Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAboutApplication- PermitJob Address 159VL
No. 7618
GARFIELD COUNTY
BUILDING, SANITATION,
and PLANNING DEPARTMENT
109 8th, Street, Suite 303
Glenwood Springs, CO 81601(970) 945-8212
Nature of Work ilding Permit
Use of B g / — AL4A.r / -Ai, At....�L�
r
Owner ( I
Contractor
Amount of PermitS / /S . 7 ( Dale ,(7JLQ c4
‘.a -a -s
Clerk
■
. • Ze • 30tjd u
91:81 0002 61 Edd
GARFIELD COUNTY BUILDING PERMIT APPLICATION
(mu-wincol [t.TY(ULlNwoons1'RTNQ ).COLORAtx) INSPi?crtaNIIrre (970)384-5003
PARCEL/SCHRD111.F. NO
ITT TPIIONl;: (97() 945.8112
PERMIT NO , 72/ d
_You ADDitEss• 1 574(o di iptroal l V.24 (r Rtii.Jb911 jzer5a•1-)
1
'AMNIO. BLOCK NO. SUllU1VISLON/F'XRmPTION
2
nwpy GpoL4ST CDLy1A1Lxfliaamn,
1mo 31 3
SqSZDBfliee
�jy �./ �6/� O�crlar�d�.vy
MINIM q z.'4 dr r • -' r l G1'r 1
Sri VA P r -r1'^ $37 Z.
nr,i
jzI l9l t.
1303)445-'715Z
lir 14n
3
rt.A,'n,.
ari ALO alc3 C' a e011Vc.T1o1
2.‘4•04404.
4
1 ,--,,, %DC AfeIG1;161?b/rat4
etc, t.Ifr,Jae r 61.4(.0
,oJ, t ' ii. ag 'E'� ez fM.e.Ri CD Boo
tS'.J."D�r w Q�mn)rt ca►M4,
. 30,0,.4.
1 A
$ pp * 15253
5
•
IQ TI OF.U4DPU ��0yy'4s,
3 fid 1.4 04ton
w F7 owl 3 Z T[r7:1°IL. cal ,y�770F1
e+
�rxfh12
l
NA ''
1
6
wr rm RIM MVO 1
i'LBEA OPTIC.IEEMPrt+ n0r? /404oc )pi O AO/L./Now A"' l ctom £
7
6,o,v9,,,,,, p4.A4E Ad AOQ,TI*AAE.. ZTA`v't. LAM" Wolso /' oN- R2!$t °teen M., •RCS MAAk.1 i4ael. MC.iw
Oe.) eat as•) tel Zit. R0_1•3. C bRA)ca na6 AgJS/■r]�+�����.a��a n -CC FDg `i'hoS2D
8
IC,
nw•4LOF*.&K D..w ..At. TIL. GALT .AIX* D,,.I `fes'—YJAb1`ai S.
1 doer}
9
,N,AGE: Iii/t 0,,,,,,,u,,+lwuwx C rkn awry A oDO(R(t
+
10
D D1WEwAY Pagrt * I pr oma MTV AMMO(DeLPaML p!9'h�9 1 Dern, PIAN
µl /
rAI+�AYION if w<aacL ' Alumna) rMt flrnri r 35/ OO7
1 � doc). ) i� 1 �//
{
li eluf-fn6 ArValknt *a ADO 301In�'l y4€A ore**w�y.
v.i ..d i- orms,- IFK..tiae.vypQ,k cerci S olor f•AoPe
1�V.)b 1fl(a FAC.I.I AiR.f&A a 64000 Pe"Ct. %%AC (Amp, COR14Q1e #i' CAAS1'IQA3GT J f t61POr
Fbit , 4 &AA A60,den• '5 i1€ ds►R at./1wt'a fi`1 llAC.H•o'S •
NOTICE
A 5+PA4AII. 11.1:1 TPICAI, TCRMCT IS RE41I14.PIJ AHI) M1,F1HE i%CIIRI)
COIflArm
11Th PT.RMTT RF,COMFS NULL AND VOA) Ur WORK DR
AI TI(ORT7.ED IS NOT COMMENCED WYf tLN 110 DAYS. DR W CONSTRUCTION
WORK IS SUSPENDED OR ABANDUNW MR A PEIU(M) Olr 110 [LAYS
ArFF.R WORK IS CONINIBNCED,
I HEREBY CERTIFY THAI 1 HAVE REAL) ANI) IOC MANED THS APPLICATION
KNOW THE SAM1 'IU 88 TRUE AND CORRECT. ATI. PRAVT3IONS
OO VERNTNO THIS i YY6 OF WORK W!I J. TW C • TEn wm1 WteT1
HEREIN VR NUL. 1'DE (1RAN1 IN(1 (W .R.M1T DOES NOT PRESUME
AL) 1 IIOIU 1 Y 10 V101 /A 0! OR rArrrEt PRO VISIONS OF ANY
I.o(•AI 1 AW ).ATR4(1� TRU ±<y' N OR THE PEMORMANcE
cONSTT111Cm •y
BY T1 IL STAT1! CIT
f.ONSTRUC.TION
ION OR
AT ANY TIME
AND
OP LAWS
SPECIFIED
TO GIVE
OTHER SI Al E OR
OF
)
PT.ANCHECK PE
T 67o'1.iv
PERMIT'FEE:
! 0o C ,2.
)ATP. Pl•RMT( IR SI Ain
TO F"'/ATV
)
[ 7 c �j 4 1
OCC: CONST: TYPE.
% iviNti.
A(':
SF.TTKS
fin. .f' . , r... ./ :wwriz.d.I s1bI 14
S-401015
7' ePANti.
HOW!
ISM NO. & I'LL
ii)spt. A Ll9)ala A P Dopt. APpIwL D.
AUNT
PI:RM[Ss ION IS1T3.RTRYCIRANfT.T)TOTTTW.APPI.TCANTASOWNER.CONTRACTORAND)ORTHEAG NT OF THE CONTRACTOR OROWNF.RTOroNSTRirrTi1Tr• 3TRTY rtmr.M
DETAILED ON PLANS AND SPECIFICATIONS SLTBMITFED TO AND REVIEWED BY THE BURDTNODEPARTMENT.
IN CONSIDERATION OF THE ISSUANCE OF THIS ?min. 'THE SI(IN1 R 11UU:l1Y AGREES TO COMPLY WITH ALL BUILDING CODES AND LAND USE RECRILATTON3 Af(PIFT) RY
UAW .1..0 CO%NI'Y PUR UAN' TO AlL11i10RIIY OIVLN IN 30.21291 CRS AS AMENDL•)J). 11113. SIC/NLP. FUR MLR AGREES THAT IF THE ABOVE SATE) ORPINANCP.$ ARF NAT rt l T Y
CONTE ILO MIR R IN nth LANAI &UN. ERECT LON, CONS I RUC'ILON AND USE UIr T I IL ADM:uLd11CRLLIED SI2LUGTURE. THE PERMIT MAY THEN M. REVOT:I-n RY Norm: FROM
Till 11'()I1NlYANI)'11IAT'I1ULNAND 9)T[:Rli[I SIIA1J-BUXN.IT{NULL AND Von).
111E I551JAN(:li DIr A ',own' BASED UPON PL.'S. SPEcIrleATIONS AND OTHER DATA SKATE NOT PREVENT TLS Blv1LDING OFFKIAI. FROM 110ALAI r I I+R R(igUIKINU 1 Ill
('URJu:ci ION 011, ERRORS IN LAID PIANS. SI'st:IFTL:A'l'IONS ANIS OD ILK DATA UK At/ PREVENTING BUILDING OPERATION BETH(.'. CARRITI) ON rlfi.R.EUN!)IrJt WHEN IN
V IO1.A1 [ON OIr-1'111~ COI )li 0R ANY 1.)1I [(•7C ORDNANCE OR RF.lLJI.AI ION oirTl its lJ1J.SDICIION,
T1TF. RF.VrrW OF T1R, SII11mill E[) PIANS AND SPIWIFICATIONS AND INSPErTIONS coNnt1CTED THEREAFTER DOES NOT CON.TTrt.m. AN AC'c[{PIANCE 01• ANY
RESPONSIBILITIES OR 1IAFITT.ITTts DY (:ARFLrT.n COUNTY FOR ERRORS, OMISSIONS on nl3CRTsPANC[I;S. II LE RESPONSIBILITY FOR THESE ITEMS A*If) TMPI 104rT N1 1ION
DUWNr CONSTRUCTION RESTS SPECIFICALLY WITIL THE ARCHITECT, DESIGNER, BTTU.DER AND nWN1iR. IoM MLP,l1s ARE !MENDED TO BE CONSERVATNF. AND N Si WPM!
OF THE OWNERS INTEREST
C4rfora 0o3 THEREBY AC)YOwLED(;E THAT I HAVE READ ANn 1 NronnSTANT) THP. AC7REP.t.FTNT AUOVE. (INH.
ZO-d
jfOp5r
VE0 : 60 00-6T ---AdV
2e'3Jtid,
d'd
9T:OT eee 61 ddU
The following items are required by Garfield County for a final inspection:
1. A final Electrical Inspection from the Colorado State Electrical Inspector,
2 Permanent address assigned by Garfield County Building Department posted where readily
visible from access road;
3. A finished roof, a lockable house, complete exterior siding, exterior doors and windows
installed, a complete kitchen with cabinets, a sink with hot & cold running water, non-absorbent
kitchen floor coverings, counter tops and finished walls, ready for stove and refrigerator, all
necessary plumbing;
4. A complete bathroom, with wash bowl, tub or shower, toilet stool, hot and cold running
water, non-absorbent floors and walls finished and a privacy door;
5. All steps outside or inside over three (3) steps must have handrails, guard rails on balconies or
decks over 30" high constructed to all 1994 UBC requirements;
6. Outside grading done to where water will detour away from the building,
7, Exceptions to the outside steps, decks and grading may be made upon the demonstration of'
extenuating circumstances, i.e, weather, but a Certificate of Occupancy will not be issued until all
the required items are completed and a final inspection made.
A CERTIFICATE OF OCCUPANCY WILL NOT BE ISSUED UNTIL ALL THE ABOVE
ITEMS HAVE BEEN COMPLETED.
****CANNOT OCCUPY OR USE DWELLING UNTIL A CERTIFICATE OF OCCUPANCY
(C.O.) IS ISSUED. OCCUPANCY OR USE OF DWELLING WITHOUT A C.O. WILL BE
CONSIDERED AN ILLEGAL OCCUPANCY AND MAY BE GROUNDS FOR VACATION
PREMISES UNTIL ABOVE CONDITIONS ARE MET.
I understand and agree to abide by the above conditions for occupancy, use
% and the issuance of a
Certificate of Occupancy for the dwelling under building permit # '/
Signature
bpcont
Date
VV0:6o OO -6T -„Ady
Garfield County
109 8th Street, Suite 303
Building &Planning Department
Planning Department
ovk
1 i35; v)) . vv
PRAAALi
. = /06
/P26111(_
/(150)-7/
- 39. at 5///a)
.-Y/ 6 63 5 b oLL.
945-8212/285-7972 Glenwood Springs, Colorado 81601
170'd
P.O.99 r 9T :0T 0002 6T Zldt:J
GARFIELD COUNTY BUILDING AND PLANNING
970-945-8212
MINIMUM APPLICATION REQUIREMENTS
FOR
CONSTRUCTION OF
COMMERCIAL OR MULTI -FAMILY RESIDENTIAL BUILDINGS
including
NEW CONSTRUCTION
ADDITIONS
' • ' ALTERATIONS
and
MOVED BUILDINGS
In order to understand the scope of the work intended under a permit application and expedite
the issuance of a permit it is important that complete information be provided. Adequate and
complete information will prevent delays in the plan review process. Reviewing a plan and the
discovery that required information has not been provided by the applicant may result in the delay
of the permit issuance and in proceeding with building construction. The owner or contractor
may be required to provide this information before the plan review may proceed. This causes
delays because other plans that are in line for review may be given attention before the new
information may be reviewed after it has been provided to the Building Department.
