise control over their exposure. Limits for occupationaVcontrolled
"*porr.. also apply in situations when an individual is transient through a location where
occupational/controlled limits apply provided he or she is made aware of the potential for
exposure.
NOTE 2: General population/uncontrolled exposures apply in situations in which the general
public may be exposed, or in which persons that are exposed as a consequence of their
imployment may not be fully aware of the potential for exposure or can not exercise control over
their exposure.
67
ooa
Ci vUAc')d+-d o\\aoad
c?)
ef,ooaxotu
deox
SE
E_8
EE
*H
E8EE+b
8.E
o0-3
af,q\
A *.'\, .\s8ui .getao
EF
$EtrS\.-f,strU.= lJ.Jteis r>Ets\=Aai€stro-
-lool{
Fl
al5l
EI
GI3
C)co
=oot-tL
aaoc't I<- to
(FJ
\t
--
c?)
F
cF)
et
cDo
e;a!o \\N\\
C; C;
aaoaoS
nL'
r-l\/
o
TABLE 2: TRANSMITTERS, FACILITIES AND OPERATIONS SUBJECT TO
ROUTINE EI{VIRONMENTAL EVALUATION
SERVICE {TITLE 47 CFR RULE PART)EVALUATION REQUIRED IF
Experimental Radio Services
(part 5)
power > 100 W ERP (164 W EIFJ)
Multipoint Distribution Service
(subpart K ofpart 2l)
non-buildins-mounted antennas: height
above ground level to lowest point of
antenna < 10 m and power > 1640 W EIRP
building-mounted antennas :
power> l640WEIRP
Paging and Radiotelephone Service
(subpart E of partZ2)
non-building-mounted antennas: height
above ground level to lowest point of
antenna < l0 m and power > 1000 W ERP
(1640 w EIRP)
bui ldins-mounted antennas :
power > 1000 W ERP (1640 W EIRP)
Cellular Radiotelephone Service
(subpart H of part2?)
non-building-mounted antennas: height
above ground level to lowest point of
antenna < l0 m and total power of all
channels > 1000 W ERP (1640 W EIRP)
building-mounted antennas :
total power of all channels > 1000 W ERP
fi640w EIRP)
69
TABLE 2 (cont.)
70
o
nIL'
(l) Narrowband PCS (subPart D):
non-building-mounted antennas: height
above ground level to lowest point of
antenna < l0 m and total Power of all
channels > 1000 W ERP (1640 W EIRP)
building-mounted antennas:
total power of all channels > 1000 W ERP
(1640 w EIRP)
(2) Broadband PCS (subPart E):
non-building-mounted antennas: height
above ground level to lowest point of
antenna < l0 m and total Power of all
channels > 2000 W ERP (3280 W EIRP)
bui lding-mounted antennas:
total power of all channels > 2000 W EFJ
(3280 W EIRP)
Personal Communications Services
@N.24)
Satellite Communications
(paft 25)
total power of all channels > 1640 W EIRPGeneral Wireless Communications Service
G,art26)
total power of all channels > 1640 W EIRPWireless Communications Service
G,art27)
Radio Broadcast Services
@afi73)
TABLE 2 (cont.)
SERVICE (TITLE 47 CFR RULE PART)EVALUATION REQI.IIRED F:
Experimental, auxiliary, and special
broadcast and other program
distributional services
@Nt74)
subparts A, G, L: power > 100 W ERP
subpart I:
non-buildins-mounted antennas: height
above ground level to lowest point of
antenna < l0 m and Power > 1640 W EIRP
building-mounted antennas :
power>l640WEIRP
Stations in the Maritime Services
Oart 80)
ship earth stations onlY
Private Land Mobile Radio Services
Paging Operations
(part 90)
non-building-mounted antennas: height
above ground level to lowest point of
antenna < l0 m and power > 1000 W ERP
(1640 W EIRP)
buildine-mounted antennas: power > 1000 W
ERP (1640 W EIRP)
Private Land Mobile Radio Services
Specialized Mobile Radio
Oart 90)
non-buildins-mounted antennas: height
above ground level to lowest point of
antenna < 10 m and total power of all
channels > 1000 W ERP (1640 W EIRP)
building-mounted antennas :
total power of all channels > 1000 W ERP
(1640 W EIRP)
7l
TABLE 2 (cont.)
72
Amateur Radio Service
G,art97)
transmitter output power > levels specified in
$ 97.13(c)(l) ofthis chapter
(see Table I in text)
non-building-mounted antennas: height
above ground level to lowest point of
antenna < l0 m and power > 1640 W EIRP
building-mounted antennas: power > 1640
W EIRP
LMDS licensees are required to attach a
label to subscriber transceiver antennas that:
(1) provides adequate notice regarding
potential radiofrequency safety lnz.ards, e.g.,
information regarding the safe minimum
separation distance required between users
and transceiver antennas; and (2) references
the applicable FCC-adopted limits for
radiofrequency exposure specified in $
1.1310 of this
Local Multipoint Distribution Service
(subpart L ofpart l0l)
Mobile and Portable Devices
Mobile and portable transmitting devices that operate in the Cellular Radiotelephone
Service, the Personal Communications Services (PCS), the Satellite Communications Services,
the Maritime Services (ship earth stations only) and the Specialized Mobile Radio (SMR)
Service are subject to routine environmental evaluation for RF exposure prior to equipment
authorization or use, as specified in 47 CFR $ 2. 1091 and $ 2.1093. Unlicensed PCS and
millimeter wave devices are also subject to routine environmental evaluation for RF exposure
prior to equipment authorization or use, as specified in 47 C.F.R. $ 15.253(0, $ 15.255(g), and
$ 15.319(i). All other mobile, portable, and unlicensed transmitting devices are categorically
excluded from routine environmental evaluation for RF exposure under 47 CFR $ 2.1091 and $
2.1093, except (as described previously) as specifiedin4T CFR $ 1.1307(c) and (d) .
(a) Mobile Devices
This section describes the requirements of Section 2.1091 of the FCC's Rules (47 CFR $
2.l}9l) that apply to "mobile" devices. For purposes of these requirements mobile devices are
defined as transmitters designed to be used in other than fixed locations and to generally be used
in such a way that a separation distance of at least 20 centimeters is normally maintained
between the transmitter's radiating structure(s) and the body of the user or nearby persons. In
this context, the term "fixed location" means that the device is physically secured at one location
and is not able to be easily moved to another location. Transmitting devices designed to be used
by consumers or workers that can be easily re-located, such as wireless devices associated with a
personal computer, are considered to be mobile devices if they meet the 20 centimeter separation
requirement.
Mobile devices that operate in the Cellular Radiotelephone Service, the Personal
Communications Services, the Satellite Communications Services, the General Wireless
Communications Service, the Wireless Communications Service, the Maritime Services and the
Specialized Mobile Radio Service authorized under the following parts and subparts of the FCC's
Rules: subpart H of part 22,part24, par125,part26,part27,part 80 (ship earth station devices
only) and part 90 (SMR devices only), are subject to routine environmental evaluation for RF
exposure prior to equipment authorization or use if they operate at frequencies of 1.5 GHz or
below and their effective radiated power (ERP) is 1.5 watts or more, or if they operate at
frequencies above 1.5 GHz and their ERP is 3 watts or more. Unlicensed personal
communications service devices, unlicensed millimeter wave devices and unlicensed NII devices
authorized under FCC Rule parts 1 5.253 , 15 .255 and subparts D and E of part I 5 are also subject
to routine environmental evaluation for RF exposure prior to equipment authorization or use if
their ERP is 3 watts or more or if they meet the definition of a portable device as specified
below, requiring evaluation under the provisions of 47 CFR $2.1093. All other mobile and
unlicensed transmitting devices are categorically excluded from routine environmental
evaluation for RF exposure prior to equipment authorization or use, except as specified in 47
CFR $ $ I . 1 307(c) and I . I 307(d), as discussed previously.
t.)
The limits to be used for evaluation of mobile and unlicensed devices (except portable
unlicensed devices) are the MPE field strength and power density limits specified in Table I
above (and in 47 CFR $ I . 1 3 10). Applications for equipment authorization must contain a
statement confirming compliance with these exposure limits as part of their application.
Technical information showing the basis for this statement must be submitted to the Commission
upon request.
All lnlicensed personal communications service (PCS) devices shall be subject to the
limits for general population/uncontrolled exposure. For purposes of analyzing mobile
transmitting devices under the occupational/controlled criteria specified in Table l, time-
averaging provisions of the guidelines may be used in conjunction with typical maximum duty
factori to determine maximum likely exposure levels. Time-averaging provisions may not be
used in determining typical exposure levels for devices intended for use by consumers in general
population/uncontrolled environments. However, "source-based" time-averaging based on an
inherent property or duty-cycle of a device is allowed. An example of this is the determination
of exposure from a device that uses digital technology such as a time-division multiple-access
(TDMA) scheme for transmission of a signal. In general, maximum average rms power levels
should be used to determine compliance.
If appropriate, compliance with exposure guidelines for mobile and unlicensed devices
can be accomplished by the use of warning labels and by providing users with information
concerning minimum separation distances from transmitting structures and proper installation of
antennas.
In some cases, for example, modular or desktop transmitters, the potential conditions of
use of a device may not allow easy classification of that device as either mobile or portable. In
such cases, applicants are responsible for determining minimum distances for compliance for the
intended use and installation of the device based on evaluation of either specific absorption rate
(SAR), field strength or power density, whichever is most appropriate.
(b) Portable Devices
This section describes the requirements of Section 2.1093 of the FCC's Rules (47 CFR
$2.1093) that apply to "portable" devices. For purposes of these requirements a portable device
is defined as a transmitting device designed to be used so that the radiating structure(s) of the
device is/are within 20 centimeters of the body of the user'
Portable devices that operate in the Cellular Radiotelephone Service, the Personal
Communications Services, the Satellite Communications Services, the General Wireless
Communications Service, the Wireless Communications Service, the Maritime Services and the
Specialized Mobile Radio Service, and authorized under the following sections of the FCC's
rules: subpart H of part 22,par124,part25,part26,part27,part 80 (ship earth
74
station devices only), part 90 (SMR devices only), and portable unlicensed personal
communication servici, unlicensed NII devices and millimeter wave devices authorized under
rule parts 47 CFR $$15.253, 15.255 or subparts D and E of part 15, are subject to routine
enviionmental evaluation for RF exposure prior to equipment authorization or use. All other
portable transmitting devices are categorically excluded from routine environmental evaluation
fo, Rf exposure prior to equipment authorization or use, except as specified in 47 CFR $$
1 . 1 307(c) and (dj, as discussed previously. Applications for equipment authorization of portable
transmitting devices subject to routine environmental evaluation must contain a statement or
certificatioi confirming compliance with the limits specified below as part of their application.
Technical informationitrowing the basis for this statement must be submitted to the Commission
upon request.
The limits to be used for evaluation are based generally on criteria published by the
Institute of Electrical and Electronics Engineers, Inc., (IEEE) for localized specific absorption
rate ("SAR") in Section4.2 of "IEEE Standard for Safety Levels with Respect to Human
Exposure to Radio Frequency Electromagnetic Fields ,3 Wlzto 300 GHa" ANSLiIEEE C95.1-
D)92, Copyight 1992 by thelnstitute of Electrical and Electronics Engineers, Inc., New York,
New yorl- tObtZ. These criteria for SAR evaluation are similar to those recommended by the
National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and
Exposure Criteria for Radiofrequency Electromagnetic Fields," NCRP Report No. 86, Section
n.+.5. Copyright NCRP, 1986 Bethesda, Maryland 20814. SAR is a measure of the rate of
energy absorption per unit mass due to exposure to an RF transmitting source. SAR values have
beenlelated io threshold levels for potentially adverse biological effects. The criteria to be used
are specified below and shall apply for portable devices transmitting in the frequency range from
100 kHz to 6 GHz. Portable devices, as defined above, that transmit at frequencies above 6 GHz
are to be evaluated in terms of the MPE limits specified in Table 1 above (and in 47 CFR
$ I .13 l0). Measurements and calculations to demonstrate compliance with MPE field strength or
po*., dlnsity limits for devices operating above 6 GHz should be made at a minimum distance
of 5 cm from the radiating source'
(l) Limits for OccupationaVControlled exposure: 0.4 Wkg as averaged over the
whole-body and spatial peak SAR not exceeding 8 Wlkg as averaged over any 1 grarn of tissue
(defined as a tissui volume in the shape of a cube). Exceptions are the hands, wrists, feet and
untt.r where the spatial peak SAR shill not exceed 20 Wkg, as averaged over any l0 grams of
tissue (defined as a tissue volume in the shape of a cube). OccupationaVControlled limits apply
when persons are exposed as a consequence of their employment provided these persons are fully
aware of and exercise control over their exposure. Awareness of exposure can be accomplished
by use of warning labels or by specific training or education through appropriate means, such as
an RF safety program in a work environment.
(2) Limits for General Population/lJncontrolled exposure: 0.08 Wkg as averaged
over the whole-body and spatial peak SAR not exceeding 1.6 Wkg as averaged over any I gram
of tissue (defined ai a tissue volume in the shape of a cube). Exceptions are the hands, wrists,
feet and ankles where the spatial peak SAR shall not exceed 4Wkg, as averaged over
75
any l0 grams of tissue (defined as a tissue volume in the shape of a cube). General
foputationruncontrolled limits apply when the general public may be exposed, or when persons
thai are exposed as a conseq.r.n.L of their employmentmay not be fully aware of the potential
for exposure or do not exercise control over their exposure. Warning labels placed on consnmer
devices such as cellular telephones will not be suffrcient reason to allow these devices to be
evaluated subject to limits for occupational/controlled exposure.
Compliance with SAR limits can be demonstrated by laboratory measurement techniques
or by computational modeling, as appropriate. Methodologies and references for SAR evaluation
ar" der.rib"d in technical publications including "IEEE Recommended Practice for the
Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave," IEEE
Cg5.3-1ggl, and further guidance on measurement and computational protocols is being
developed by the IEEE and others (see text of this bulletin for further discussion).
For purposes of analyzing a portable transmitting device under the
occupational/controlled criteria only, the time-averaging provisions of the MPE guidelines
identified in Table I above can be used in conjunction with typical maximum duty factors to
determine maximum likely exposure levels. However, assurance must be given that use of the
device will be limited to occupational or controlled situations, as defined previously.
Time-averaging provisions of the MPE guidelines identified in Table I may not be used
in determining typicaliipo.*. levels for portable devices intended for use by consumers, such
as hand-held cellular telephones, that are considered to operate in general
population/uncontrolled environments as defined above. However, "source-based" time-
are.agi.rg based on an inherent property or duty-cycle of a device is allowed' An example of this
*outd be ttre determination of exposure from a device that uses digital technology such as a
time-division multiple-access (TDMA) scheme for transmission of a signal. In general,
maximum average rms power levels should be used to determine compliance.
76
APPEA{DIX B
Summary of 1986 Mass Media Bureau
Public Notice on RF ComPliance
On January 28,lg86,the FCC's Mass Media Bureau released a Public Notice providing
guidance to broadcast licensees and applicants regarding compliance with the FCC's RF
I*po.rr" guidelines.3s The primary sections of that Public Notice are reproduced below (text in
brackets has been added or edited). Non-broadcast applicants and licensees may also find this
information helpful in evaluating compliance (see discussion in text of Section 4 on controlling
exposure).
"Most broadcasting facilities produce high RF radiation levels at one or more locations
near their antennas. That, in itself, does not mean that the facilities significantly affect
the quality of the human environment. Each situation must be examined separately to
decide whether humans are or could be exposed to high RF radiation. . . . . .
[A]ccessibility is a key factor in making such a determination. As a general principle, if
areas of high RF radiation levels are publicly marked and if access to such areas is
impeded oi t igt ty improbable (remoteness and natural barriers may be pertinent) then it
may be presumed that the facilities producing the RF radiation do not significantly affect
the-quality of the human environment and do not require the filing of an [E]nvironmental
[A]ssessment. Because we wish to avoid burdening applicants with unnecessary work,
"*f".rr". and administrative filings, we offer the following guidance as to how we will
view typical situations. The term "high RF level" means an intensity of RF radiation,
whether from single or multiple sources, which exceeds the [FCC] guidelines.
Situations
(A) High RF levels are produced at one or more locations above ground level on an
applicant's tower.
- If the tower is marked by appropriate warning signs, the applicant may
assume that there is no significant effect on the human environment with
regard to exposure ofthe general public.
(B) High RF levels are produced at ground level in a remote area not likely to be visited
by the public.
38 Further Guidancefor Broadcasters Regarding Radiofrequency Radiation and the Environment, January
28,1986, FCC Public Notice No. 2278.
77
- If the area of concern is marked by appropriate warning signs, an
applicant may assume that there is no significant effect on the human
environment with regard to exposure of the general public' It is
recommended that fences also be used where feasible'
(C) High RF levels are produced at ground level in an area which could reasonably be
e*p"ct"a to be used by the public (including trespassers)'
-Iftheareaofconcernisfencedandmarkedbyappropriatewarning
signs, an applicant can assume that there is no significant effect on the
human environment with regard to exposure of the general public.
(D) High f,F levels are produced at ground level in an area which is used or is likely to
U. .rr.aiy people and to which the applicant cannot or does not restrict access'
- The applicant must submit an [E]nvironmental [A]ssessmentlunless
corrective action is taken prior to submission of an application]' This
situation may require a modification of the facilities to reduce exposure or
could lead to a denial of the application'
(E) High RF levels are produced in occupied structures, on balconies, or on rooftops
used for recreational or commercial purposes'
- The applicant must submit an [E]nvironmental [A]ssessmentfunless
corrective action is taken prior to submission of an application]. The
circumstances may require a modification of the broadcasting facility to
reduce exposure or could lead to a denial of the application.
(F) High RF levels are produced in offices, studios, workshops, parking lots or other
areas used regularly by station employees.
- The applicant must submit an [E]nvironmental [A]ssessmentlunless
corrective action is taken prior to submission of an applicationf. The
circumstances may require a modification of the facilities to reduce
exposgre or the application may be denied. This situation is essentially the
same as (E). We have included it to emphasize the point that station
employees as well as the general public must be protected from high RF
levils falso, see FCC definitions used to determine application of
exposure tiers: general population/uncontrolled vs'
oicupational/coitrotledJ. Legal releases signed by employees willing to
u.r"pt high exposure levels are not acceptable and may not be used in lieu
of corrective measures.
(G) High pF levels are produced in areas where intermittent maintenance and repair
work must be performed by station employees or others'
78
- IFCC] guidelines also apply to workers engaged in maintenance and
refair. a-s long as these workers will be protected from exposure to levels
exceeding tFC-Cl guidelines, no [E]nvironmental [A]ssessment is needed.
Unless reqrrest"d by the commission, information about the manner in
which sucir activitils are protected need not be filed. If protection is not to
be provided, the applicant must submit an [E]nvironmental [A]ssessment.
The circumstancei may require corrective action to reduce exposure or the
application may be denied. Legalreleases signedby workers willing to
aciepthigh exiosure levels are not acceptable and may not be used in lieu
of corrective measures.
The foregoing also applies to high RF levels created in whole or in part by reradiation.
A convenient rule to apply to all situations involving RF radiation is the following:
(l) Do not create high RF levels where people are or could reasonably be expected to be
present, and (2) [p]reverit people from entering areas in which high RF levels are necessarily
present.
Fencing and warning signs may be sufficient in many cases to protect the general public'
Unusual circumstances,-the pri."r"" of multiple sources of radiation, and operational needs will
require more elaborate measures.
Intermittent reductions in power, increased antenna heights, modified antenna radiation patterns,
site changes, or some combination of these may be necessary, depending on the particular
situation.
79
Federal Communications Commission
Office of Engineering & TechnologY
Evaluating Compliance with FCC
Guidelines for Human ExPosure to
Radiofrequency Electromagnetic Fields
Additional Informstion for Radio and
Televisio n B roadcast Stations
Supplement A
(Edition 97-01)
to
OET Bulletin 65 (namn e7-ol)
SUPPLEMENT A
Edition 97-01
to
OET BULLETIN 65
Edition 97-01
August 1997
o
O
The following individuals and organizations from outside the FCC reviewed an early draft of
Bulletin 65, including the material in this supplement. Their valuable comments and
suggestions greatly enhanced the accuracy and usefulness of this document, and their
assistance is gratefully acknowledged.
Joseph A. Amato, Maxwell RF Radiation Safety, Ltd.
Edward Aslan, Lockheed Martin Microwave (Narda)
Ameritech Mobile Communications, Inc.
Dr. Tadeusz M. Babij, Florida International University
Dr. Quirano Balzano, Motorola
Devid Baron, P.E, Holaday Industries' Inc.
Howard I. Bassen, U.S. Food and Drug Administration
Clarence M. Beverage, Communications Technologies, Inc.
Dr. Donald J. Bowen, AT&T Laboratories
Cellular Telecommunications Industry Association
Dr. C.IC Chou, City of Ifope National Medical Center
Jules Cohen, P.E., Consulting Engineer
Dr. David L. conover, National Institute for occupational Safety & Health
Cohen, Dippell and Everist' P.C.
Robert D. Culver, Lohnes and Culver
Fred J. Dietrich, Ph.D., Globalstar
Electromagnetic Energr Association
Professor Om P. Gandhi, University of Utah
Robert Gonsett, Communications General Corp.
Hammett & Edison, Inc.
Norbert Hankin, U.S. Environmental Protection Agency
James B. Ilatfield' Hatlield & Dawson
Robert Johnson
Dr. John A. Leonowich
Dr. W. Gregory Lotz, Netional Institute for Occupational Safety & Health
Frederick O. Maia, National Volunteer Examiners (Amateur Radio Service)
Ed Mantipty, U.S. Environmental Protection Agency
Robert Moore
Dr. Daniel Murray, Okanagan University College
Dr. John M. Osepchuk, Full Spectrum Consulting
Professor Wayne Overbec\ Celifornie State University' Fullerton
Personal Communications Industry Association
Ronald C. Petersen, Lucent Technologies
David B. Popkin
Kazimierz Siwiah P.E.