Please review this document to determine if you have enough information to design your
project and provide adequate information to facilitate a plan review. If you do not, it may
be helpful to obtain a book titled "Dwelling Construction Under the Uniform Building
Code". This book is available to you through this department at our cost. Aho, please
consider using a design professional for assistance in your design and a construction
professional for construction of your project.
To provide for a more understandable plan in order to determine compliance with the building,
plumbing and mechanical codes, applicants are requested to review the following checklist prior
to and during design.
Vt 0 : 6O 00-61--Ad`d
90.30143 6T :BZ 021W 6t 6dd
As of January 1, 1999: .
Plans to be included for a Building Permit, must be on drag paper at least 18"x 24" and drawn to
scale.
Plans must include a floor plan, a concrete footing and foundation plan, elevations all sides with
decks, balcony steps, hand rails and guard rails, windows and doors, including the finish grade
line, A section showing in detail, from the bottom of the footing to the top of the roof, including
re -bar, anchor bolts, pressure treated plates, floor joists, wall studs and spacing, insulation,
sheeting, house -rap, (which is required), siding or any approved building material,
A window schedule, A door schedule.
A floor framing plan, a roofing framing plan,roof Must be designed to withstand a 40# per ft. up
to 7,000 F.O.S. and an 80 M.P.N. wind.
All sheets to be identified by number and indexed. All of the above requirements must be met or
your plans will be returned.
Applicants are required to indicate appropriately and to submit completed checklist at time
of application for a permit:
1. Is a site plan included that indicates the distance of the proposed building or addition to
property lines, other buildings, set back easements and utility easements?
Yes X No Not necessary for project
2. Are the plans submitted for application construction drawings and not drawings that are
stamped or marked identifying them as "Not for construction, for permit issuance only",
"Approval drawings only", "For permit issuance only" or similar language?
Yes No Not necessary for this project
3. Does the site plan include the location, including the distances to property lines, wells, (on
subject property and adjacent properties), streams or water courses of the 1.S aS
(Individual Sewage Disposal System) and has the system been designed, stamped and
signed by a Colorado registered engineer?
Yes No Not necessary for this project 7'
4. Does the site plan indicate the location and direction of the State, County or private road
accessing the property?
Yes )6 No Not necessary for this project
2
90'd
V170:60 00-61--(dV
• 90'90dd LT :0T 0002 6T ddti
5. Do the plans include a foundation plan indicating the size, location and spacing of all
reinforcing steel in accordance with the uniform building code or per stamped engineered
design?
Yes No Not necessary for this project
6. If the building is a pre-engineered structure, is there a stamped, signed engineered
foundation plan for this building?
Yes lc No Not necessary for this project
7. Do the plans indicate the location and size of ventilation openings for under floor crawl
spaces and the clearances required between wood and earth?
Yes.... No Not necessary for project /(,
8. Do the plans indicate the size and location of the ventilation openings for the attic, roof
joist spaces and soffits?
Yes No Not necessary for this projeot)c,. Hier
9. Do the plans include design Toads as required under the Uniform Building Code for roof
snowloads, (a minimum of 40 pounds per square foot in Garfield County)?
Yes 7C No Not necessary for this project
10. Do the/plans include design loads as required for floor loads under the Uniform Building
Code Section 2304 and Tables 23-A and 23-B?
Yes ?C No Not necessary for this project
11. Doe the plan include a building section drawing indicating foundation, wall, floor and roof
construction?
Yes No__ Not necessary for this project_
12. is the wind speed and exposure design included in the plan?
Yes _4 No Not necessary for this project
13. Does the building section drawing include size and spacing of floor joists, wall studs,
ceiling joists, roof rafters or joists or trusses?
Yes X _ No Not necessary for this project
14. Does the building section drawing or other detail include the method of positive
connection of all columns and beams?
Yes No Not necessary for this project
90"d
3
vt'os6o 00-6t-Ady
L0'3OOtd LT:0T 000E 6i add
15. Does the plan indicate the height, of the building, or proposed addition from the highest
point of the building or addition measured at mid span between the ridge and the eave
down to existing grade contours?
Yes 4 No Not necessary for this project -
16. Does the plan include any stove or zero clearance fireplace planned for installation
including make and model and Colorado Phase II certifications or Phase II EPA
certification?
Yes No Not necessary for this project TC.
17. Does the plan include a masonry fireplace including a fireplace section indicating design to
comply with the Uniform Building Code Chapter 37?
Yes No Not necessary for this project..)G.
18. Does the plan include a window schedule or other verification that egress/rescue windows
from sleeping rooms and/or basements comply with the requirements of the Uniform
Building Code?
Yes No Not necessary for this project ?
19. Does the plan include a window schedule or other verification that windows provide
natural light and ventilation for all habitable rooms?
Yes_ No Not necessary for this project/
20. Do the plans indicate the location of glazing subject to human impact such as glass doors,
glazing immediately adjacent to such doors; glazing adjacent to any surface normally used
as a walking surface; sliding glass doors; fixed glass panels; shower doors and tub
enclosures and specify safety glazing for these areas?
Yes No.__ Not necessary for this project,
21. Do the plans include a complete design for all mechanical systems planned for installation
in this building?
Yes 7 No Not necessary for this project
22. Have all areas in the building been accurately identified for the intended use? (Occupancy
as identified in the Uniform Building Code Table 5-A)
Yes, >0 No Not necessary for this project
23, Does the plan indicate the quantity, form, use and storage of any hazardous materials that
may be in use in this building?
Yes No _ Not necessary for this project
4
LO'd
V70=60 OO-6t--AdV
• 8a'B9t1d • BT:OT 000E 61 N8H
24. Is the location of all natural and liquid petroleum gas furnaces, boilers and water heaters
indicated on the plan?
Yes _ No Not necessary for this project i‹
25. Do the plans indicate the location and dimension of restroom facilities and if more than
four employees and both sexes are employed, facilities for both s es?
Yes No Not necessary for this project.
26. Do the plans indicate that restiooms and access to the building are handicapped
accessible?
Yes No Not necessary for this project IC
27. Have two (2) complete sets of construction drawings been submitted with the application?
Yes No Not necessary for this project
28. Have you designed or had this plan designed while considering building and other
construction code requirements?
Yes No Not necessary for this project
29. Does the plan accurately indicate what you intend to construct and what will receive a
final ins cction by the Garfield County Building Department?
Yes No
30. Do you understand that approval for design and/or construction changes are required
prior to the implementation of these changes?
Yes ! ` No
31. Do you understand that the Building Department will collect a "Plan Review" fee from
you at the time of application and that you will be required to pay the "Permit" fee as well
as any "Septic System" fees required, at the time you pick up your building permit?
Yes X No
32. Are you aware that you are required to call for all inspections required under the Uniform
Building Code including approval on a final inspectionprior to receiving a Certificate of
Occupancy and occupancy of the building?
Yes() No
33. Are %you aware that the person signing the Permit Application whether the "Owner",
"Agent of the Owner", "General Contractor", "Contractor" or otherwise, signing the
application is the party responsible for the project complying with the Uniform Codes?
Yes ?(„ No
5
80'd
VS0:60 00-6t -..+dd
60'Rgdi 8T:01 000F 61 id1::1
34, Are you aware that twenty-four (24) hour notice is required for all inspections?
Inspections will be made from Battlement Mesa to West Glenwood in the mornings
and from Glenwood Springs to Carbondale, in the afternoon. Morning inspections
must be called in by 12:00 p.m. the day before; afternoon inspections must be called
in by 5:00 p.m. the day before. Failure to give twenty-four (24) hour notice for
inspections will delay your inspection one (1) day. Inspections are to be called in to
384-5003. t'fe 6
35. Are you aware that prior to issuance of a building permit you are required to show proof
of a driveway access permit or obtain a statement from the Garfield County Road &
Bridge Department stating one is not necessary? You can contact the Road & Bridge
Department at 625-8601.
Yes No
I hereby acknowledge that I have read, understand and answered these questions
accurately to the best of my ability.
er 4 zip
Signature date
Phone: 0.3) 44.5-71S2,(days); (303) (p36 - 3S$ 7 (evenings)
Project Name: e r )rewykon‘cr4-honr.5 30456/..06 0010a-utn
Project Address: 15-74(0 f.)I f�N' (o 2-
r ZJA-►3°^"a)
*If you answered "No" on any of these questions you may be required to provide this information
at the request of the Building Official prior to beginning the plan review process. Delays in
issuing the permit are to be expected. Work may not proceed without the issuance of the permit.
*lf you have answered "Not necessary for this project" on any of the questions and it is
determined by the Building Official that the information is necessary to review the application and
plans to determine minimum compliance with the adopted codes, please expect the following:
A. The application may be placed behind more recent applications for building permits
6
60'd
v90:60 Oo-6t -..idV
0t'd
eT :aT cow GI &Jt1
in the review process and not reviewed until required information has been provided and
the application rotates again to first position for review.
B. Delay in issuance of the permit,
C. Delay in proceeding with construction.
*if you answered "No" to this question the circumstances described in the question could result in
a "Stop Work Order" being issued or a "Certificate of Occupancy" not being issued.
Bpcornm
01/00
7
vso-6o ao-6t-add
,, Ti'301716
8" CONC.
Cc= 3000.
f#4 CO 18."
#4 ® 18."
2-#4 top
It'd
Pressure Treated or ted Wood.,
psi, Fye 40000. psi
Vert ® CL
Horiz
and bottom of won
2 Re -Bars Above and Below All Openings
BOND BREAKER
Minimum, 4" CONC. SLAB
8T :OT 000F ei 6Idd
1/2" X10" Anchor Bolts 6' centers,
fr2 in each board, & 1' rrom .:ach end
Ln
,0111.Se.Mvil Z
Damproof Below Grade
0
r 1'
r
#f4 HORIZ. AS SHOWN �r
i
•
�r
DIRECTiON OF LEGS
[.ALTERNATE
a
• <r
Drain Pipe to Daylight
3
Garfield County
Basic Foundation Wall Design
Same pattern Re -Bar 8' Or 4'
Dec. 1,1996
Y9O=6O OO-6I--&d`d
Zt'd
JJ•tl:N'
etg chef
7'`' >',Pj<' A I & r`} RAG4"
AoeNZ/ 7 -Io ltii
61:0T 0002 61 ddb
esS tine rtto
iA
4Pr'X/ «X 10 X/0 !mesh
02Y"
fr�Qe►ied Co-Crrete
1190:60 00 -6I --Add
•ARM NA+COWITY,COLORADO
Appficon 1'to complete numbered ape s only.*PERMIT NO. PARCEL C HED NO.
•
Jos
44 V '
9 J
,
1
bz
. `� �r
LOT NAG. BL O(a( t
1
2
OW6E44d Sr'H►Wn t s4 d -ADCRESS
�rBCUEi.DpI.V1.8r1ON1. snr
555 4'84" * +t4
��,�y rye u
WK P►C""'L+47/ -%TOO
3
DONTRACTOR `f fin
WIiaas y"; --*--;•:. 3 • : '
PH. —
i
LC 4$ENO.
4
ARd�rTECTOR OESIONER O Reim
AbDRES6�CSrss,We�'i. 3�
PH.
I. LICENSE NO.
^
6
ENGINEER EOpi ee/.5r
ADDRees &bites , "' '4
PHfS stypsessENo.
6
BFOF .� I•f�lW''
SFOFLOT 15,0'
EI H__T�r/CJI
HEIGHT
cry
NO.CPFLOORS f
7
L
: 4F BI�ILDING Vire Opi / 7rrh+; c ; rimer .7a) r
8
• •o►wnitE voEW oADOITMI TErRATION aREPAIR oIAOWE ARBMOVE
Q
. . Mom: Ply , le r,A^fir;Q, AAA -mac 4A1 q Nadu ffidad bac;Gfy'' oil
1711 P.✓
2 '/1 I il/Pw1. J . 1 1 .1 J,.u,AE. J/ 4 1< i !
GARAGE SINGLE DOUBLE CARPORT SINGLE
6 r_ A•
-
/, r• 1 • / Azw ./or..:,
40
DOOEILE A/j4
`
ORNEWAYPERMIT ONSFTESEWAGE DISPOSAL PERMIT
SITE PLAN
PLAN CHECK FEE I� 94
/
PERMIT FEE �3/4. oT
11
Vuwman cA moot 9 hy5; ADJUSTEDV4,1
SPECIAL CONDITK)NS
SCHOOL liiP CTPiS x._
F BUILDINGS ON
PARCTQTA
V FARM� BUILDINGS NOW CN
. FEE/ je R
Oar. °RSA.
CONST. TYPgr -
SEPARATE PERMITS
VENTILATING OR AIR
THIS PERMIT BECOMES
NOT COMMENCED WITHIN
OR ABANDONED FOR
COMMENCED.
I HERESY CERTIFY THAT
THE SAME TO SE TRUE
GOVWtMJO THO TYPE
HEREIN OR NOT, THE
AUTHORITY TO •
LOCAL --
• r.�rl►.' /
d • r, Oolltrador
+12 dr"_ L.
Building DrpeMTunr . •
NOTICE
ARE REQUIRED FOR ELEC1R AL mamma
MOTIONING.Nr
NULL AND VOID F WORK OR CONSTRUCTION AUTHORQED
1!0 DAYS. OR F CONSTRUCTION OR WORK E SUSPE}
A PERIOD OF 110 DAYS AT ANY T*IIE AFTER
I HAVE READ AND EXAMINED THIS APPLICATION AND
AND CORRECT. ALL PROVISIONS OF LAWS AND ORDMLANCES
OF WORX WILL BE COMPUED WITH WI -ETHER SPECIFIED
GRANT •. OF A PERMIT DOES NOT PRESU1 E
TE OR A THE PROVISICNS OF ANY OTHER STATE
•
, I e 1 • • TRUCTION OR THE ' -1 • ' MINCE
I t • I 1 -
WATER SUPPLY
DATE PERMIT ISSUED c a y y 7
HEATING.R
BrECIaMMtv
ous
a
Reue6o
oe
R�
19
ZOMNG
•_.--
--
WORK IS
HEALTH DEPT.
KNOW
FIRE DEPT.
TO ONE
SOIL REPORT
-
OR
OF
OETU CK8
FLOOD HAZARD
a iul adx�d •0 "
A y,I!�i/fiY
- 7
..MAMIF.HOME
.
. , / �.'..to.. .... ..r,r.
T
OTHER [
AGREEMENT
PERMISSION IS HEREBY GRANTED TO THE APPLICANT AS OWNER, CONTRACTOR AND/OR THE AGENT OF THE CONTRACTOR OR OWNER TO
CONSTRUCT THE STRUCTURE AS DETAILED ON PLANS AND SPECIFICATIONS SUBMITTED TO AND REVIEWED BY THE BUILDING DEPARTMENT
IN CONSIDERATION OF THE ISSUANCE Of THIS •PERA T THE SIGNER HEREBY AGREES TO COMPLY WITH ALL BUILDING CODES AND LAND USE
REGULATIONS ADOPTED BY GARFIELD COUNTY PURSUANT TO AUTHORITY GIVEN IN SO28.201 CRS AS AMENDED. THE SIGNER FURTHER
AGREES THAT IF THE ABOVE MID ORDINANCES ARE NOT FULLY COMPLIED WITH IN THE LOCATION, ERECTION, CONSTRUCTION AND USE OF
THE ABOVE DESCRIBED STRUCTURE. THE PERMIT MAY THEN BE REVOKED BY NOTICE FROM THE COUNTY AND THAT THEN AND THERE IT
SHALL BECOME NULL AND VOID.
THE ISSUANCE OF A PERMIT BASED UPON PLANS. SPECIFICATIONS AND OTHER DATA SHALL NOT PREVENT THE BUILDING OFFICIAL FROM
THEREAFTER REQUIRING THE CORRECTION OF ERRORS IN SAID PLANS, SPECIFICATIONS AND OTHER DATA OR FROM PREVENTING BUILDING
OPERATION BEING CARRIED ON THEREUNDER WHEN IN VIOLATION OF THIS CODE OR ANY OTHER ORDINANCE OR REGULATION OF THIS
JURISDICTION.
THE REVIEW OF THE SUBMITTED PLANS AND SPECIFICATIONS AND INSPECTIONS CONDUCTED THEREAFTER DOES NOT CONSTITUTE AN
ACCEPTANCE OF ANY RESPONSIBIUTIES OR LIABILITIES BY GARFIELD COUNTY FOR ERRORS, OMISSIONS Oft DISCREPANCIES. THE
RESPONSIBILITY FOR THESE ITEMS AND IMPLEMENTATION DURING CONSTRUCTION RESTS SPECIFICALLY WITH THE ARCHITECT, DESIGNER,
BUILDER AND OWNER_ COMMENTS ARE INTENDED TO BE CONSERVATIVE AND IN SUPPORT OF THE OWNERS INTEREST.
Garform.003 1 HEREBY ACKNOWLEDGE THAT I HAVE READ AND UNDERSTAND THE AGREEMENT ABOVE /INITIAL
tr
al/G S: / -a--f, 9i
D (D Ptiuk T
No. I /�
Job Ad
Owner
Contractor
Assessor's Parcel No
BUILDING PERM T CARP
6 64-a
limiPrwm Pm,
Setbacks:
Address/3 S 3• p
ddress CbEt5P944.1oq
Front, Rear RH LH Zoning
66,41.401SPECTIONS
Date
Mt"'
honeleo'3-ycaS,31?-7�Sa
7�
one o
Soils Test " " ■
Footing 67-62-60
Foundation
Grout
Underground Plumbing
Rough Plumbing
Framing
Insulation
Roofing
Drywall
Gas Piping
NOTES
Weatherproofing
Mechanical
Electrical Rough (State)
Electrical Final (State) 7 `l' t
Final/Checklist Completed?
Certificate Occupancy #
Date
Septic System #
Date
Final
Other
(continue on back)
Fax
Pages: (including this cover sheet)
Date:
TO: Dc,.�,d 4KIDAL
FAX# 901- 9Z5-2(199`
LipsiX LuADCP0t. atfY\ Qa114
fl mn Q c\t
prA.A.Q.p_alw a 004. t
Garfield County Building & Planning
Department
109 8th Street, Suite 303
Glenwood Springs, Colorado 81601
(970) 945-8212
Fax: (970) 384-5004
Fax
Pages: (including this cover sheet)
Date:
TO:
FAX # 9-K')'02L0- 5.5 i
_—.r.... �r-7-1 a..r.�
Garfield County Building & Planning
Department
109 8th Street, Suite 303
Glenwood Springs, Colorado 81601
(970) 945-8212
Fax: (970) 384-5004
ur
RULISON,
REGEN Fi
PERMITTING SET FC
s t
OLORADQ
CILITY
3RD BUILDING
APPROVED
losont)
'I'MDMI10°4118"111:SPARTIvt
DIP co
foto
014 rte
(\c,
ofti iko
AR
KDC
IM..w O r.
1
IN •
• i
•
1
1
•
ARCHITECTS.ENGINEERS, P.C.
12250 East Iliff Avenue, Suite 302
Aurora, CO. 80014
303.750.6999 FAX 750.0236
Qwest
Communications
SITE LOCATION MAP
RULISON, CO
NTT[RSTRTE 10671,07 70
14
WEST
REGEK SIZE
ACCESS RWb
.7 MILE
SITE 4 -
PREFERRED ROUTE
INTERSTATE HIGHWAY
U. S. HIGHWAY
STATE HIGHWAY
COUNTY ROAD
SECONDARY ROAD
LEGEND
-0
RAILROAD
CITY BOUNDARY
MILITARY BOUNDARY
COUNTY LINE OR
GRANT BOUNDARY
RIVER
GENERAL NOTES
4.1
RAISON EXIT BI
1
534E MONK tN TINS DOCUMENT KIP MEET All NATIgIAL, STATE, AND LOWL
AN150IO110NS, CODES. SPECIFICATIONS, AND REGULATIONS,
2. 0113 FACKJTY W111 BE UMM»RrED. NOVSRIG 0504 0,110 EOUIPIENT AS PART
Of A LOFIC DISTANCE TELEPHONE 315TELl
3. OCCUPANCY 0L153 KATION PER JCC, D-4
A. TYPE OF CCN3TRUC700 PER UBC. 1-4.
S. OR'E3T PERSONNEL RESPONSIBLE FOR THE OPERATION Or AREAS IN 16347134
HATARDOUS MATERIALS ARE STORED, DISPENSED. HANDLED, OR 114(0 BEL
BE TAYNLAR METH INE coENICAL NATURE OF THE MATERIALS AND DE
APPROPRIATE LITICTA11)43 ACTIONS NECESSARY 134 134E EVENT OF FRY. LEAK.
OR SPILL. MD SHALL BE DES1CMA1ED AND TR,UIED TO BE LIMN
PERSONNEL TCA ENE FIRE DEPARTMENT. NESE P31550NS WILL AR1 THE FRE
DEPARTMENT IN PREPLANNING EMERGENCY RESPONSES AND ID5NTlflCATION
Of THE LOCATIONS NOIERE HAEAROOUS MAIERUIS ARE LOCATED AND SHALL
NAME ACCESS TO W11 03Al SAFETY DATA SHEETS AND K KNONIJOGEABLE
N THE SITE EVFROENCT RESPONSE PROCEDURES. (UFC. SEC, limn)
DRAWING INDEX
DESCRIPTION DRAWNC(5) /
SITE LOCATION MAP 0-012
011
MOIL Sett PLAN
MARGO) SITE PLAN 71„003
ELEVATION B FOUNDATION PUN N�COA
SEE GRADING PLAN 0-004A
FAL SITE ELEVATIONS 0--005
ELEC1RIc41 SERVICE 0.006
OROUNOIAG PLAN 0-007
UNDERGROUND CONDUITS 0-005
FENCE DETAILS 0„
COS
NANDAID E DETAILS 0 -DID
PROJECT STATISTICS
312E Or CDMPc N ) a 3,250 Sr
0)050x3
AREA DP WILDING C 310 Sr PROPOSE
PARKING SPACES
7
SITE SPECIFICATION INFORMATION
1. ASSESSOR'S PARCEL l
2. E04440
3. STMT ADDRESS:
4. RAILROAD.
3. NILE POST;
5. RAILROAD VAL MAP /-
7. ROUTE:
& 01(0100041 PROJECT f
ICDC
•11111111 111.••
ARCHITECTS.ENGINEERS, P.C.