Richard A. Tell, Richard Tell Associates, Inc.
Rory Van Tuyl, Hewlett-Packard Laboratories
Louis A. Williams, Jr., Louis A. Williams, Jr. and Associates
Contributions from the following FCC staff members are also acknowledged:
Kwok Chan, Errol Chang, William Cross, Richard Engelman, Bruce Franca and Jay Jackson
INTRODUCTION
SECTION 1: AM Radio Broadcast Stations I - l0
TABLES 14: Predicted distances for compliance with FCC limits 4 - 5
FIGURES 1-4: MININEC AM Model for I kW (Field Strength v. Distance) . 6 - 9
FIGURE 5: Estimated power levels to comply with occupational/controlled
limits (on tower exposure only)
SECTION 2: FM Radio Broadcast Stations 11 - 28
TABLES 5-6: Minimum height required for single FM antenna compliance 17 - 18
FIGURES 6-15: Predicted "worst case" power density @2 m above ground)s 19 - 28
Television Broadcast Stations 29 - 38
TABLES 7-8: Distances for single VHF-TV antenna compliance 33 - 34
TABLES 9-12: Distances for single UHF-TV antenna compliance 35 - 38
Page
.ii
l0
This supplement is designed to be used in connection with the FCC's
OET Bulletin 65, Version 97-01. The information in this supplement
provides additional detailed information that can be used for evaluating
compliance of radio and television broadcast stations with FCC guidelines
for exposure to radiofrequency electromagnetic fields. However, users of
this supplement should also consult Bulletin 65 for complete information on
FCC policies, guidelines, compliance-related issues and methods for
achieving compliance.
NOTE: The first edition of Bulletin 65 was issued as OST Bulletin No. 65 in October
1985. This supplement contains broadcast-related information and data that have been
revised from that which was included in the original bulletin.
Mention of commercial products does not constitute endorsement by the Federal Communications Commission
or by the authon.
II
r-t
\--/
nt_l
In determining compliance with limits for Maximum Permissible Exposure (MPE) for
AM radio broadcast stations, it is normally most important to determine electric and magnetic
field strength at distances relatively close to transmitting antennas. Fields from these
monopole antennas decrease relatively rapidly with distance, and MPE limits for AM radio
frequencies are not as restrictive as those for other frequencies, such as those used for FM
radio. Therefore, even for the highest powered stations, MPE limits for AM radio
transmissions would normally only be exceeded relatively close to antennas. Compliance
with the FCC's guidelines for AM stations typically will involve assessment of exposure
potential of persons working or occupying areas in the close-in vicinity of nansmitting
antennas. Because such persons will always be in the near field of AM antennas, due to the
relatively long wavelengths in the AM frequency band, an evaluation of both electric and
magnetic field strength is necessary.
In the original version of OET Bulletin 65, staff from the U.S. Environmental
Protection Agency (EPA) provided the FCC with results from a computer-based model to
help determine compliance with MPE limits for AM radio broadcast stations. The EPA
model used the Numeric Electromagnetic Code (NEC) computer program to predict field-
strength levels near AM monopole antennas. In the past several years a PC-based version of
this code, called MININEC, has also become available. The FCC has used MININEC to
expand and refine the predictions for electric and magnetic field-strenglh presented in the
original version of Bulletin 65. They are included in this supplement in the form of tables
and figures that can be used in evaluating compliance at these stations.
Tables l-4 may be used to determine the minimum distance from an AM broadcast
antenna to the point where electric and magnetic field strengths are predicted to correspond to
MPE limit values. The tables provide compliance distances from antennas of various electrical
heights transmitting at various frequencies and using various power levels. The distances
specified are the distances from an antenna at which access should be restricted in order to
comply with both the electric and magnetic field-strength MPE limits. For antennas that do
not correspond to the specific conditions given in these tables, interpolation can be used to
arrive at intermediate values, or, alternatively, the greatest distance for the range used for
interpolation could be used.
Since the MPE limits for the two exposure tiers are similar for most AM frequencies,
and because of variability in compliance distances according to electrical height and operating
frequency, one entry is given in each case that applies for both occupationaUcontrolled and
general population/uncontrolled exposures. These numbers represent the minimum worst-case
distances predicted for compliance with the strictest MPE limit for each case. Note that time-
l'--IL-/
averaging considerations are not taken into account in these computations. Continuous
exposure is assumed in all cases.
This model computes field strength values in the vicinity of single antennas. For AM
stations with multiple-tower arrays a conservative "worst case" prediction could be made by
assuming that all tiansmitted power is radiated from each antenna. Therefore, in such cases
the appripriate value from the tables could be used to define a zorre of restriction around the
uo^y, consisting of circles with equal radii, each of which is centered around a tower in the
uouy'. Alternatively, a more accurate prediction could be made if the power actually radiated
by each tower is known.
It may be necessary to predict electric and magnetic field-strength at various locations
in the vicinity of AM antennas. Therefore, Figures 1-4 have been developed for this purpose
using MINltipC. These figures show conservative predictions of electric and magnetic field-
stren-gth versus distance from typical AM broadcast antennas for towers with elecrical heights
equal to 0.1, O.25,0.5, and 0.625 wavelenglhs, respectively.
Figures 1-4 predict field strength for stations transmitting with I kilowatt of power.
Therefor{ for stations operating at other power levels values obtained from these figures
should be multiplied by the square root of the station's power. The following example
illustrates the proper procedure. In this example a 50 kilowatt AM station is located near a
publicly u"""riibl. uriu. It is desired to obtain an estimate of the field-strength levels in this
ur"u *iri.h is at a distance of l0 meters from the station's single tower that has an electrical
height of 0.25. To arrive at the estimated field strength values proceed as follows:
/ consult Figure 2 for an antenna with electrical height = o.25
t At 10 meters read predicted electrical field-strength = about 8 V/m
At 10 meters read predicted magnetic field-strength = about 0.06 A/m
Multipty each value by /5O
Predicted values are 56.6 V/m and 0.42 Nm
As discussed in Section 4 of Bulletin 65, RF currents will be induced in the body of
persons who climb transmitting AM broadcast anteffias for maintenance or other purposes.
This is a significant source of RF exposure and can be related to the limits for specific
absorption iate (SAR) adopted by the FCC.' Although many stations may prefer to shutdown
po*.i entirely while persons are climbing their antennas, in some cases this may be difficult
tr undesirabli. Studies have been undertaken by the FCC and the EPA to determine
./
/
/
I SAR is discussed in Section I of Bulletin 65.
appropriate operating power levels which should allow climbing of transmitting AM antennas
*itt out .*"."ding the SAR guidelines.2 The results of these studies were used to develop
Figure 5, which rho*r op.ruiirg power levels versus frequency for a variety of different
elJctrical heights that are predicted to allow tower climbing without exceeding the exposure
guidelines inlerms of SAR. Recommended power levels are shown for tower climbing with
or without the use of gloves. A study by Tell performed for the FCC (Reference 28 in
Bulletin 65) indicatedlhat certain gloves (particularly leather gloves) can significantly reduce
the induction of RF currents in tower climbers.
Figure 5 is designed to be used to provide guidance for use by AM radio stations
which find it necessary to continue transmitting while persons are climbing their towers. It
can be used to determine the levels to which operating power should be reduced before a
person climbs an active tower. However, there is variability in the data, and whenever there
is a question about which condition may apply in a given situation it is recommended that the
most conservative power level be used or, alternatively, that power be turned off completely
while the climber is on the tower.
2 See References 6, 26,27,28 and 32 in OET Bulletin 65.
3
TABLE l. Predicted Distances for Compliance with FCC Limits: O.l" Wavelength
TABLE 2. Predicted Distances for Compliance with FCC Limits: O.25 Wavelength
Frequency
(kHz)
Transmitter Power (kW)
50 l0 5 I
Predicted Distance for Compliance with FCC Limits (meters)
535-740 l3 7 6 aJ
750-940 t2 7 5 J
950-l 140 l1 6 5 J
1 150-1340 l0 6 5 3
1350-1540 l0 6 5 J
1550-1705 r0 6 5 J
Frequency
(kHz)
Transmitter Power (kW)
50 10 5 I
pr.Oirr.O Distance for Compliance with FCC Limits (meters)
535-740 4 2 2 1
750-940 4 2 2 1
950-l 140 4 2 2 I
l 150-1340 4 2 2 I
1350-1540 4 2 2 I
I 550-1 705 5 2 2 1
4
TABLE 3. Predicted Distances for Compliance with FCC Limits: O.5 Wavelength
TABLE 4. Predicted Distances for Compliance with FCC Limits: 0.625 Wavelength
Transmitter Power (kW)
535-740
950-l 140
I 150-1340
1350-1540
1550-1705
Frequeucy
(kHz)
Transmiuer Po*er (k!V)
50 l0 5 I
535-740 4 J 2 1
750-940 4 2 2 1
950-1 140 4 2 2 I
I 150-1340 4 2 2 I
1350-1540 4 2 2 1
1550-1705 4 2 2 2
roorooF-roNooooo
lo\
Total Magnetic Field (A/m)
orootoNoF-OIqNN
L
0)
FoF
A-+.
u0atq)
-q)
cl
BLeOt.rIoe
;BE,!(g lrt
.9Lo.o rE
-q)Eolra
raa
Qriz-z-raa
-q)L!l-o0.Iltr
()F
F
(utfz! plerd ol.ucelg letol
a
t
I
a
,
,
I
I
I
a
a
a
a
,
a
a
,
a
a
a
,
a
a
,
a
a
a
a
-:H
otrbo
o)
o.o(€
anLro
c)
(\l
Cd
o
o
oo
c)L(d
(n.o
0)
Irr
ii
z
€
E6)
oIl-
tri o.eE
ob09Sr!z
l.
ta
lr
o
oo@o(oo
qoc;
c!o
Total Magnetic Field (A/m)
qnaoooqo\o
Lo
BoH
--€
AD-I
^9(D
6t
B
taq
O
Gar) LbaEx4F(
OL()IEE.E6AEotsz
Ea
U
F1zFtzH
aN
€)L
-l-a0.!lfr
ooootr)$(oGl
(ulD plerd orrcelg plo1,
<i
L
JoL-= ao
=.9 o.9 trr Ilr.oX.EE;
EEo bC;' Gt €
-HqJHZ E
l.c{l.EI,B
I
J+HLoo
o)}r
clt
ra€-c).-rr
iri9oz
o
o
lo
Total Magnetic Field (A/m)
@ l- (O LO \t cO N O A a i'' (9 tQ :t a e{ r ar --; =6oOoOOOOOOo ci o o o o o o o o c; o o d d o d d o
1,,,,1,,,,1,,,,1,,,,1',,,1,,,,1,,,,1,,,,1,,,,1t,,,1,,',1ttrtltt,,1,,,,1,,,,1,,,,1,,,,1,,,,1
Lo
BoH
--TJ
ootI
6)
-q)
G
B
u]
a,.