12250 East !lift Avenue, Suite 302
Aurora, CO. 80014
303.750.6999 FAX 750.0236
I 1 4
'COP7RIONT 1995 OW757 COMMUNICATIONS COMPANY. ALL RICNTS RESERVED.,
THIS INFORMATION IS SECRET. 00M010E71T1AO. PROPRIETARY INFORMATION. 5(L.AIGBNG 70
0)4(57 COMMUNICATIONS 00150ANY 440 MA7 NOT 05 35m. 0009E0
OR OISOLOSEO 101110-7 111[ 340105 WRITTEN CONSLNT DF OWESI 0011NUN1CA710115 00404151.
Qwest
Communications
RtJLISON, CO REGENERATION SITE
SITE LOCATION MAP
Al* 20866/05008
(4111, RUL3RE01
'Boar=
SCALE
NONE
071
GOtl1AC OP
-n
3/25/00
A4HRHRn 4.
DRAWING NUMBER
Q-OO1
OVERALL SITE PLAN
ACCESS ROAD
—P
-- T
R/W — -
N
EXTEND FENCE 30' WEST
POUR NEW 31'-5' X 10'-11" SLAB
SET NEW 30' BUILDING
130'
OMHEAD POWER
TO SITE. 24 WIN. GROUND
CLEARANNE,
-20•-
OWEST REGEN
f
a 1 (4) - 4' PVC CONDUITS ------1
TRENCHED 0 45" WIN. DEPTH.
NANDNOLE
N
0'
CH 500 COPPER TO
10P OF SITE POLE
DRIVEWAY
-25'
N
N
W
u
OC
a M'
397
n4K
45'
()WEST- - r
HANDHOLE
10 SALT LAKE GET
it
1'.
1.15
NOTES
`GAS UNE
EXISTING OVERHEAD POWER
46' VIII GROUND CLEARANCE
,-UNDERGROUND TELEPHONE
P
-T
TO WIPER
1. THE WDRL RI RIES ODCUMENT MVSr MEET ALL IUTpr1AL VOL, IMO LCCAL
JUNSw,cr10NS, CODES, SP(Oflc INS. AMD RECL'AT10Y5,
OVERALL SITE PLAN LEGEND
BURIED ELEC.
GVHD ELEC.
FENCE LINE
SHRUBS
ROAD
RICHT OF WAY
CENTER LINE
RAILROAD TRACK
PROPOSED CONDUIT,
FIBER CABLE & HANDNOLE
TEIBER CABLE D&DIHANDNpLE
METER/POWER POLE
MAN HOLE
FIRE HYDRANT
EXISTING CONTOURS
PROP. CONTOURS
DRAINAGE SWALE
R R. COMM LINE
WATER LINE
SANITARY SEWER
STORM SEWER
GAS LINE
GROUND MARE & ROD
OTHER
—E
—N ---0F R R N tl • N
c c c
R/w
1
• NEW GRAVEL
DrREC TION OF
SURFACE FLOW
30
30
c
5
SS
0
Gw +
0
[SDC
=RIM M II 1
MI IN ■ 1 1
•■ ■ 1 1
■■111
ARCHITECTS.ENGINEERS, P.C.
12250 East 1611 Avenue, Suite 3C2
Aurora, CO. 80014
303.750.6999 FAX 750.0236
'CDPYRIONT 1945 °WEST COMMUNICATIONS COMPANY. ALL AWAITS RESERVED,
THIS INFORMATION 15 SECRET, CONTIDENTIAL. PROPRIETARY IMFCRMATpR "CLONOINO TO
OWEST COMMUNICATI0A$ COMPANY ANO MAr NOT OE USU. COPIED
OR DISCLOSED w1TNOUT THE PRIOR WRITTEN CONSENT OF DRIEST COMMUNICATIONS COMPANY,'
Qwest
Communications
RULISON, CO REGENERATION SITE
OVERALL SITE PLAN
Atom 20666/0500B
RUL3RE02
RIMMfo
ss�
171a/00
AmIRFAM I
DRAWING NUMBER
VAI
1".5o'
0-002
aom•PnMA
ENLARGED SITE PLAN
Access ROAD
-G
EXs7ING OVERHEAD ROWER -
40' MIH. ROUND CLEARANCE
EXTEND FENCE 30' WEST
POUR NEW 31'-5" X 1D'-11" SLAB
SET NEW 30' BUILDING
30' REIN BUILDING
iFs
•
_ 1
CUMIN) S MU
• ▪ 416104074 OD
1
1013 >r
31' 3' HEW SLAB
=NO ARCA
1275 f
CUSTOM 100 1 461
S'
12.0' 13.0'
74.0' IULDING
130'
14
110 NO
014 Y
20.3'
30.0'11111.24110
OOVIOtOI
AIEA
VIVA,
0.D
32'
/Ib
(4) 7_1. PYc C9N01rr5-' El
WuND • NC YIN, DEPTH
14 commie TO 10' OUTSIDE
MUM
HANDNOLE
a
Cs\s— UNDERGROUND m4
4'
TO SALT IAXE CITY, If;
NOTES
A
LM[
MCU S00 CO1PE0 10 101 01. SITE FOIE
DRIVES/AT
R/W
UNOEROROUNI) TTLEI'NOI[ UK 7
4
TO DOM, CO
1. ENE WORN N TN5 DOCIR NT 'NST 11T All NATIONAL. STATE, AMD LOCAL
JURISDICTIONS, COOTS, SPECIFICATIONS, AND IE51JlATIONS.
4 A R CA''\/
KDC
•
ARCHITECTS.ENGINEERS, P.C.
12250 East !Jiff Avenue, Suite 302
Aurora, CO. 80014
303.750.6999 FAX 750.0236
'CORYRIGNT TRIS OW551 COMMUNICATIONS COURANT. RLL 1ER:M1S RESERVED.
TN15 INFORMATION IS SCCRET, CONFIDENTIAL PROPRKTART INr0RMA110N REIONGMID 70
OWES? COMMUNICATIONS COMPANY AND MAY NOT RE USED, COPIED
0R DISCLOSED WITHOUT THE PRI011 WRITTEN CONSENT OF ;WEST COLINEIJNIcATIONS COMPANY.'
Qwest
Communications
RULISON, CO REGENERATION SITE
ENLARGED SITE PLAN
JOI a 20666/05008
tAo EE@ RLIL2RE03
OF
51.1
cert
She/p0
CALE
1',20'
EMEOME w
IPPRRNTh F
DRAWING NUMBER
Q-003
MUMMN
ELEVATION & FOUNDATION PLAN
SIOL WALL PANEL
$ T/GRA DE "r
STEEL
1 PLATE 3/18' • 9'L ■ 9'W
S
/ P BOLTS, 3-1/2'
UIN. EMBED DEPTH 0 8'-0' 0.C.
(2 EA SIDE & ENO WALL MIN.).
PLATE RED'D 0 SEISMIC ZONES
3 & 4 OR EFFECTIVE WINO SPEEDS
(Y*) D 90 MPH,
FLOOR SLAB
NEOPRENE
BEARING PADS.
/4.16
L4' X 4• x 1/4- x 6-1/2-1.0.
w/(2)5/6"2)SCCz/3I. EMBED) i5-1".
PROVIDE 2 ANGLE CONN. •
EDGE DF FLOOR SLAT ENO 'MALL. FOR 5001■C ZONE
9 1/2- 3 • 4 OR EFFECT. WIND
1/2' JT. TOLERANCE 4' 5- .1 SPEED 90 MPH.
END WALL PANEL
FLOOR SLA
T/SLAB
1 /TAD
SEE DR.. 1/0-004
END WALL PANEL
(EXISTING
EXISTING SHELTER
15'
(TN'
0-004
NEOPRENE RE4ThNO PADS
Y -6 -
SECTION BETWEEN
n EXIST. & PROPOSED SHELTER
0-00 SCALE: NONE
NOTFR.
1. PROVIDE WASHED GRAVEL OSTIA C33 SIZE 56 OR
57 GRADATION 00WN TO FROST LEVEL UNDER SLAB
ON GRADE. (MINIMUM OF 8' BELOW SLAB).
2. TOP OF FOUNDATION ELEVATION TOLERANCE 1/4'
IN
15-0' 8 1/2' MAX OVERALL
SECTION ©' SIDE WALL
STEEL INSERT PLATE
SCALE: NONE
SHIM W/NEOPRENE
BEARING PADS TO
ATTAIN SAME ELEV.
WITHIN 1/16'(±) LOCATE
3'-0. 0.C. (MAX)
24'-0' SHELTER BY OTHERS
EXISTING 24' BUILDING
ON BALLAST FOUNDATIO
END WALL
L4' x �44'662 1
MIX`
Will)
PROVIDE 3 '
END WALL
3! 40R =d,
S►EEDe DO -
t T/GRN:-
V
NEC
I
1.1
2
I 0 04
SEE 1/0-004 FOR
MAX
PLATE INSERT
0 II •
(TOLERANCE - +0', -141
SLAB ON GRADE FOUNDATION PLAN
SCALE: NONE
3. PROM( 12 MIL VAPOR HARRIER WITH TAPED, 6'
LAPPED JOINTS BETWEEN SUBORAOE & SHELTER
SLAB ON GRADE
4. FOUNDATION WIDTH BASED ON 2500 PSF
ALLOWABLE BEARING PRESSURE.
NOTES
T/SL 6)
4-1
VEND
142 i
1' WASHED
cRAvEL
MAIN.)
', "-EDGE of FLOOR SUR
1.-0' 4' 1/2' J7. TOLERANCE
•
_J
- -J
f } SECTION 0) END WALL
0-004 SCALE: NONE
3
-004
i? t1
61
KDC
Q
FOIMOATION GENERAL NOTA
1. 1'010 S4ALL If M ACCORDANCE WITH 004E (0005, 545ET7 114LUD016 ATO PUSS
0114EHNISE IMO, 11E LATEST REVISION D< ACI 318, 'BAl1OI4G 000E REOUIENENTS FOR
REINFORCED WNC8EIE'. MIOCEDURES 151 THE FRO104110N OF E4C0YATIONT, COSTIAG
CONSTRJc1)0N AND v7UGES SKAA RC ESTMIJSNEy. P008 TO FO41CATION NST4UATNNL
2. CONCRETE 441[1005 SNAIL CONFOH 10 THE APPROPRIATE 3101E Rf41RE4 401 FOR
°POSED SIIUCTIRAL COKIE1E.
PROPORTIONS OF
3. ON
METH ED AND CONCRETE
6[511,1 N 01NANE MERU0 TOR MISTAKE TO LOC 4.
ANTICIPATED AGGRO:STYE AC740NS, THE 44040I7T RECAR ROIENTS OF ACI 311 CRA MER
4 SNAIL K 043131ED LASED ON DE 19(411ONS °104100 Al 110 SIZE, Al A
MIWNUAL CONCRETE 04410E DEKLOP A NBiBIN C0W4E5TYE 51401614 Or 3000 PP
R4 24 DAYS,
4. MUNNN SME Of CONCRETE AGGREGATE SNDA NOT EMCEED 1 1(10 Sal MULE FOR
445740 41101 *DIM UDE11E0; 0 ONE -ANTED CLEAR DISTANCE MIND OR WEE&
RDNFORCRC,
5. REINFORCEMENT SHALL 110 DOMED AND 00IRORM TO ME IEOU EMENTS OF ASV
0643 GRADE 10 UNLESS OTHERWISE NOTED.
1 wELCINO IS ARON/IRED ON 1(0(ORCMG Ma AND DAIEOAEHIS.
7. MINMJM CONCRETE 0011[71 FOR R (04(00(47 1140 IE 3 11145 IRRESS 01401405E
NOTED.
STEEL REINFORCEMENT
100' HOCKED BARS
1. CONCRETE COYEI ROY TOP Cr FOL4401444 TO MS Of 00410041 RETTOTICCHEXT SMALL
H01 EXCEED 9 INCHES MOR IE LESS WA 3 8(4(3.
4. ALL NORI20N1A1 BARS IM WALLS 4 REAM EDG05 SNAIL RE IEMT N CORNERS M SUCH A
WAX TIDO pUIPT IS PRONIDED THROWN THE ANT. SEPARATE CODER RAU
OF THE SAIEPi0 4240 PAGING AS THE HORIZONTAL REMFORCNG 101 *0 SUBSTIIIRE0
FOR THE RO0 P0117014 0f DIE (O4114)2IS IAR5,
I . FOUI10A1pM DESIGN ASSUMES STMEIVP. L 61010111 TO RE COMPACTED N 1 14404
11AX1NUN UTEIS TO 134 0 RA AN DRY 0ENS11T AT 01DNN MOSNRE CONTENT
N ACCORDANCE WIN 45154 0191. A0MIOIWIT, S0RUCi1MAL Pam 4NS1 INK
A 14941111014 [WAVIER LAIR WIGHT 0f 10 POLNOS PER (UNC TOOT.
11. ANEWLIIEMCED *1114 NE PROPOSED TOLAVA11IC41 TYPE. 104054)01(41 [141 M
ACCOROUICE WRH GENERALLY ACCEPTED RLSTNL00044 PRA(1603.
IL (04MDATg4 DESIGN 45540[5 REL4 1410455 42 9111 11 PDU2RIED TO VETOFT 11NT
007407100901* MA1ERULS, INSTALLATION 1(741505 4140 MONO ISESEN PARAMETERS
ARE ACCEPIAOLI RASED ON CON01T1OHS M HG AT THE S46 7.
13• 00000 MATinu15 SHILL K REMOY50 FROM BORO1 Of 040404704 PRIOR TO (0003011
PLACEMENT
14 CONCRETE POLL 1E PLACED N A HAMIER 11141 WILL ARUM SEGREGATION OF 054(8010
MATERIALS, (1ITRANIN 0f WATER OR SOL ANO OTHER OCCIRANCES 011C14 DECR0ISE THE
STRENGTH 0 DORANUIT OF 19014001IO31.
15, CONCRETE SNEEL K 710000 404467 sant-mot 1404614L *00 FORMS ARE 400053ART.
THEY SWILL K RE0DY[0 PNOR 10 PLACING STRUCTURAL MALL AGAINST FOUNOATro4,
TR. 10000/004 0415104 ASSUMES 004nNUGH5 PLACENDO WHOM CONstROCTION ANTS.
17, OMR CRITERIA:
ROOF INE LOAD N aw ►5F
(1004 LMC LOAD N 200 PSI
BAR
RADIUS OF
BEND
EXTENSION
3
4
1 1/2'
2'
5
fi
2 1/2'
2 1/2'
2 1/2•
2 1/2'
3'
3'
7
a
3 1/2'
3 I/2'
4•
4'
EXTENSION
STANDARD 90' HDOX
BAR
H00K
RA01 US
OF BEND
1�3
6'
1 1/2'
#4
8'
2'
/5
10'
2 1/2'
#0
12'
3'
117
14'
3 I/2'
18
16'
4'
STANDARD BAR LAP SPUCE
CLR - INDICATES AMOUNT
��y-�LIr
STANDARD�I�I OF CLEAR COVER
" db - INDICATES BAR Ell
BAR
43
#4
/5
/6
07
08
CLRsdb
db<CLR.2db
la'
2 6'
40'
57.
77'
101
18'
24'
30•
40'
54'
71'
2oo.CLR
18'
24'
30' 36'
42'
51'
STANDARD HIRE LAP SPLICE
2' MIN.
1 `
�6'MIN'
MINIMUM EMBEDMENT FOR STANDARD 90' HOOK
1.41N11431.4 CONCRETE COVER
BAR DEPTH
04
9'
/5
16
07
1 1'
13•
15' OPENING
MIMI ■ 1 I
■■
1 1 1
■■II1
5
0
4A1f
5, 1. TOLERANCE IN SLAB UNEVENNESS IS 1/2' OVERALL
AND I 4• PER 40'-D'. PROVIDE SHIMS ATS 0' 0.C. MAX
PLUS GINEERS, P.C. S
I. TOP OF CONCRETE S1A9 SHALL BE I/O' BELOW EXISTING TOP 12250 RIX ISM ANNA*, Sub' 302
OF BALLAST FOUNDAT10H, Moak CO. 80614
303.756.6498 FAX 750.0236
MIN
DEPTH
PANEL
EDGE
CONCRETE £xPOSED TO EARTH OR wEATHER:
WALL PANELS 3/4•
OTHERS 1/2
CONCRETE NOT EXPOSED TO EARTH OR WEATHER.
SLABS, WALLS do JOISTS
BEAMS
3/4'
STIRRUPS
I/2'
"COP/WSW 1145 0WEST COAMUMIC&TIO43 COWANY. ALL Bort RE9Em10.
THF5 44(O1111T444 R SECRET. COMfCENTIAL, PROPRIETARY NWORN4Tp/1 BELONGING TO
COYEST 10MM4N11CA71ONS COMPANY ANO MAT NOT BE USED. COPED
OI INSCLO300 WITHOUT THE PRiCe 0111101 CONSENT OF °WEST COMMVN4CAPI0113 COMPAMT."
Qwest
Communications
RULISON, CO
REGEN SITE
SLAB ON GRADE ELEVATION &
FOUNDATION PLAN
41I3< 20666/05008
(42 rot RUL3RE04
HOdlm FIT
33J
RAa
840844 a
OCHE
NONE
3/21/00
OPOICI N
DRAWING NUMBER
Q-004
111mwA
4-2-17
AusOPHew
SITE GRADING PLAN
T
T 30.
LI
I
k
ORALIIL.,.E.N.T1
MEW !EKE
WOE or GRAVEL
TO EXTEND 2 IEY01/0
PERIMETER Gr C WN ANN ►ENCS (TYr.)
T'—.1
x
EXISTING BUILDINGS
2 0'
NOTE: FILL REQUIREMENT
THE RULISON SATE REQUIRES 12'
FILL ABOVE EXISTING GRADE.
SEE NOTES 5 k 6.
REQUIRED TESTING PROCEDURES
5LIMADE; THE SUBGRADE MATERIAL SHALL BE COMPACTED USING
ACCEPTABLE COMPACTION MEMOS. THE IN PLACE DENSITY DP THE
Si/SCRAM SHALL BE TESTED USING ASTIR METHOD D-696.
(SEE NOTE 5 FOR ACCEPTABLE FILL t SEE NOTE 2 FOR
COMPACTION THE IN PLACE WW1 Of THE SELECT FILL SHALL BE
TESTED USING AST* METHOD 0-640.
IF ASTIR C-33. SIZE 56 OR 57 GRADATION 5 USED AS A SELECT TILL.
THE FILL SHALL BE COMPACTED IN t' WAX. LAYERS COMPACTED TO 90%
OF RELATIVE OMR (AST* -04253) AT DPRIOUIR MOISTURE CONTENT.
AOORIONALLY SELECT FRI *UST WYE A MINIMUM COMPACTED UNIT WEICHT OF
100 POUNDS PER CUBIC FOOT.
STRUL7UBAL FILL t TDP COLIC&
THE FILL SHALL BE COMPACTED IN B' VAX. LAYERS COMPACTED 70 90%
OF MAINE DENSITY (AST* -04253) AT OPRIBUY MOISTURE CONTENT.
ADDITIONALLY STRUCTURAL FILL MUST HAVE A MINIMA COMPACTED UNIT
WEIGHT OF 100 POUNDS PER CUBIC FOOT.
I' HIGH CAWMI UNN IMAGE' t GAM
GRADING PLAN
AGGREGATE TOP COURSE.•
SITE 56 OR ST WA)DVL
4
d
•
A
♦ d r
CONCRETE IS
e e
• r
4
r d
J
SELECT FILL J
STRUCTURAL FILL
SIZE 56 OR 57
CEPA VARIES B' 1101IV011
TO FROST DEPTH
SECTION A -A
SCALE: NONE
NOTES
100( of CRAVCL
10 EXTEND 2 WOAD ENTIRE
PERIMETER Or OWN LINK PENCE
PROPOSED SLAB
CENO FENCE 30' WEST
BEND FILL MATERIAL 30' WEST
'OUR NEW 31'-5" X 10'-11" SLAB
�I
KW__ 30' BUILDING
4
4
AB
•
✓ 4
•
4
4
A
•
.0
ffijk
A. COCK:
1. TME MORN M THIS DOCIMEMT MUST MEET ALL RATIONAL. STATE. ANO LOLL
ALNMSDICH0115. COOLS. SPECIFICATIONS. AND REGULATIONS.
1. EARTNRORN:
I. AREA 10 Ill shall ,E STRIPPED Of AIL ORGANIC SON TARES ANO *MAINE
MATERIAL 05005E Of ERaSS TOPSOIL AHO UXSU7AILE LATERAL M RPPRP110 ATLAS.
2 SELECT' 7514 MATERML MALL 1E PLACED M MORON B' IAl5 MO CONPAC100 I9TR
APPROPRIATE EOUP0ENT t0 951 STANDARD PROCTOR WI NDT 2% OF 0090106
MOISTURE CONTENT KEW PROCEEDNG 10 INE REIT 5557 OF MATERIAL
5. PLACEMENT Of PIU. MATERNA ON FROZEN SUOCRADE OR PLAGE6(97 Of ROUX
TILL MAIERML rs MOT ACCEPT TLE.
4. At rFPrrrr star/All MATERIALS SIMV BE NO4-OGu1IC ANO Da 0f IARC0 COPS
OF COKE LAMA TITAN 2' 012[
S. ACCEPTABLE SELECT FILL TAPES AS DEFINED 1Y THE ARMED Sao CIUSS1TGig0 SWOT
10 1E 75(0 AS RI MATERIAL SHALL RICLUOE 1147 OF INC TOU.OMMC: GW. EP
16. 50, 00, SM. CL 0R A37M C-33 ANE 56 DR 57 WRRUL ALL 14LIEMALS 9921
BE FINE OF ANT WASTE I9000RS, 0E(A5, YECEFAT10 OR OWER MANIC M4IERUI
OR PETROLEUM 690011CT5. STATE HICMWA7 USE MATERIAL R ACCEPTAILE ASA FEL
6. IRUCCCP7AILE SELECT F11 MA1LAIA13 SMALL MOM ANT OF INC FO1101014O CC,
SC, Ml, MM. CN, 01. OM, ANA Pi.
7. STRUCTURAL 051J10P COURSE SNAIL 1f ASTM C-53 0501 50 0R 5T.
C. CNYRIORMEMTLL PROTECTION:
I. CONTRACTOR $Mall INSTALL AND MYNTAM 10000010177 THE COURSE Of CDIRtMKT10I6.
BEST MANAGEMENT 0900140(0 70 PRfYE111 MOON. 5 0001TA1tlN, 001111101 OP
WATERS OF 1NE LNTREO STATES, AND DAMAGE TO ADJACENT 65011 11 1(5UUTT%
IRON CCNSIRVC11O44 AC1M105, CONTRACTOR IS SOLE11 9(0001LIIE EOR TN(
COSTS AND (RE071444 OF REMEDML ACTIONS 70 WAN 00 COR5ECT CNSYMOMMEMTAL
IMPACTS.
I(DC
ARCHITECTS.ENCINEERS, P.C.