,!
trl
Ltr
-0)
-avo13a
r=a
U
rdzt.tz-!tz
cri
0)La-o0.-tr
v)k
C)
0)
oo
cl
(n
n
o
ro
rON
j
l
E95 E.eii;tr.oPo'Ebo'E9o)
-HqcBH
-al,b1.6l,E
c{
+)(0
'o(,):)O.arF
oo
0)li
cd
an€-(D
.d
tri
iri!oz
OT11OIf)OOl-lf)NIr)OIOOIOOtOOtOOF,-roNOF-tONOl-toc)C)(O(V)NNNNT
o
(uln) plel{ culcelg IetoJ
qooc!o
Total Magnetic Field (A/m)
u?nc?oooqo
rO
li(D
BoH
-,tE+.u0-I
.9€)
ct
F
la
GI\o
a6elrGTB
; rr(PLEE'! -.Lt €)Eo
U
Flz
-z
-
o
o
a$
o)L
-l-a0o-fr
r.cj o ro o rJ) o ro e) lf) o lo e to a Y? ot 6 oi 6 F* 6 oi 6 F- rrr N o r\ lo crl
bocf)(f)(f)(\l(\lNN
;
t
a
a
Ei
vf
EG;,9_Fo rL bI)
tr{gg
.gfiou=_oE & -crt
oclc,)
-ElliFlzg
.G'I,EI.c!IlrH
E
G)ts)g
LHoo
(l)li
GI
t)€-(l)
tl
trr
a,Ioz
(uln) plelJ cr4celg lrtoJn
\--/
PP
Da
(,)
t)tro.A
(l)o
o
o)L
at)oo6a
LO$>
3E.lo
SE
9l.r€>E<tro0.Etr
oc
=aEEEIJ5ot:o
op
c, .=
5()(Ja,)C)Eoo-cE
EE
>.lo
A!)tr=at U)IE:66gBs
rS>(,<o)o=EO(l)ct
E-.EbaBEta
ln (aeBiEoDo9- L.Ir3
oo(o
oorO
oo!t
oo
CO
ooN
N6-.Y
oco
Xs
=Elr
ooo)
889=88888Ea(56@\tcll
(suErn) llur-l Jo/r^od yIV pepe[ol6
illii
/'llilli/ti/ ll,til/!l/ll/li
tiII
Go
-9o
ELE,B .g
g E E gfi
E=3 EI
E ?r EE; >a sZE o)x
)Li ots
fi FF iE()ogloro8 Eg gB
ER sSdo oo
T{ EEl< chcn::ooFFoo6d
r-.!
\tI
oo@
o$1l)
rl\- -/
Antennas used for FM radio broadcast stations normally consist of an array of
elements stacked vertically and typically side-mounted on a tower. The elements are usually
spaced about one wavelength apart and are fed in phase with power distributed equally among
the elements. FM radio stations transmit in the 88-108 MHz band. Consulting Table I in
Appendix A of OET Bulletin 65 shows that at these frequencies the MPE limit for general
populatior/uncontrolled exposure is 0.2 mW/cm? (200 pWcnt') and the limit for
occ.,pationaVcontrolled exposure is 1 mWcm? (1000 pWcm2)'
Section 2 of Bulletin 65 explains how calculations can be performed to predict RF
field-strength or power density near various antennas, including those used for FM radio
transmissions. In addition, in 1985, the Environmental Protection Agency (EPA) developed a
computer model for estimating ground-level power densities in the vicinity of typical FM
broadcast towers. The EPA model estimates power densities in the vicinity of typical FM
broadcast antennas for various antenna types and patterns. With some minor modifications,
the FCC has successfully used this model over the past several years to predict ground-level
power densities near FM towers. The EPA model considers the following variables of an FM
antenna in arriving at is predictions: (1) the total effective radiated power (both horizontal
and vertical), (2) tt" t"igtt above ground to the center of radiation of the antenna, (3) the
type of antenna element used in the antenna array and (4) the number of elements (or bays) in
tirl antenna array. The model is discussed in detail in an EPA publication by P. Gailey and
R. Tell (Reference l l in Bulletin 65). The FCC's version of the FM computer model can be
downloaded from the FCC's Office of Engineering and Technology World Wide Web site.3
The FM computer model uses element and anay radiation patterns to develop
predicted field strengths and power densities on the ground.a Ground reflection is taken into
account in these calJulationsla factor of 1.6 for field strength as discussed in Section2 of
Bulletin 65). Although the model is theoretical, measurements made by the EPA and by
others around existing FM antenna towers have shown good agreement with predicted values.
3 The FCC's FM computer model ("FM Model") may be downloaded via the Internet from the FCC's
Web Site at htp://www.fcc.gov/oet/info/software/. Any future revisions to this software may be found at this
location. For further detailJcontact: rf safety@fcc.gov or the FCC's RF Safety Program at (202) 418'24&'
a The EpA measured the vertical radiation patterns of several element types and incorporated the
measurement data into its computer model. The FCC has also used the EPA element pattem data and has added
other data submitted by manufacturers for additional antenna elements.
11
For a variety of antenna types, the FM computer model has been used by the FCC and
others to predict ,ulr", of far-field equivalent power density at specific locations on the
ground reiative to existing or proposed FM antennas. The model can also be used to predict
Ihe minimum height to an antenna's center of radiation necessary to prevent RF levels from
exceeding an established level, such as the 200 pWcm2 MPE limit for general
population/uncontrolled exposure. The FCC version of the FM computer model calculates
h.ia. at a height of 2 meters above ground, taken as the approximate upper range for the
height of a standing Person.
In performing any calculations for an FM radio antenna, whether using the equations
of Sectior2 of Bullitin 65 or by use of the FM computer model, the value used for ERP
must be the total ERP. This means that in the case of a "circularly-polarized" antenna the
sum of both the horizontal and vertical ERP values must be used. For example, an FM
station using a circularly-polarized antenna that is authorized to use 100 kilowatts (k\y) ERP
in the horiz6ntal polarization could be assumed to have a total ERP of 200 kW (100 + 100),
unless otherwise sPecified.
Using the FM computer model, tables and figures have been derived for use by FM
station licensees and applicants in evaluating compliance with the FCC's RF exposure limits.
Table 5 lists estimated minimum antenna heights necessary to prevent power densities on the
ground (actually at 2 m above ground) from exceeding the FCC's occupationaVconfrolled
ilrtpE ti*itr. Table 6 gives estimated antenna heights necessary to prevent "ground-level"
power densities (2 m above ground) from exceeding the general population/uncontrolled MPE
iirnitr. The tables and figurei in this section are designed to predict spatial peak values for
power densities rather than values that are spatially-averaged over a given dimension such as
it. t rigt t of a human being. In that regard, the results may be conservative, anq in some
cases, could indicate non-compliance when, in fact, a station may be in compliance.
Tables 5 and 6 should be consulted as a first step in evaluating an existing or
proposed FM radio broadcast facility to determine whether it would comply with the FCC's
iutp-B ti-it. at ground level. Both tables will need to be consulted to ensure that ground-level
exposgres for all persons, whether workers or members of the general public, are below the
appropriate acceptable levels. If non-compliance is indicated then some restriction of access
oi'other mitigating measures may be necessary (see Section 4 of Bulletin 65 on controlling
exposure for more information). In the case of Table 5, if a given tower height is less than
the appropriate minimum value for occupationaUcontrolled exposure, appropriate work
practices may have to be implemented to ensure protection of personnel at the tower site (see
Section 4 of Bulletin 65).
Note that Tables 5 and 6 give predicted minimum heights to the radiation center for a
number of combinations of total ERP and number of elements (bays). Note that for each
enfiy in the tables two values are given. In each case the top (higher) number represents the
"woist case" where computations were based on using dipole elements in arrays with one-
t2
)t
o
wavelength spacing.5 The bottom (lower) entries in the table represent a typical "best case"
where cJmpuiations used antenxa elements that, according to EPA's analysis, were designed
to minimizi radiation in the direction of the ground.6
It is important to recognize that the values in Tables 5 and 6 apply to single FM
antennas and to towers whose bases are approximately at the same level or higher than the
surrounding terrain. For multiple antennas on the same tower, it would be possible to arrive
at a worst-case estimate using these tables by assuming that the total ERP from a/I antennas
was concentrated at the radiation center of the antenna that is lowest on the tower. For such
an i*aginary radiating source, the number of elements could be considered to be that of the
antenna with the smallest number of elements. A more accurate estimate could be made by
using Figures 6-15 (described below) or by using the FM model software to estimate power
denslty Jontributions from each antenna at a ground-level point of interest and then add the
contributions to arrive at the total predicted power density at that point'
In some cases FM radio antennas may have a relatively large number of elements and
the lowest element may be a significant distance from the radiation center. The FM computer
model may not be accurate when predicting field levels from relatively large multiple-element
arrays at distances very close to the antenna. For example, in some cases the minimum
antenna height compuied using the FM computer model may be on the order of or less than
one-half thJanay lingth lmeaning that the antenna would be mounted with its lowest element
at or below ground). bbviously this is not a realistic or desirable situation. Therefore, in
Tables 5 anJ 6, values have beln adjusted to ensure that the lowest element in an array is at
least 3 meters above ground-level in all cases, i.e., head height plus an additional l-meter
margin of safety. Thise adjusted numbers are marked with the "*" symbol.T
For FM antennas with EM/element combinations that are intermediate to the values
listed in Tables 5 and 6, interpolation can be used between table entries, assuming a direct
relation between antenna height and power and an inverse relation between antenna height
5 As shown by the EPA model, the use of dipole elements in an array results in the greatest amount of
downward radiation due to the approximately circular radiation pattem of a dipole.
6 As shown by the EPA and others, other element types generate vertical radiation pattems that tend to
minimize downward radiation significantly. The "best case" element studied by the EPA had a maximum
downward radiation field factor of less than 0.2 compared to the approximate 1.0 maximum for a dipole element'
, Th"r. values were determined by first calculating the longest wavelength that can be utilized for FM
radio broadcast (about 3.4 meters at 88 MHz). Assuming one-wavelength spacing between the elements in an
antenna array, the greatest possible length for an array with a given number of elements can be approximated'
Since the radiation center will be located in the middle of the array, the minimum height of the antenna above
ground has to be at least one-half of the array length. The values for minimum height given in the tables are
Il*uy, at least 3 meters greater than one-hali the ialculated anay length even though the FM computer model
may indicate a lesser value.
13
and number of elements. Alternatively, the next highest value could be used for ERP and the
next lowest value could be used for number of elements. For example, with respect to the
public/uncontrolled MPE limits, an FM station with a total ERP of 20 kW and 5 elements
lould use the values given in Table 6 for 25 kW and 4 bays (51.5 meters, worst case, or 21.1
meters, best case), since these values would be conservative. Interpolation would yield more
realistic values of either 45.4 m or 45.1 m for worst case, depending on whether the 4-bay or
6-bay column is used. Similar interpolation could be performed for the best case values.