12250 East Riff Avenue, Suite 302
Auroro, CO. 80014
303.750.6999 FAX 750.0236
*C0PYM01rt 1590 O0E57 COMMUNICATIONS COM6ANT. ALL RIGHTS RESERVED.
ANIS IMf000A110N 15 SECRET, C014110ENTIAL, PROPRIETARY 1M0ORMA1ION 1ELONORFO TO
00X57 CONMVNICA1ION5 COMPANY AND WAY NOT 10 USED. COPIED
DR DISCLOSED WITHOU1 TMC PRIOR WRITTEN CONSENT OP OWEST COMMUNICATIONS COMPAN7.'
Qwest
Communications
RULISON, CO REGENERATION SITE
SITE GRADING PLAN
Aa riCt 20666/05008
040 LE RUL3RE4A
9CME
NONE
MASES Er
551
3/00/00
DRAWNG NUMBER
Q -004A
FULL SITE ELEVATIONS
1'
0
2!•
FRONT ELEVATION WITH FENCE REMOVED
30. pjl1.11104
3i` S' rCY ;W
'EXTEND FENCE 30' WEST
POUR NEW 31'-5" X 10'-11" SLAB
SET NEW 30' BUILDING
FRONT ELEVATION
HVAC
kv4C
HVAC
BACK ELEVATION WITH FENCE REMOVED
f !
12 r{
RIGHT ELEVATION
RIGHT ELEVATION WITH FENCE REMOVED
2 TTTU orf
rHSH CRAPE
T1 I
FINISH GRADE
'---2F-11 27
ELEVATION WITH FENCE REMOVED,/
LEFT ELEVATION
E — 12 1
1.
NOTES
NC MAK 91 T145 D0C1JM€J17 MUSE NEE! All NADDNU, STAR. AND LOCAL
NRSDICDONS, COOLS, 5PECNICA71ONS, AND REC11.190N5.
KDC
- ■w
••MN I
ARCHITECTS.ENGINEERS, P.C.
12250 Eost IGff Avenue, Suite 302
Auroro, CO. 80014
303.750.6999 FAX 750.0236
'COPTRICHT 1995 OW(ST COMMUNICATIONS COMPANT. ALL RIGHT! RESEM/EO.
THIO INFORMATION IS $ECR T, COMr10ENTRAL, PROPRIETARY INFORMATION 9E1.0NOINO 10
OWESI COWUUNICA110N5 COMPANY AND MAT NOT SE USED, COPIED
DR DISCLOSED W4THOUT INC PRIOR WRITTEN CONSENT OF CWEST COMMUNICA71ONS COMPANY.'
�west
Communications
RULISON, CO REGENERATION SITE
FULL SITE ELEVATIONS
Jaa 20566/05008
Ib rIF: RLJL3RE05
REPRO n
SS.I
3/7e/DC
SUL
NONE
DRAWING NUMBER
Q--005
ELECTRICAL SERVICE
Y1T00 4ASE
PU3ED RLSCONNEET
(3EE 4403(0 3 f 4)
)CEIS2Yf P-1000 Hi DALLY
(SEE DETAIL 4)
T1N61ED O4AOE
2"3 ' PRESSURE TREATED W000 (T1P)
-1 11=111=1 1=111:
1";_,111111111,T=7.
}
41.
O
0
x'-0" YIN.
OVERHEAD
SERVICE ENTRANCE EQUIPMENT
AND MOUNTING BOARD
DETAIL
3041: MONS
0
ONE (1) r PVC WPM PULL ROPE 100
;URGE P14O1EC11004 Pula
LER(RT ACCVv44 ACV SERIES
Y00EL # A0Y11031114RE
TWO (2) 3' PVC (0044 441144
311RE( (3) 3/0 11000 AMC.
ONE (1) 03 Twerp 0004$40.
OME (1) 1' SCM. R0 PVC WITH
TWO (2) P4 032 ALAPAI C 1LE.
7EL03004( SE41EE (CABLE BY
0144042).
5 To GR0UMOING L000
VA' x R' LDMO, COPPER COATED STEEL
000400 P00.
METER MSC 4340 —
fUSED D1500MRE03
CARIXET
000 (1) 12 00L10 004410 WXI0
10 0304((' GROUND SYSTEM
GROUND 400.
1/0'11 1/3' MT *ill. µLV. (TY0 0► 3)
PLACED AT 3000440 rim" 01010 TOP R ROTOY
3/11'0 LAG BOLT, DALY. (M)
1/x'xl 1/4' X.M. ROU. 0440.
VXISTRVT 0
-1040 "Ma
041, GAO,. MP)
0)
4'
1411E33414E TREATED -�
U043TRUT 0-1000 16. QALY., 3/4.4 LAD 00473
(TMP.) (TMP, Of 3)
MOUNTING BOARD
DETAIL O
SCALE: NONE
NOTES
OR OvEMIAD)
WEAR
SASE
400A
SP
SURGE►A4[L OI !AMON
f �
—TWO (2) r Pvt. 3- 3/o 1WWW
0 ONE (1) /3 1311111 CND (3EE NOTE 1).
400 ANA PANEL 40ARO WITH A
400 4140 44J0 CIRCUIT DREAMER I
I L-42 STRANDED
B ARE A(0011.4(4T
SMELTER
SERVICE ENTRANCE EQUIPMENJ
_ELECTRICAL CONNECTIONS
120J240V-1 PHASE -400 AMPS
DETAIL l l
SCALE: NONE l I
10 MANN CONNECTION
BOY 44 0N1.0440
ONE (1) f4 soul) COPPER WIRE
TO MIMEO GROUND
SRSTE4 GROUND ROD
REFERENCE DRAWING
INSTALLED UNDER ORIGINAL CONTRACT
L 7HE MOB( N TNS 00000£141 NF31 4EET 411 HAWK. RAE. AND LOCAL
JU4001CIIO15. MMS, SPECIFICA0Wk5, AND R£GJUTIDNS.
I. CONIRA0710 6 RESPONSIBLE 027 OBTA1HNOf.t4PPI*G 101 CORRECT COIXII SQE Y.
TYPE, AHO MARL GADS( 5PEC410Al1CNS FROM 114 LAX PORTA CO4PAN1.
3 MNDNACIO0 6 IIESIDNSMIL EGR 01114NNG 114 CO4EC1 /NAOMI TAJO
CURPEN? VALUES MON 111E LOCAL POWER COMPAN} 10 CONE441 111[ARIPIEG
RAI1O OF CONTRACTOR SUPPLIED (OINP4047.
♦ CONTIAC£OR R RESFO*L5191E EOR OBTUNING FROM THE LOCAL NM MAW
THE 1041101 5PEC41CAT4US EON fit MEI RUSE/CANNEL AND *04001 0600X1407
PANEL THE MMTRACTCR 5110001(0 SEANCE [MANS RATED FUSED DISC4I4CI
10 1E INA NEW 307 040101 IE 4113 AC RCM DEME* NNW MALAWI
MIT C01RE41 1404 LOCAL P04217 COMPANI. IT 6 ALSO THE COMEMACTOf5
RESPONSIBILITY TO MASH 411 01(144(4, 004(1114E4T THAI C0060445 TO RHE
W.A. POWER COMPANY 1140 GOVERNING AOKI A£OUBE4EN15.
S. 1300 0gull MRL AMIDE N4W 04211440 AC POPS& INE CONTRACTOR TO INSTALL
PfAC, HARDWARE. A44 HIRE 10 3EE1 MYTH TIE PAIR M4P4r1 At TOP OF POLE.
IME C0M11AC1O1 01 RESPONSRII 701 0R1y4OG THE COMIC1 POLE. 044011441 ANO
MOTOR STS7E4 33104 71104 74E POWLA 1001401.
1. ALL PVC 0000.1110 TO 4E SCHLOUII E0. All METAL (0X21(13 TO RC 504134.1 40.
STANDARD BURIAL DEPTHS
1
PUCE WAINIM0 TAPE
2' BELOW FINISH GRADE
ONLY MIN 711(4 OP11C
CONDUIT
FINISHED GRADE
WAR)IN0 TAP
ELECT4ICAl ANO
►1L*AA44 004(011
Fv[L LINES
2'-1- WN. OR
4' BELOW
NROST LINE 4'-O•
040U140I40 WNW
4 B PV0C00-0 RON34A
D► - 000)
A
CONDUIT INDEX
0) FIBER ENTRANCE, (4) 4• CONDUITS.
TWO (2) 3" PVC EACH WITH
THREE (3) 3/0 THwN AND
ONE (1) 13 THWN GROUND.
® ONE 1 1" SCH. BO PVC WITH
Two 2 PR 122 ALARM CABLE.
O E FOR
TELEPHONE" SERVICE PVC T H PULL OP{CABLE 8YOT ERS).
(g ONE (1) 1"C. PVC. 12 BCW.
• ONE (1) 1"C. PVC, /A BCW
!CDC
MEN R E
NII• ■ 1
■SII
■■ I I
ARCHITECTS.ENGINEERS, P.C.
12250 ECEI 101E Avenue. Site 302
AUror0, CO. 60014
30.3.750.6999 FAX 750.0236
"COPTRIOHT 1945 OWEST COM4UMICAIIONS 1041}44. All 410X13 4ESE4v00.
THIS IMFOPMAIio0 IS SECRET. CONFlDD4TIM, PR0PR41ARY I*004441N04 BELONGING 10
0wEST COU4UNICAIIOMS CO40ANT AND 114V 401 K USED. COPIED
OR 04504.0010 WITHOUT THE PRIOR WRlTTE4 CONSENT OF 20(ST 004140410414015 COMPANY."
Qwest
Communications
RULISON, CO
REGENERATION SITE
ELECTRICAL SERVICE
400 AMPS
20666/05008
RI1 RUL3RE06
VAC
NONE
Elvin w
044401 w
WOWS w
104 rile/00
ORA4INC CYBER
Q-006
WIMP
GROUNDING PLAN
pts•
X
r 1s � s•' -
w L • w
..
401010011
ANG
GATE HINGE POST
GROUNDINQ
DETAIL
sme, 4GYL
0
DETAIL
SCAM 1104111
4' Ars
DETAIL
SCALY, YPLL
Pot 1tl
111 •
El Y1Wfl1 6
rota post
CARL 70411CADWELD
ar
Ko-rc-rx
411444 144
VIf
DETAIL
Sum Nott
0
GOND YEA
MI
DETAIL
401.111 4444E
Exp
EX 1
ADE
ADE
POI
5kl
uo
VP -
PIACI MOANING Tar[
t' KLGW ANISH r='
0141,11 WITH nom v'
COMMIT
- rsi i4.`.
NOTES
:D FENCE 30 WEST
GROUND RING 31'-5" WEST
(2) NEW GROUND RODS
(4) NEW PIGTAILS
NEW 31'-5" X 10'-11" SLAB
BUILDING
440 Dour
wet TN
Rae
F 445400 GRADE
WAR4140 TA
010444 CO11WIT
FUEL LARS
S'-0'
2'-r 4144. OR
6' UMW
FROST ERNE A'-0'
GROUNDING RING
FRR
A'ENC0►nC504 -445050,.05 44SP- P00)
STANDARD BURIAL DEPTHS
DETAIL
0cA4DNo"(
DETAIL 4
scALT:
I. THE WONT IN IRS DOCULEN1 TART 4051 ALL NATIONLL. PATE, ANO LOCAL
ARf50Ic110NS. CODES. SPECN20M1041S. AND KORATIONS.