In determining compliance for a proposed or existing FM facility, Tables 5 and 6 may
be used initially to ditermine that a station is or will be in compliance with the MPE limis.
However, if comparison with the appropriate values in the tables indicates potential non-
compliance, i.e., if the antenna center of radiation is /ess than the indicated minimum tower
heigirt necessary for compliance, further analysis will be necessary. For example, Figures 6-
15 ian be consulted, calculations can be made (see Section 2 of Bulletin 65) or FM model
software can be used to determine predicted field levels. Bulletin 65 can then be consulted
for information on how to ensure compliance (e.g., Section 4 on confiolling exposure).
Figures 6-15 were generated using the FCC's FM computer model. These figures
include .o*.r of predicted far-field equivalent, "gtound-level" power density (2 m above
ground) versus distance from the base of towers on which FM antennas are mounted for
iarious combinations of total ERP, height to radiation center and number of elements. By
consulting the appropriate figure, the exposure level at a given point near the ground can be
predicted, thereby determining places where access may have to be restricted. It should be
emphasized that these figures show "ryorst-case'? curves assuming dipole elements in the FM
antinna array. Therefori, the values in these figures should be conservative and should
represent the upper range for power densities for the given conditions. In general, if the FM
computer model is used with other element type different curves, with lower power density
values, would be generated for a given set of conditions.
The following example illustrates how Figures 6-15 could be used to identi$ the area
around the base of an FM broadcast tower where access may have to be restricted or power
densities may have to be reduced in some way in order to comply with the MPE limits. In
this example it is desired to determine the location where the MPE limit for general
population/uncontolled exposure of 200 pWcnt' for the FM radio band would be predicted to
be exceeded. Assume that the station has the following characteristics:
> Total ERP : 200 kW (100 kW horizontal + 100 kW vertical polarization)
, Height above ground to radiation center: 82 meters
' Number of elements = 4
' Spacing between elements in the antenna array : 1.0
The height of the radiation center in this example is 82 meters, which can be rounded
to 80 meters forpurposes of using the appropriate figure (Figure 13). It is necessary to round
t4r-\
l,--l
down instead of up so that the power density will not be underestimated. Figures 6-15 are
normalized for I [W of total EFJ, i.e., power density values are in terms of power density
per kilowatt ERP, so the power density-values given in the figure will have to be converted
to account for the higher po*., level of the example station. The following procedure should
be used to obtain the desired information.
,/
,/
,/
Divide the MPE limit of 200 pWcr# by the total station Epp of
200 kW to obtain I pWcmrikW (power density per k'frD
Find I pWcm2lkW on the vertical axis of figUre 13 (for 80 m
antenna heigh$
Find the point on the 4-element curve colresponding to I
.
pw1cm2/lrw and locate the predicted distance (about 48 m) on the
horizontal axis
The result of this analysis means that a fence or other appropriate restrictive barrier
could be placed at this distance to prevent access to the tower site where levels are predicted
to exceed the MPE limits for the gineral public. This would be a means to comply with the
g.rr"rul population/uncontrolled MPE limits. Section 4 of Bulletin 65 provides further
discussion on controlling exposure.
Figures 6-15 can be used to predict exposure to any power density level bV usin^g the
above-described approach. For example, to find the minimum distance to 1000 pwcm2 (the
o.",rputiorul/contiJled exposure limii for the FM band), simply divide 1000 (rather than 200
in thf above example) by ifre total ERP and proceed as above. In that case, the resulting
;;h. oii frWrc-'lf.'fri would i-ply that the 1000 pWcm2 limit would notbe exceeded
anywhere near the ground for these conditions, since all the numerical values on the curve lie
below this threshold.
It is important to re-emphasize that the predicted values shown in Figures 6 - 15 are
worst case estimates (dipole ellments) that repiesent the maximum predicted levels possible
for any FM antenna using conventional element alrays. Therefore, they are primarily useful
u. u "orr."*ative
approxination that may serve to eliminate the need for further analysis in
-ury cases. It is very likely that use of most modern, commercially-available FM antennas
will result in actual ground-ievel power densities that are significantly lower than the values
shown by the curves-in these figures. More accurate predictions can be made for these
antennas by using the FM computer model and specifuing an element type appropriate to the
antenna system used.
15
For instances in which an FM antenna is mounted on a building or when the exposure
location being analyzed is not on the ground, Tables 5 and 6 may not apply' For example, to
determine exposure in or on a nearby building or other structure that may be in the direct
line-of-sight tf an Ftvt antenna, field strength or power density in the main-beam of the
antenna iI more relevant for analytical purposes, and Figures I and 2 in Section 2 of Bulletin
65 should be consulted. However, if the location of concern is the rooftop itself, where an
antenna is mounted above the rooftop, then the minimum antenna heights in Tables 5 and 6
could be used as if the rooftop represented the ground'
16
Number of BaysTotal
H+V
ERP
(kv{)
2 4 6 8 10 t2
Meters from Center of Radiation
0.5 5.2
4.7*
9.1*
8.1*
1 1.5*
i 1.5*
14.9*
14.9*
18.3*
18.3+
21.7*
21.7*
J 9.7
5.7
9.7
8.1 *
I 1.5*
I 1.5*
14.9*
14.9*
18.3*
l g.3*
21.7*
21.7*
10 t6.2
8.6
16.0
8.1*
15.9
I 1.5*
15.8
14.9*
18.3*
18.3*
21.7*
21.7*
25 24.3
12.5
24.2
9.8
24.0
I 1.5*
23.7
14.9*
23.5
18.3*
23.3
21.7*
50 33.6
16.8
33.3
13.1
33. l
I 1.3
32.7
14.9*
32.4
18.3*
32.r
21.7*
75 40.7
20.r
40.3
15.6
40
13.3
39.6
14.9*
39.2
18.3*
38.9
21.7*
100 46.6
22.9
46.3
17.7
45.9
15.1
45.4
13.7
45.0
18.3*
M.6
21.7*
t25 51.9
25.4
51.5
19.6
51.1
16.6
50.6
15.1
50.0
18.3*
49.6
21.7*
150 56.7
27.6
56.2
21.2
55.8
18.0
55.2
t6.4
54.6
18.3*
54.r
21.7*
175 61.1
29.7
60.5
22.7
60.1
19.3
59.5
t7.5
58.8
16.3
58.3
21.7*
200 65.1
31.6
64.6
24.2
64.1
20.5
63.4
18.6
62.7
17.2
62.2
2r.7*
Table 5 . Minimum height for single FM antenna compliance with occupationaVcontrolled
exposure limits. The above numbers apply to single FM anteruras for which the base of the
supporting tower is at approximately the same level or higher than the surrounding terrain.
For'each
-.rrtry, the highei number represents a "worst case" assuming a dipole-type element
in the antenna aray. The lower number for each enffy represents a typical "best case"
achievable using modern, cornrnercially-available antennas. For intermediate combinations of
power or numbir of elements interpolation is acceptable, as explained in the text. See text
for explanation of entries with "*" symbol.
17
Total
H+V
ERP
tkur)
Number of Bays
2 4 6 8 l0 t2
Meters from Center of Radiatioa
0.5 9.1
5.3
9.0
8.1 *
I 1.5*
I 1.5*
14.9*
14_9*
18.3*
18.3*
21.7*
21.7*
J 19.3
l0.r
19.2
8.1
19.0
I 1.5*
18.8
14.9*
18.7
18.3 *
21.7*
21.7*
10 33.6
16.8
33.3
l3.l
33.1
I 1.3
32.7
14.9*
32.4
18.3*
32.1
21.7*
25 51.9
25.4
51.5
19.6
5l.l
t6.6
50.6
15.1
50.0
19.3*
49.6
21.7*
50 72.6
35.1
71.9
26.8
71.4
22.7
70.7
20.6
69.9
19.1
69.3
t7.6
75 88.4
42.6
87.7
32.5
87.0
27.3
86.1
24.8
85. l
22.9
84.4
21.2
100 101.8
48.8
100.9
37.1
100.1
31.2
99.1
28.3
98.0
26.2
97.r
24.1
125 r 13.6
54.6
112.6
41.2
rtt.7
34.6
110.5
31.4
109.3
29.0
108.4
26.7
150 124.2
s9.6
123.1
45.0
122.2
37.9
120.9
34.2
119.6
31.6
l18.5
29.r
t75 133.4
64.0
132.8
48.3
131.8
40.6
130.4
36.7
r29.0
33.9
t27.9
3r.2
200 143.1
68.0
141.8
51.7
140.8
43.3
139.3
39.r
137.7
36.1
136.5
33.2
Table 6. Minimum height for single FM antenna compliance with general
population/uncontrolled e*porr." limits. The above numbers apply to single FM antennas for
*t l.t, the base of the supporting tower is at approximately the same level or higher than the
surrounding terrain. For each entry, the higher number represents a "worst case" assuming a
dipole-type element in the antenna array. The lower number for each entry represents a
typical i'best case" achievable using modern, colrlmercially-available antennas. For
intermediate combinations of power or number of elements interpolation is acceptable, as
explained in the text. See text for explanation of entries with "*" symbol.
l8
:
a0
q)
d
I
Eo
!
I
e!
t
-L
,9
E:
tr
a0
€)
oEG
YI
clo
l,
ln
Hi)€
L(Dtoa
€)
at)c!
C.)
!athL
t
€):)I
E
Q)L
Fr
\a
oL
o0
fr
o
c\l
o
a
c)
c)
E
q)
BoF
oo&H(D
a
cd
t)
a
ali()
()
H
O
il
€g
oLrc
o
op
l.i
C)g
0)(,
tr
Cg
E(€
&
Ag/(ttucl6ri),fi rsueq re.,Y\od pozll€truoN
4Eleqr9
2 9leflrents
+j-tI
o0.-(DE
cl
Etrq)€tr6l
-I:
UN
L€
E-I--oL
o0
e)
oA2EgE
(l)H
EN\Jrr (S)G)a7
.o .tsF t,
dHEe)OE,tsL
€)UBtroaa
th.l
OJli ar)
6lI
+a0LoI_Uq)
!I.-E
€)L
F{
F:
q)L--o0.Ifr
ooc!
oo
o
qo
qo
o
cr)H
G)
9
HoN
il
€g
=ol-r(,
(,)
o
-o
l-r(,)
t-{
C)Ug
o
CBE6&
o_*Fro
1$.ry(tulclz[rl),&rsueq ret\od pezllstruoN
nL-/
nL/
o
+)
-a0
q)
c!x
H
e):
I
CB
I
(a
LorI
E
E
oL
OD
q)
o€
cg
H
6lo
l)
an:
€)E
Lq)
Bog
q)
eh
qBI
+)
ahL
'E
€)t)I
Eq)Ltr
a
(DL
oo
fr
O
O
c\
O
(h
li(.)