2. CONTRACTOR STALL FEST CROOK, RESIS0ANC5 SOIN APPROPRIATE 000O$0 RES13T04C(
TESTER PER LEE STANDARD 4O 441 150140)4 604. MI[R( TESTS STO4 RESISTANCE TO
GROUND 5 OWN 3 DINS, CONTRACTOR SHALL 1001 Af0ROPR015 ACTION TO REDUCE
IK5151AIICE 10 3 INS OR LESS, 00 I SFALL2IG AND *01DIN0 ADD'71041L MOUND 44044(0)
A5 4004211KD. CONIRA0304 6141. 152241 RRESt 10 4E40N5144A1E (04PLA NO( NOT
FORWARD A WRITTEN, CERTIFIED REPORT TO MS CONSTRUCTION 4.1NAGEl.
3, ALL GROUND SYSTEM C04NECTI0NS MALL PE MADE OF 144E C5OTNER*IC (CADWE0D 00
MAL) PROCESS, EECEPI ME CONNECTIONS 10 DIE SURGE minx ►ANSI. 4(1 METER PANEL.
4. BARE COPPER WIRE 54041 RE USW FOR Al 6ROLM0 0ON00010(5, 571 A5 SNT144 IN
RAN. CONDUCTOR SWOL 111 RUN 6'-l'4I4. (6' 44ELON FROST UNE) I(UAW GRADE.
S. ALL BUM BARE COPPER 400410 WIRE MALL IE SLYER STRAND. 13/0. SOFT MM.
R. CONTRACTOR 544411 CAOWELD 22' PIGTAILS 70 6R011110 R00. 020104.5 ARE 10 EE MITRED
UP TO APPROAN00TELY 1' FR014 PROPOSED 440511444 P2.1004E41. 04014LS MOULD IE
COILED L2' M OU4ETER AND COIL TURFED UNDER 3' OF GRAVEL PLACE REAMED
ELECTRICAL TA►E ON EACI1 CO( TO PAEAN] UIWM240. E0CN COL SHALL iL PROPERLY
LDCATW USING ORANGE PATINE0 STAFFS.
LEGEND
GROUND MRE 44 R00. SU A5 SN0*44
KDC
Allomppu
NUM - ,
�_ ■ 1 1
•M■ I I
IIIIIII, 1
ARCHITECTS.ENCINEERS, P.C.
12250 East Hilt Avenue, Suite 302
Aurora, CO. 80014
303.750.6999 FAX 750.0236
"COPYRI014T 1695 061E51 00111)4400110145 CON►ANY. ALL RIGHTS RESERVED.
TINS 1410OR4AY100 i5 SECRET. 0014010EHTIAL. 100041(14141 I161514ATI04 SEL0140140 TO
0WE51 CO44u41CAIIONS COWPAN7 AND 407 NOT SE 0110. 000100
04 1155105En W1T110111 THE 19204 4R7TEN CONSENT OF 0WE5T CO44UNICAT41N5 CO4PAICT."
Qwest
Communications
RULISON, CO REGENERATION SITE
GROUNDING PLAN
* 20666/05008
RUt3RE07
SONE
NONE
IMES 4,
SL 7/10/40
DRAWING NUMBER
Q-007
9noomNN.
UNDERGROUND CONDUITS
SEL DUAL 2
ILV
TTI
II1
111
R/R TRACK
roti .} 4' SMOTE EO FVC cONDUftS
TOE 1D' OUISRIE 7N[ FENCE. CAPPED, LITH
ONE 3/E' POLY FULL ROPE IN EACH.
Ts'
GENERATOR
AREA
11
III
1I
FI
11
it
1
II
II
1I
11
II
I
11
11
A11
11
1
30.0' RUNG
°WEST AREA
214 Sr
..../.1/
Ff7T
$� .....::.../ SEE 0(11L 1
A "'D Mai .01.
GENERATOR A
7.'•
AES'
I- 11' ---. I»- 1.
Lws QWEST BUILDING
r -I r r
J L J L. J L
II• —
1.1
L
r
14.W r,
CUSTOMER I ARG
105 S<
1
i
i
O 0 1 x__11
T
—11•
24'
71'
DETAIL
SCALL: NOAH:
J
TT
CUSTOMER 2 AREA
1275 SF
X41 4•
27 AL^!
THE FLOC
FINISHED
4' SEH. 40 CRYC--L\
T' j --SHELTER
-1 ,FIHKNE4_ELOOR{{
1 1
4' (PNC - REOEN. YS► - HOP) -
2.0 RADWS ELIOW
TYPICAL OF ALL
(4) 4• CONDUITS
FIBER
NOTES
EXTEND FENCE 30' WEST
POUR NEW 31'-5" X 10'—I I" SLAB
SET NEW 301 BUILDING
TO EXTEND
SMELTER WALL FROM
SECURED, AND
,14 RUSHING
+--- 11.7
4' (PVC — REOEN,
ISP — PDP)
CONDUIT ENTRANCE
ROFILE "A"
`_-•! F: 140111
I. IME MORE w MS DOCuwEvl MOST SUIT 11. HAMI0R4. 31ATL AND LOCI.
J1313D T10NS, CODES, SPICRICAfl:RS. AI'A REGVunORS,
2. AL PVC CONDUITS TO RE SCREDOI E0, 4. 1414 COIOOWII EO iE SLNEp41 10.
3. ALL CONOINT I180WS 10 BE 14' RAWS.
1. 15P • BLACK STEEL PIPE
5. MC . GALYANRED RICID MRAL CONDUIT
G. SEE ALSO OWG. 0-006 FOR ADCf110NI. UNDERGROJIID COIDNTS.
STANDARD BURIAL DEPTHS
'RIMMED GRADE
PLACE WARMING TAPE
2' BELOW *INISM GRADE
ONLT WITH FIBER 01-00
c0NDUR
2' 0'
WARMING TA
ELECTRICAL ARD
ALARM CON0DR
FUEL 1.11410
GR0UN01N0 RENO
2'-11' MRN. OR
t 14104
Fx001 UNE
1'-0"
A' (PVC - REGEN, 13P - 141)
010010 OPTIC C0NOu1f
4.4
CONDUIT INDEX
I F)BER ENTRANCE. (4) 4' CONDUITS.
{) TWO (2) 3" PVC EACH WITH
THREE (3) 3/0 THWN AND
ONE (1) 03 TXWN GROUND.
Q ONE (1) 1' SCH. 80 PVC WITH
TWO (2) PR /22 ALARM CABLE.
© ONE (1) 1" PVC WITH PULL ROPE FOR
TELEPHONE SERVICE (CAKE BY OTHERS).
® ONE (1) I -C. PVC, 02 BCW.
D ONE (1) 1"C. PVC, 104 BCW
KDC
—
ARCHITECTS.ENGINEERS, P.C.
12250 East Iliff Avenue, Suite 302
Aurora, CO. 80014
303.750.6999 FAX 750.0236
'COPYRIGHT FOPS ...TWEET COMMUNICATIONS COMPANY. ALL RG IRS RESERVED.
THIS INFORMATION IS SECRET. CONFIDENTIAL 100011ETART INFORMATION 1EL0N01N0 TO
0wE0T COMMUNICATIONS COMPANY AND NAY MOT 10 USED. COPIED
OR DISCLOSED WITHOUT TIE RA104 WRITTEN CONSENT 0E OWEST COMMUNCRTION5 COMPANY.'
Qwest
Communications
RULISON, CO REGENERATION SITE
UNDERGROUND CONDUITS
Xi IQ 20666/05008
EA/ r1L RUL3RE08
NONE
LLMIYI In
ss
111./go
AMRPER I1
DRAWING NUVBER
Q-008
Rt]i�MMOIA
FENCE DETAIL
FRONT VIEW
BARBED WIRE (3 STRANDS)
11
I.
0111,
1.11..
■ X ■ K
K ■ X R 1
1
ms. Iwon:
•
X■ X X
{R R
R Y K
Y R N Y
R ■ X K`
LR ■ II R
(,
_
■
,
R ■ -14 X
•
R ■ i Y
`� UNE rOST��
!llPrr R K '_�_ _ -3333 - ll
••••
41
WELDED GATE PANEL
(2'-0" WIDE)
2'-0- WN.
12' LIN.
GALY. CAST IROM DR
ALULRIRIM GATE DETENE
SET IN CONCRETE FOUNDATION
DETENT DETAIL
SCALE: NONE
CAR OR CORNER POST
SCO. 40 WLY.
4' OD.
11.0
40 CORNER & GATE POST FOOTING DETAIL
SCALE: NONE
END VIEW
BRAC( RAIL
rr_
-.a—CORNER Fe_
WELDED LATE PANEL
(6'-O- WIDE - 1TP. DF 2)
LRI( POST
SCH. 40 GALE.
2375• D.D.
12.1
OLINE POST FOOTING DETAIL
SCALE: NONE
L-SNAPED WARDS USFD
WHEN CATE POST IS 001 AT
A CORNER.
1. THE WORK IN THIS DO(04331 MU53 MEET All NEC, NAIKNLAL mem, AND LO(AL
JURI50 00740, CODES, SPEGFICAIIDNS, ANO RECUL4rod.
2. CONCRETE FOOTINGS SET AT A MANNAN DEPOT OF 36'. OR 1' BELOW FROST
DEPTH, 44404(KFR 35 53•EARR.
3. 4554(IM GATE SHALE BE 0009U 1LLF, SWMG IRff OU1wARD. 41114 STOP POSTS/
LATCHES, DaIENSIONS AS SAMNA
4. PERSONNEL GATE SHALL IE SINCIE ILO, SWAG IRO' OUFIFARO, WITH STOP POSTS/
LATCHES, 0 ISIONS0 AS SH0904,
S. LATCHES SHALL RE room 151(a notion 3M TO Paw 3ERAl1014 now VOTER
WE Of GATE, NM PADLOCK E5E INTEGRAL 50 LATCH.
i. THE GAT( DEFEAT ID BE SR IN CONCRETE. THIS CONCRETE NUS( DE 12'
N OUNETEA AND 54' DEEP,
7. UN( POSTS 4053 BE PLACED COAL DISTANCE BETWEEN CORNER AND GAR
POSTS. BUT 14 NO CASE MENDS THAM 10' APART.
B. FULL PERKIER OF 118: FENCE MUST NAVE 3 STRANDS OF BARBED
INF BARRED WIRE SUPPORTS WST R( ANGLED ONWARD AT A IS DEGREE
ANGLE, EACEPT AT THE GAZE POSTS FOOL THE BAWD WRIE S1JPP5NIR
ALIT IIE 3035L.5 *05i ALSO BE EIIT45504455 a BARBED WIFE( ON TOP a THE GATE
9. FENCE FAME WST BE ATTACHED 10 TENSION 314 51111 HOG MKS
(+ERY 111' OR LESS.
10, 11( WIRES NAT ATTACH 1(330 FABRIC TO ALL ARDEN. AND 4OR120iTLL
041YAN3E5 PIPE, NOT 10 EXCEED IF'.
11. STRETCHER 103 4405T BE USED AT All CORNERS An CAFE POSTS
12, HANDCAR TENSKM WIRE 45 (ll CORNER i GATE POSTS USING 'TENDON 14.101
FASTEN TENSION WIRE 10 ALA UNE POSTS R71N 113 GA 571El 153 WE. FASTEN
FENCE FABRIC 10 101544 WIRE EVERY 11' OR IES5.
13. CONTRACTOR TO SET GATEKEEPER P0515 RI CONCRETE AND TECATE NEM EACH
GATE LEAF EDGE 0340511E 14I1155S.
EXTEND FENCE 30WEST
POUR NEW 31'-5" X 10' -It" SLAB
SET NEW 30' BUILDING
DOME CM
1.60' 0. D. CALA.