0)
E
o
BoF
troo,ts
C)o
d
(n
o
ati()
()
H
Oca
il
'og
ot-r(,
0)
o
-o
$-r0)
(I)
Ugo
d
Ed&
#Fi_o
ALry(tulcl6r1),$rsueg Jo/t\od pezllslruoN
o
nL/
o
t)
00
e)
c!
I(l)t)
I
6t
H
t
L
E
E
oLo0
€)
oEc!
lr
GIo
!
(t)
Q)
Lq)
Boa
q)
ah
6l
CJ
ir.
ur,Lo
B
Eq)+)()
€q)L
Fr
o\
€)L
OD7
c\
oo
U)
(.)
C)
o
>oF
oo,Iro
o
GI
(r)
n
at-{0)
()
>i
$
ilEtr
otic
()
os
Lr()
tr0)U
tro
d
"od&
o-F{i
.&1ry(tulcl \ri) ,{lrsueq re^\od pezIIBIruoN
o
o
!
oo
q)
€!
Io*J
Hct
Lietn
L€
E
I
oLo0
q)
oE
e!
LI
t\o
t)
er)
h
€)
Lq)
Bog
o
0h
€!
c.)
+)ihLt
E
o)
*J()
E(l)L
Fr
-(DL
a0t\
N
o
a
o)
q)
)i
I'rc)
BoF
F{
oo,ts
()o
d
U)
n
a$i()
C)
Ol.n
ll
€tr
o
$-rc
(,)
o
-o
ti()
g
(.)
Ugo
d
E
CO&
t:
I
A\{i (tur c/./y\rl),t1r su e g r e/v\ o d p ozl Ie uu oN
o
C
o
$--o!.-q)
t-c-L-Ix(Dv!C\E
6l
HI
Y\o
OLo-o H
E'tE--oL
o0
€)
oEcla)bE
oGlge)
livEb-.-Ou,
L
EEOLo,tsS)F(H i
Cr,€?n €)E3 q)
!
eDlroI
-Y
€)TI.-c,q)L
Fr
F{
-q)LF{A
b0.-fr
al-{o
C)
LTL{
O\o
ll
€
L{
=otio
o
o
-o
ti(D
troO
l-,ro
d
E(!il
Fr1 o
Alry('ulcl \rl) &rsueq re./Y\od pazq?uuoN
nL-/
o
nL-/
!
oo
q)
6l
I
I
o)+r
I
CB
LI
r-
L€
E
oti
OD
Q)
o!cl
I
N
c)
-1r)
I
0)E
L(D
Fog
q)
thGI
*r
ehLo
B
E(D+.I
Eo)L
Fr
Nt-l
q)L
b0
tr
(n
(l)
o
q)
BoF
A
oo,ts
-q)o
(€
U)
a
aLi(l)
(.)
ts
f-
il
€
oLic
o
-o
$-r(,)
oU
tro
(€
'dd&
-=I
A\ry('ruc//v\rl),Qr sueq ro/y\od pezllsrruoN
O
o
N
!
b0
q)
cl
Itrot,
I6l
E
€
L
(I
E
oL
oo
o)
!6l
No
tr
,h
Q)
L
e)
=oe
q)
ah6l()
T
1r,Lo
B
E€):.I
o)L
Fr
(?I
Fl
€)L
a0
fr
O O
c\l
(h
0)
C)
E
c)
BoF
oO.H
0.)o
CB
rr)
n
al-.()
C)
)-{
Ooo
il
€
ol-rc
()
os
l-l()
()
U
o
Cd
€dil
1$,ry(trucl16ri),firsueq re^\od pezlletruoN
r-lL-/
o
o
!
u0
q)
c!
hq)
!
d
I
o\
L€
E
oLo0
q)
o!G
EE
No
l.
eh
IoE
L(D
=og
€)th6c)
!
ahLo
B
E(D+.I
(DL
Fi
tt-l
€)L
o0
h
O
N
O
(n
0)
otr
ko
BoF
oo&
-c)Otr
Cd
U)
n
a
*i
C)
o
E
Oo\
ll
€
oli
()
o
-o
$i(.)
C)U
tro
63
CN&
-=v
16ry('tucl6ri),Q1sue6[ re/(od pezIIBIuroN
t)
o0
q)
gB
Lq)9
I
€g
L
F(
L€
E
oL
bD
q)
oE
cg
IE
t\o
l.
eh
iq)E
L€)
B
g
q)
ahclI
i,raLo
'E
e)l.I
Q)L
t-(
ra
-€)L
oo
tr{
C.I
.r,
C)
otr
c)
BoF
tsoo,ts*o
otr
cd
u)
a
,i=
I
,r$.ry('ruclttri),$lsueq ret\od pezlleuuoN
aLr
c.)
o
E
O
ilE
5ot-r(,
()
o-o
t-i
C)
tr(,)()
t-'{o
d
Edil
Antennas used for television broadcasting usually consist of an array of radiating
elements mounted on a tower. In comparison to elements used for FM antennas, the elements
used for television broadcasting are generally of a more complex design and radiate less
energy downward than many FM antennas. Television broadcast antennas are also often
mounted on higher towers than those used for FM radio broadcasting.
The computer model developed by the EPA for FM radio broadcast antennas,
discussed previously, was not applied to television broadcast antennas due to the
unavailabiiity of complete vertical radiation patterns for these antennas' However, the EPA
did develop Ln alternative approach for analyzing television antenna systems based on
available information. tt strbuta be noted that this model will have to be modified in the
future if it is to be applied to digital television systems expected to be developed over the
next several Years.
For VHF-TV antennas, the EPA reported that the most commonly used type of
radiating element appeared to be the "bat wing" type. For purposes of preliminary evaluation
it can be assumed that all VHF-TV elements are of this design. Data obtained by EPA
indicated that antennas using batwing elements may radiate approximately 20Yo as much in
the downward direction as in the main beam in terms of relative field strength. Therefore, the
relative field factor, F (discussed in SectionZ of Bulletin 65), in the downward direction
could be assumed to be on the order of 0.2.8
Although detailed modeling was not performed, the EPA used typical values of
relative field strength directly beneath the antenna, i.e., the shortest distance to ground, to
arrive at its prediciion model for ground-level fields due to VHF-TV antenna systems. For
directions other than straight down, greater distances from the antenna would be involved,
8 The ,rse of a relative field factor (F) allows a more accurate prediction for power density. If the relative
field factor is not known, a value of 1.0 could be assumed for avery conservative, worst-case approximation'
The 20o/o level assumed by EPA for VHF-TV antennas in the downward direction is an average value and would
not necessarily apply in all cases. However, a value of 1.0 in the downward direction is unlikely for TV
antennas. A i.0 value for the field factor is more appropriate for evaluating main-beam exposure.
29
SECTION 3
Television Broadcast Stations
resulting in lower predicted fields at ground level. The EPA developed the following general
equation to predict fields at the base of television broadcast towers.
Q.56)(1.@X100) (F\ lo.4ERPn + ERPaI (l)
4nR2
S : power density in microwatts/sq. cm (pW/cm'?)
F : relative field factor in the downward direction of interest (-60' to -90' elevation)
ERv : total peak visual ERP in wattse
ERP.r : total aural ERP in watts
R : distance from ground (or @ 2m above ground) to center ofradiation in meters
In Equation (l) the value of 2.56 is the ground-reflection factor discussed in Section 2
of Bulletin 65. The value of 1.64 is the gain of a half-wave dipole relative to an isotropic
radiator, also as discussed in Section 2. The factor of 0.4 converts peak visual ERP to an
RMS value which is more realistic with regard to practical conditions of video transmission.
The factor of 100 in the equation is a conversion factor. For convenience Equation (l) can be
simplified to the following expression (same units as above):
$.4 @1 lo.4ERPv + ERPII
s=
s=(2)
pz
If the relative field factors, F, (derived from the relative power gain) are known from
an antenna's vertical radiation pattern, Equations (l) and (2) can be used to arrive at
predictions of ground-level power density that are much more accurate than would be the case
ty using a worst-case estimate of 1.0 for F. For VHF-TV antennas the value of 0.2 for F can
glnerally be assumed. However, it should be kept in mind that this value generally represents
u, ur..ug" and may not necessarily apply in all cases and in all directions.
The following equation, Equation (3), derived from Equations (l) and (2) can be used
to predict the minimum antenna height necessary to bring a television station below a given
power density level anywhere on the ground:
e The values for ERP in this equati on are total ERP. Therefore, although most television antennas transmit
in the horizontal polarization, if a circularly-polarized antenna should be used the contributions from both
horizontal and vertical polarizations must be included.
30
(3)
MAH =
where: MAH : minimum antenna height (ground to center of radiation) necessary to
reduce groundlevel RF fields below a given power density, S, (units same
as Equation l).
Equations (1) - (3) can be used for both VHF and UHF television antennas. However,
for UHF antennas, the EPA model used different typical values of F, the relative field factor
in the downward direction. It is reasonable to expect generally smaller F values for UHF
antennas than from vHF antennas. UHF antennas have very high gain in the main beam
which means that a higher proportion of the transmitted energy is concentrated there rather
than radiated downward orln oth.r directions. Although EPA was not able to obtain relative
field data from antenna manufacturers' literature, an alternative prediction method was
developed based on field data and discussions with one major manufacturer. The
manufacturer's engineers stated that typical values of F for UHF antennas are about 10oh, and
some more .*p"rri.r. antennas have an F of about 5o/o fot downward radiation. These values
agreed well with measurements made by the EPA in field studies beneath UHF antennas.
Equation (3) was used to prepare Tables 7 - 12 in this section. These tables show
minimum ,,worst case" distan"". fro- single VHF or UHF television antennas required for
compliance with the FCC's MpE limits.'o Individual tables specifu various combinations of
visual and aural power and show distances for compliance with either general
population/uncontrolled limits or occupational/controlled limits, with or without the
assumption of surface reflection.rr For intermediate values of visual or aural power an
applicant may interpolate between values given in the tables, or, alternatively, use the value
girr.r, for the next highest level of visual and/or aural power. As indicated previously, total
ERP must be used.
When F, the relative field factor, is known, Equation (3) above can be used to
calculate minimum antenna height for compliance with a specified limit. However, if F is not
known, the values given in these tables can be used (which assume a value of 1.0 for F) as a
worst-case estimate for ground-level exposure. However, these values will be very
t0 Not. that for VHF-TV frequencies the MPE limits are 200 pWcm'? (general population/uncontrolled) and
1000 pWcm2 (occupational/controlled). For UHF-TV frequencies the MPE limits vary with frequency (see
Appendix A to Bulletin 65 for details).
,, Surface reflection will result in higher predicted values (see Section 2 of Bulletin 65).
$.4 (F\ 10.4 ERPY * Etri
31
conservative, as discussed previously. Tables using field factors less than 1.0, such as 0.2 or
0.1, could also be construcied and may be included in future revisions of this supplement.
Using Tables 7 - 12 for estimating minimum antenna height can be useful in cases
where the supporting tower is relatively short and there may be a greater contribution to
ground-level field strength from the lower part of the antenna. For main-beam exposure,
irh"r. the field factor, F, .uy be closer to 1.0, the values in these tables are likely to be
provide more realistic predictions of exposure at a given distance. This type of analysis may
Le required when nearby occupied structures or rooftops are in the path of the antenna's main
beam. In such cases it -uy oi may not be reasonable to include the surface reflection factor
in equation (3). For that riason the values in tables labeled "No Reflection" were calculated
without the reflection factor of 2.56 shown in Equation (1) and included in Equation (3).
32
Table 7. Distances for Single VHF-TV Antenna compliance with FCC-Limits (see text)
(relative lield factor = l, assumes no surface reflection)
i. Th; top number indicates the height requirement for compliance with general population/uncontrolled limits'
The bottom number indicates the heilht required for compliance with occupationaVcontrolled limits'
2. For intermediate values interpolati bet'ween tabulated numbers or use equation (3)
3. The above values assume total visual ERp. Transmitting facilities using circularly polarized antennas must
include sum of ERP in both horizontal and vertical polarizations.
33
n ll!i!:
hl}$
5 l0 t2.5 20l5 22
5 t2.l
5.4
12.8
5.7
l3.l
5.9
13.4
6.0
14.0
6.3
14.2
6.4
25 27.t
12.l
28.6
12.8
29.3
l3.l
30.0
13.4
3r.3
14.0
31.8
14.2
50 38.3
t'l.l
40.4
l8.l
41.4
18.5
42.4
18.9
4.2
19.8
45.0
20.t
75 46.9
21.0
49.5
22.1
50.7
22.7
51.9
23.2
54.2
24.2
55.1
24.6
100 54.2
24.2
57.1
25.5
58.5
26.2
59.9
26.8
62.6
28.0
63.6
28.4
125 60.6
27.1
63.9
28.6
65.4
29.3
67.0
30.0
70.0
31.3
'll.l
31.8
150 66.4
29.7
70.0
31.3
7r.7
32.1
73.4
32.8
76.6
34.3
77.9
/ 34.8
t75 71.7
32.1
75.6
33.8
't7.4
34.6
79.3
35.4
82.8
37.O
84.1
37.6
200 76.6
34.3
80.8
36.r
82.8
37.0
84.7
37.9
88.5
39.6
90.0
40.2
225 81.3
36.4
85.7
38.3
87.8
39.3
89.9
40.2
93.9
42.0
95.4
42.7
250 85.7
38.3
90.3
40.4
92.5
41.4
94.7
42.4
98.9
44.2
100.6
45.0
275 89.9
40.2
94.7
42.4
9',1.r
43.4
99.3
4.4
103.8
46.4
105.5
47.2
300 93.9
42.0
98.9
4.2
101.4
45.3
103.8
46.4
108.4
48.5
110.2
49.3
316 96.3
43.1
101.5
45.4
104.0
46.5
106.5
47.6
ttl.2
49.7
I l3.l
50.6
ri;.{+#*
iiri i
,t:l
i,.;'ii lr..:
n
\- -/
Table g. Distances for Single VHF-TV Antenna Compliance with FCC-Limits (see text)
(relative field factor = 1, assumes surface reflection)
5 l0 12.5 15 20 22
5 19.4
8.7
20.4
9.1
20.9
9.4
21.4
9.6
22.4
10.0
22.8
10.2
25 43.4
19.4
45.7
20.4
46.8
20.9
4'.1.9
21.4
50.1
22.4
50.9
22.8
50 61.3
27.4
64.6
28.9
66.2
29.6
67.8
30.3
70.8
31.7
72.0
32.2
75 75.r
33.6
79.1
35.4
8l.l
36.3
83.0
37.r
86.7
38.8
88. l
39.4
100 86.7
38.8
91.4
40.9
93.6
41.9
95.9
42.9
100.1
44.8
101.8
45.5
125 96.9
43.4
102.2
45.7
104.7
46.8
107.2
47.9
11 1.9
s0.l
I13.8
50.9
150 106.2
47.5
lll.9
50. I
114.7
51 .3
117.4
52.5
122.6
54.8
124.6
55.7
175 t14.7
5l .3
r20.9
54.1
123.9
55.4
126.8
56.7
132.4
s9.2
134.6
60.2
200 122.6
54.8
129.2
57.8
132.4
59.2
135.6
60.6
141.6
63.3
143.9
64.4
225 130.1
58.2
137.1
61.3
140.5
62.8
r43.8
64.3
t50.2
6',1.2
152.7
68.3
250 137.1
61.3
144.5
64.6
148.4
66.2
151.9
67.8
158.6
70.8
t61.2
72.0
275 143.8
64.3
15 r.6
67.8
155.3
69.5
159.0
7l.l
166.0
74.2
168.8
75.5
300 t50.2
67.2
158.3
70.8
162.2
72.5
166.0
74.2
173.4
77.5
176.3
78.8
316 154.1
68.9
162.5
72.7
166.5
74.4
t70.4
76.2
178.0
79.6
180.9
80.9
include sum of ERP in both horizontal and vertical polarizations.
i.- rn" top number indicates the height requirement for compliance with general population/uncontrolled limits'
The bottom number indicates the height re[uired for compliance with occupationaVcontrolled limits'
2. For intermediate values interpolate between tabulated numbers or use equation (3).
3. The above values assume total visual ERP. Transmitting facilities using circularly polarized antennas must
34
Max.
Visual
ERP
(kw)l4"r"o Aorn Center of Radiarion (m)
Table 9. Distances for Single UHF-TV Antenna Compliance with FCC-Limits (see text)
(aural power = l}Yo VERP; relative field factor = 11 assumes surface reflection)
t.- The top number indicates the height requirement for compliance with general population/uncontrolled limits'
The bottom number indicates the treigtrt required for compliance with occupationaUcontrolled limits.
2. For intermediate values interpolate between tabulated numbers or use equation (3).
3. The above values assume total visual ERP. Transmitting facilities using circularly polarized antennas must
include sum of ERP in both horizontal and vertical polarizations'
250 500 1000 2000 3000 4000 s000
ffiW
t4-t7 l15.5
51.6
163.3
73.0
230.9
r03.3
326.5
146.0
399.9
178.9
461.8
206..5
516.3
230.9
18-21 112.6
50.3
159.3
71.2
225.2
100.7
318.5
142.4
390.1
t74.5
450.4
201.4
503.6
225.2
'r7 - )\l10.0
49.2
155.5
69.6
219.9
98.4
3l1.0
139.1
381.0
170.4
439.9
196.7
491.8
219.9
26-29 107.5
48.1
152.0
68.0
215.0
96.2
304.1
136.0
372.4
166.6
430.0
192.3
480.8
2r5.0
30-33 103.0
47.1
t45.7
66.5
206.1
94.1
291.5
133.1
357.0
163.0
412.2
188.2
460.8
210.4
34-37 103.0
46.1
145.7
65.2
206.1
92.2
291.5
r30.3
357.0
r59.6
412.2
184.3
460.8
206.t
38-41 101.0
45.2
t42.9
63.9
202.0
90.3
285.7
127.8
349.9
156.5
4M.0
180.7
451.7
202.0
42-45 99.1
4.3
140.1
62.7
198.2
88.6
280.3
t25.3
343.3
153.5
396.4
t77.3
4/.3.1
198.2
46-49 97.3
43.5
137.6
6l.5
t94.6
87.0
275.1
r23.t
337.0
150.7
389.1
t74.0
435.0
t94.6
50-53 95.6
42.7
135. I
60.4
l9l.l
85.5
270.3
t21.4
331.0
148.0
382.2
170.9
427.4
l9l.l
54-57 93.9
42.0
132.8
59.4
r8'7.9
84.0
265.7
120.9
325.4
145.5
375.7
168.0
420.1
187.9
58-61 92.4
41.3
130.7
58.4
184.8
82.6
26t.3
I 18.8
320.0
143.1
369.s
r65.3
413.2
184.8
62-65 90.9
40.7
128.6
57.5
181.8
81.3
257.1
I16.9
314.9
140.8
363.6
162.6
406.6
181.8
66-69 89.5
40.0
126.6
56.6
179.0
80.1
253.2
r 15.0
3 10.1
138.7
358.0
160.1
400.3
179.0
35
rIL-/
o
Table 10. Distances for single UHF-TV Antenna compliance with FCC-Limits (see text)
(aural Power :l0o/o VERP, relative field factor:1, assumes no surface reflection)
t. ite top number indicates the height requirement for compliance with general population/uncontrolled limits'
The bottom number indicates the height required for compliance with occupationaVcontrolled limits.
2. For intermediate values interpolate between tabulated numbers or use equation (3)'
3. The above values assume total visual ERP. Transmitting facilities using circularly polarized antennas must
include sum of ERP in both horizontal and vertical polarizations'
Peak Visual ER? (k\U
Channel
Range 250 500 1000 2000 3000 4000 5000
Meters from Center of Radiation {m)
14-t7 1))
32.3
102.0
45.6
144.3
64.5
204.1
91.3
250.0
1t 1.8
288.6
129.1
322.7
144.3
18-21 70.4
31 .5
99.5
44.5
140.8
63.0
r99.1
89.0
243.8
109.0
281 .5
t25.9
314.8
140.8
)) -)5 68.7
30.7
97.2
43.5
137.5
61.5
194.4
86.9
238.1
106.5
274.9
123.0
307.4
137.5
26-29 67.2
30.1
95.0
42.5
t34.4
60.1
190.1
85.0
232.8
lM.l
268.8
120.2
300.5
134.4
30-33 65.8
29.4
93.0
41.6
131.5
58.8
186.0
83.2
227.8
101.9
263.0
t17.6
294.1
131.5
34-37 64.4
28.8
91.1
40.7
128.8
57.6
r82.2
81.5
223.1
99.8
257.6
r15.2
288.0
128.8
38-41 63.1
28.2
89.3
39.9
126.3
56.5
178.6
79.9
2t8.7
97.8
252.5
1t2.9
282.3
126.3
42-45 61.9
27.7
87.6
39.2
123.9
55.4
175.2
'78.3
214.5
9s.9
247.7
110.8
277.0
123.9
46-49 60.8
27.2
86.0
38.5
r21.6
54.4
172.0
76.9
210.6
94.2
243.2
108.8
271.9
12t.6
50-53 s9.7
26.7
84.5
37.8
I19.5
53.4
168.9
7s.6
206.9
92.5
238.9
106.8
267.1
I19.5
54 - 5'l 58.7
26.3
83.0
37.1
117.4
52.5
166.1
74.3
203.4
91.0
234.8
105.0
262.5
117.4
58 -61 57;7
25.8
8l .7
36.s
I15.5
51.6
163.3
't3.0
200.0
89.s
23r.0
103.3
258.2
I15.5
62-65 56.8
25.4
80.4
35.9
I13.6
50.8
160.7
71.9
196.8
88.0
227.3
101.6
254.1
I 13.6
66-69 56.8
25.0
80.4
35.4
113.6
50.0
160.'7
70.8
196.8
86.7
227.3
1 00.1
254.1
111.9
36
Table ll. Distances for Single UHF-TV Antenna Compliance with FCC-Limits (see text)
(aurat power = 22Yo VERP; relative lield factor = 1, assumes surface ttflttti?1)
,=, ,,,,,
Chanael
Range
Peak Visual ERP EW)
250 500 1000 2000 3000 4000 5000
Meters from Center of Radiation (m)
:
l4 t7 128.6
57.5
181.8
8l .3
257.1
l 15.0
363.6
162.6
445.3
199.2
514.2
230.0
574.9
257.1
l8 -21 125.4
56.1
177.3
79.3
250.8
112.2
354.7
158.6
434.4
194.3
501.6
224.3
s60.8
250.8
)) -)\122.5
54.8
173.2
77.5
244.9
109.5
346.4
154.9
424.2
189.7
489.8
2t9.1
547.6
244.9
26-29 119.7
53.5
169.3
75.7
239.4
107.1
338.6
151.4
414.7
18s.5
478.9
214.2
535.4
239.4
30-33 117.2
52.4
165.7
'74.1
234.3
104.8
331.4
148.2
405.8
l8l .5
468.6
209.6
523.9
234.3
34-37 112.5
5l .3
159.1
72.6
225.0
102.6
318.1
145. I
389.6
177.8
449.9
20s.3
503.0
229.5
38-41 112.5
50.3
1 59.1
7 r.l
225.0
100.6
3 18.1
t42.3
389.6
174.3
449.9
201.2
503.0
225.0
42-45 I10.3
49.4
1 56.1
69.8
220.7
98;7
312.1
139.6
382.2
170.9
Mt.4
197.4
493.5
220.7
46-49 108.3
48.4
153.2
68.5
216.7
96.9
306.4
137.0
375.2
167.8
433.3
193.8
484.4
2t6.7
50-53 t06.4
47.6
150.5
67.3
2t2.8
95.2
301.0
r34.6
368.6
164.9
425.6
190.4
475.9
212.8
54-57 104.6
46.8
147.9
66.2
209.2
93.6
295.9
132.3
362.3
162.0
418.4
187.1
467.8
209.2
58-61 102.9
46.0
145.5
65. I
205.8
92.0
29r.0
1 30.1
356.4
159.4
41 1.5
184.0
460.1
205.8
62-65 101.2
45.3
143.2
64.0
202.5
90.5
286.3
128.1
350.7
156.8
4M.9
l8l.l
452.7
202.5
66-69 99.7
44.6
141.0
63.0
199.3
89. l
281.9
126.1
345.3
154.4
398.7
178.3
M5.7
199.3
l.- il top number indicates the height requirement for compliance with general population/uncontrolled limits.
The bottom number indicates the height required for compliance with occupationaVcontrolled limits'
2. For intermediate values interpolate between tabulated numbers or use equation (3).
3. The above values assume total visual ERP. Transmitting facilities using circularly polarized antennas must
include sum ofERP in both horizontal and vertical polarizations'
37
Table 12. Distances for Single UHF-TV Antenna Compliance with FCC-Limits (see text)
(aural power = 22"/o VERP, relative field factor = 1r assumes no surface reflection)
l. The top number indicates the height requirement for compliance with general population/uncontrolled limits.
The bottom number indicates the height required for compliance with occupational/controlled limits.
2. For intermediate values interpolate between tabulated numbers or use equation (3).
3. The above values assume total visual ERP. Transmitting facilities using circularly polarized antennas must
include sum of ERP in both horizontal and vertical polarizations.
Peak Visual,ERP (k$r)
250 500 1000 2000 3000 4000 s000
Meters from Center of Radiation (m)
t4 t7 80.4
3s.9
I 13.6
50.8
160.7
71.9
227.3
t01.6
278.3
t24.5
321.4
t43.7
359.3
160.7
18-21 78.4
35. I
110.8
49.6
156.8
70.1
221.7
99.1
271.5
12t.4
313.5
140.2
350.5
156.8
22 a<76.5
34.2
108.2
48.4
153.1
68.5
2t6.5
96.8
265.1
I 18.6
306. I
136.9
342.3
153.1
26-29 74.8
33.5
105.8
47.3
149.6
66.9
211.6
94.6
2s9.2
115.9
299.3
133.9
334.6
t49.6
30-33 73.2
32.7
103.6
46.3
146.4
65.s
207.1
92.6
253.6
I13.4
292.9
131.0
327.4
146.4
34-37 71.7
32.1
101.4
45.4
143.4
64.1
202.8
90.7
248.4
ll1.l
286.9
128.3
320.7
143.4
38-41 70.3
31.4
99.4
44.5
140.6
62.9
198.8
88.9
243.5
108.9
281.2
125.8
314.4
140.6
42-45 69.0
30.8
97.5
42.8
t3'7.9
60.6
195. I
85.6
238.9
104.9
275.9
123.3
308.4
t37.9
46-49 67.7
30.3
95.7
42.8
135.5
60.6
191.5
8s.6
234.5
1o4.9
270.8
tzt.t
302.8
135.4
50-53 66.5
29.7
94.1
42.1
133.0
59.5
1 88.1
84. l
230.4
103.0
266.0
119.0
29',7.4
133.0
54-57 6s.4
29.2
92.s
41.4
130.8
58.5
184.9
82.7
226.5
101.3
261.5
I16.9
292.4
130.8
58 6l 64.3
28.8
90.9
40.7
128.6
57.5
181.9
81 .3
222.7
99.6
257.2
115.0
28',1.5
128.6
62-65 63.3
28.3
89.5
40.0
126.5
56.6
179.0
80.0
219.2
98.0
253.1
113.2
283.0
126.5
66-69 62.3
27.9
88. l
39.4
124.6
55.7
176.2
78.8
2l 5.8
96.s
249.2
111.4
278.6
124.6
38
Channel
Range
8. Section 5.03 ResPonses
(1) Utilities
Adequate electrical utilities are in place and will nol be changed. The site does not require water
or sanitation service.
(2)Trcffic, Access
The site averages about one visit per month, and that is not expected to change' No street
improvements are required'
(3) Minimize impact; respect established neighborhood character'
see attached letterfrom Jon Banks LLC, regarding design stepslaken to minimize impact' The
property is alreacly in use as a communicati6ns siti with an existing tower' Approximately 350
feet to the north there is another existing large steel tower structure, approximately 80 feet in
height.
Also attached is FCC Office of Engineering and Technology Bulletin 65, which includes the
technical details of the radio frequency energy exposure regulations'
9. Additiona! Review Standards
ln response to Section 5.03.13, which applies to communication facilities:
KMTS is already licensed by the FCC and has received a Determination of No Hazard from the
FAA.
1. This proposal is designed to comply with the radio frequency emission requirements of the
FCC.
2. Co-location options have been explored. Technical reasons prevented the use of existing sites
at Lookout Mountain and lron Mountain.
3. The design uses existing land forms to minimize visual impact, and the design (thin guyed
to*"ii, matEriats (steel), aid colors (tower not required to be painted orange and white) are
compatibb.
s.03.11
s.03.12
5.03.13
5.03.14
O\ Aooroval bv the Countv Commissioners. which Board may impose additional
iefuctioiri on the lot area, flodr area, coverage, setback and height-of pioposed uses or
require. additional. gff-slrept parking, screening fences and landscaping, or- py olh-er
resiriction or provision it deerirs necEisary to pr-otect the health, safety and welfar-e of the
population and uses of the neighborhoori or Zone district as a condition of granting the
specral use.
Denial of Special Use: The County Commissione[s lnay deny any.request for special use
SasefonlE.-e lack of Dhvsical seoarltion in terms of distance fiom similar uses on the same
or other lots, the imiract on traffic volume and safety or on utililies qr any. impact oflhe
special use which it'deems iniurious to the establislied character of the neighborhood or
zbne district in which such spi:cial use is proposed to be located.
Access Routes: All conditional uses and special uses must be provided with access routes
ofAaequale desien to accommodate traffri volume generated by the proposed use and to
orovide safe. con-venient access for the use constructEd in conjunction to the proposed use.
fhe minimuin design standards shall be the Garfield County Road Specifications.
w: Such broadcastine studios and/or
dral Communication eommission and
In addition, the following
c ommunication facility :
;tration. wher6 anorooriate. (A. 84-7 8:97 -60\
standards will b'e tised in'the review apllication for a
l. All facilities shall complv with the radio frequency emission requirements of the
Federal Communications C6nimission and any facility in compliance cannot be denied.
2. ft Jco-toCation of telecommunication facilities on one site-is encouraged and the
denial ofa landowner/lessor ofthe co-location ofa site shall be based on technical
reasons- not on comoetitive interests. It is the County's policy to minimize the
numberof communication facilities by the encouragement of co-locating such
facilities.:. R neestanding telecommurication facility, including anlennas, shall not exceed the
maximum stn ctrire heieht in the applic ableZone districl unless an exception is
approveA by the Boardf,ased on tlie applicant demonstrating the following: (A97-60)
(a) Use of existins land forms. vegetation and structures to aid in screaning the
ia6ititv from view-or blendine in viith the surrounding built natural environment
ibt D'esien. materials and colors of antennas and theii support structwes, shall
be compitiUle with the surrounding environment, and monopole support
structures shall taoer from the base to the tip.
(c) It is consistent with existing communichtion facilities on the same site.
Communitv Corrections FaciliW: ln addition to the requirements in Section 5.03, all
ffiSection2.02.l56andsubjecttotheprovisionsofthis
zoningcode shall demonstrate the following:
(l) No corrections facilitv shall be located in an area that is predominately
ie6idenrial in characrer \\ith 1/2 mile of the proposed facility. Predominately
residential shall be defined as ovel fifty percenf (50%) of the property in^the
area is classified as residential in the r6cbrds of the County Assessor's Office.
(2) Off-street parking shall be provided for each employee -- no less than 5
extra spaces.
(3) Nd corrections facility will be located within ll2 mile (500 feet) of
any public or private school. (A97-60)
Kennel: (Amended 2001-05 & 2002-85)
(l) All kennels shall be completely enclosed within a building that prevents any sounds
s.03.15
:^<, Cotorado West Broadcasting, lnc.A\ 3230 B S. Glen Avenue
A' 3'tsi&Ti,,'#ss'
co 81601-4424
Q,,o ,,,.
ALPINE BANK
GLENWOOD SPRINGS, CO 81601
82-340t1021
, t"'
14 139
212712004
$ *ooo.ooORDER OF
akffi
Garfield County
44aMEMo Speeial Use Permit Fee
l'0 ll, I lql. r: lo e Io lr.o ?ri Io Io0 t I ? ? lrr
Colorado West Broadcasting, lnc.
Garfield County
ALPINE BANK ACC Special Use Permit Fee
Colorado West Broadcasting, lnc.
Garfield County
ALPINE BANK ACC Special Use Permit Fee
: I,ral'1:l.r I li1;r):11
:'
-: t.
I i: I r.t i::r: r: :r i:::r. 1
i
212712004
212712004
1413I
400.o0
400.o0
14139
400.00
400.00