SCT. 40 PIPE
NOON/ NXINIACK
SEE DETAN 10 LER
14. T1 a 114E 517E WORK CONOLACFORS' 5011 RESP5NSIBIUTA TO
CHO53 REFERENCE E0UPNEIFT/G9IERATOR SHELTER DRA4405
WITH O4EST SITE 40114 0RA411105, ANY OISCRERANCT BETWEEN
TMT DRA4ING5 WW1 BE ADDRESSED TO THE SKS CONSTAR/COON
MANAGER.
E) GATE KEEPU
SCALL: NONE
SEE ROTE 13
FRONT VIEW
TOP VIEW
OGATE POST DETAIL
SCALE: NONE
IS
EXTEND FENCE 30' WEST
POUR NEW 31'-5" X 10'—It" SLAB
ET NEW 30' BUILDING
DOFF CAP
1.660' 0. D. CALV.
SCK. 40 PIPE
DUCRLRL 1101D9ACK
SEE DETAIL 10 LEFT
FOUNDATION
Wo
TWO REQUIRED PER VEHICLE GATE
OGATE KEEPER (DUCKBILL)
SCALE: NONE
SEE NOTE 13
FRONT VIEW
TOP VIEW
OGATE POST DETAIL
SCATS: NONE
NOTES
1. THE WORK IN 11410 DOCUMENT MUST HEFT ALL 1400, 1µ110Nµ, STATE. µ@ LOCAL
JURSUICTIO6, CODES. SPECIFICATIONS, ANO REGULATIONS.
ICONCRETE F00RN05 SEE Al A 4INIMUN DEPTH OF 31', DR r !FELON( FROST
DE►TN. WMICNMR IS GREATER,
3. VENKULAR GATE SHALL BE DOUBLE TEO, 510116 114 OUTWi o, wind me 90512/
LATCHES, DWEN510N5 AS SNDII4
4. PERSONNEL SATE SHALL RE SINGLE tar. 09,40 ISO OUrWAFD, 11111 STOP POSTS/
LATCHES. 041(454(16 AS SHOW
5. LATCHES SHALL PE roma TYPE OR PLCNGER BAR TO 9(RIIET OPERATION TROY ENNER
SICE OF CATE, 44509 PADLOCK EYE R1IEGRA4 20 LATCH.
6. INC GTE [CENT TO OE 5E1 IN CONCRETE. TIPS CONCRETE OUST BE 13'
R1 DIAMETER AND I4' DEEP.
7. UNE POSTS MUST BE PLACED EQUAL INSTANCE 9(14[EN CORNER AND GTE
P0515, BU1 M NO CASE FURTHER THAN 10' APART.
a. FUu PERIMETER OF 1140 PENCE MUST NAVE 3 STRANDS OF BARBED WIRE.
THE BARBED WIRE SUPPORT5 MUST PE ANG400 DUIWARO ATA /5 DECREE
AMA. EXCEPT AT TNF GTE POSTS 111E0E THE RAILED 4421E SUPPORTS
MUST aE VERTICAL THE 4 STRANDS 0r DARNED Mx ON TOR or TN[ GATE
PANELS TMST ALSO BE REMO/
9. FID/00 FA9FeC IA15T LE ATTACHED TO 1E10611STIR[ lax NOG ROCS
CAERY 19' 09 1(550
10. TIE NINES MUST ATTACH FENCE rank To ALL VERTICAL AND H0RII011TAE
GAL4ANa(0 PIPE, NOT TO (FEUD 111 ,
11. STRETCHER vats MUST BE USED AT ALL CONNERS AND GATE POSTS.
12. 1EIo11NATE TENSION WIRE Al ALL CORKS 4 GTE POSTS 05140 TENSION LANDS.
FASTEN TENSION w]RE 10 ALL 1414E POSTS MN 112 GL 3111 TIE WIRE. FASTEN
FENCE FABRIC TO TEN54014 WIRE EMERY 41' 0R LESS.
13. CO4f104(10t TO SET G1091(91R POSTS 914 CONCRETE 4110 LOCATE NEAR TACH
GTE LEAF EDGE OPPOSITE HINGES.
14. N 5 THE 550 WORK CONTRACTORS' SOLE RESPONSIBILITY TD
MSS 91100910E EOUIPNENT/OENERATON SMELTER 04041NG5
KEN 01YE5T SITE WORK MINKS. ANY OISCRVANCY RRWEEN
THE ROCKS SMALL RE ADDRESSED TO INC SACS CONSTRUCTION
9ANAGER.
!(DC
ARCHITECTS.ENGINEERS, P.C.
12250 Lost Illfi Avenue, Suiie 302
Aurora, CO. 80014
303.750.6999 FAX 750.0236
'COPYRIGHT 1995 04151 C05141WICATIO15 004945. ALL RIGHTS RESERVED.
THIS M0ORNAT10N IS SECRET, CONFIDENTIAL. PROFANE -TART 11105RM41104 11(4140440 r0
OWES/
OR D LOSLO N'wrsoLs THE HPRIO4 WRITTEN CONSENT US O. COPND
QUEST GO.wUNICwTp4S COMPANY.'
Qwest
Communications
RULISON, CO
REGENERATION SITE
FENCE DETAILS
A10 Na 20666/05008
CAo 0140 RL1L312EO9
ti7P11 s
dm¢.
04, 36/00
01.110.1131
DRAWING NUMBER
IDAE
NOME
0-009
5' X 2 1/2' X 2 1/2' HANDHOLE DETAIL
SEE DETAIL "D"
ENS MARKER ONE
SIDE ONLY
LOCK DOWN DEVICE
& DIRT SHIELD
(SEE DETAIL "A")
SKID RESISTANT
PATTERN
LIFTING SLOT
FIBERGLASS VAULT WITH
REINFORCED POLYMER
MORTAR FRAME.
SEE DETAIL "E"
UNISTRUT CHANNEL
UPPORT BEAMS
(3) REQUIRED
4 1/2" BELL ENDS w/
PVC PLUG. BELL END TO
ACCOMODATE SCH.40 PVC (2x)
30"
REINFORCED POLYMER
MORTOR COVER AND FRAME.
TWO PIECE COVER RATED
AT 20,000 LB. LOADING
SEE DETAIL
HANDHOLE
SUITABLE DIRT BACKFILL
EXISTING GRADE
IB"
2" KNOCKOUT (2X)
2 1/2" KNOCKOUT (2X)
3" REINF. RIBS
DRAIN HOLES
(ONE IN EACH CORNER) —..\\
25 1/4'
EMS MARKER ONE
SIDE ONLY
FIBERGLASS VALI+
RPM COVER
RPM FRAME
FIBERGLASS VAI
1"
ir—FC
SUITABLE BACKFILL PLAN VAULT BOT
CONDUIT
4 3/4g I o 0 0° 0 ..0. 00
/ 0 .0 -046
♦ e
12"•1
TYPICAL HANDHOLE PROFILE
EXCAVATION PIT
CRUSHED STONE
SECTION B -B
DETAIL "E"
(TYPICAL. AT 6 PLACES)
SIA. HOLE USED
GROUND ROD
NEOPRENE COVER
SUPPORT BEAM
1/2" STAINLESS STEEL
ACME THO. BOLT A:
CAPTURE NUT W/ STAINLESS
END CAP. (SELF CLEANING)
DETAIL "C"
-.1'1
kl
s "OI
ANCH
6
2'i'
(T
G+2@01LTSANCHORSE MUST
999999EEEEEE TY!
CONSTRUCTIO,
1. VOID IN EXCAVATED AREAS TO BE
BACKFILLED WITH SELECT MATERIAL.
2. BOTTOM OF EXCAVATED PIT TO BE
BACKFILLED WITH 12" OF CRUSHED
STONE (3/4" GRADE)
REFERENCE DRAY
INSTALLED UNDE:
P1000 UNISTRUT
NOTES
1, THE NOW IM THIS Daimon Mus? MEET All MA1b U nA1T ANI) LOCAL
APHSINC1gNS, CODS. s►ECIf1CAnoMs. Ills 1t UnoNS.
NOTES
SECTION B -B
T J
DETAIL IC
(TYPICAL AT 6 PLACES)
_1A. HOLE USED
GROUND ROD
}M
1
6.•
NEOPRENE COVER
SUPPORT BEAM
1/2- STAINLESS STEEL
ACME THO. BOLT &
CAPTURE NUT W/ STAINLESS
END CAP. (SELF CLEANING)
DETAIL "C"
TL
L
2'W'
DETAIL "DI
(AT CENTER)
P1000 UNISTRUT
COVER HOLD DOWN
BRACKET HOT DIP
GALVANIZED (2)
REQUIRED
2. 9'
ANCHOR (TYP.)T
2'—r (TMP.)
LINEAR DISTANCE BETWEEN
1..NG2B01LT ANCHORS MUST
FIE TYPICAL SIDEWALL VIEW
CONSTRUCTION NOTES
1. VOID IN EXCAVATED AREAS TO BE
BACKFILLED WITH SELECT MATERIAL.
2. BOTTOM OF EXCAVATED PIT TO 8E
BACKFILLED STONE (3/4.
IITH 12. OF CRUSHED
GRADE)
3. SHORING WILL BE REQUIRED
4. ALL HANDHOLES SHALL BE PLACED
BELLOW EXISTING GRADE.
REFERENCE DRAWING
INSTALLED UNDER ORIGINAL CONTRACT
1. ENE MIRK IN NS COMMENT YOST MEET ALL NATTON.11, STATE, AND LOCAL
AIR,salcnoNs. CITES. YECInUnONs, ANO R['X,IATWNS.
IDC
ARCHITECTS.ENGINEERS, P.C.
72250 East Iliff Avenue, Suite 302
Aurora, CO. 80014
303.750.6999 FAX 750.0236
.COPYRIGHT 1995 °WEST CONNUMCATIONS COMPANY. ALl RIGMTS RESERKO.
TMS INFORMATION IS SECRET. CONrIOENTIAL. PROPRIETARY IIFORNAfoM BELONGING TO
OWEST CONNU MCATIONS COMPANY ANO MAY NOT BE USED. COPIED
OR DISCLOSE° WTIMOUT TME PRIOR WRITTEN CONSENT OF °WEST COWUMIQAEIONS CONPAlry,'
Qwest
Communications
RULJSON, CO
REGENERATION SITE
HANDHOLE DETAIL
wt 20666/05008
7A6hE RUL3RE10
PON, w
WALT
S3J
i%zI/Do
ae:Fl n
Mb 4 11
DRAWING NUMBER
Q-010
NONE
IONNIMo
ICIGNImm
1
1
1
1
1
1
1
1
1
1
1
1
1
1
PROJECT STATEMENT
Analyze and prepare calculations suitable for submission to building officials of pre-
fabrecated pre -cast concrete equipment shelters as manufactured by UNR-Rohn.
Design shall include details, notes, specifications, and drawings for complete review.
This analysis is for buildings in widths of 8'-4", 10'-4", 12'-0" and lengths up to 36'-4".
Compliance with BOCA, SSBC, and UBC is required. Design shall be comprehensive to
cover placement of shelters in all 50 states.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
PROJECT DESIGN
TABLE OF CONTENTS
Page
1. Design Criteria 1
2. Roof Design 4
3. Walls 9
4. Floor 13
5. Lateral 17
6. Foundations 24
7. Connections 48
8. Shelter Transport 67
9. Fire Rating 77
10. Thermal Efficiency 78
11. Wall Openings 79
APPENDIX "A"
BULLET RESISTANCE TEST
APPENDIX "B"
DRAWINGS
A1.0 Shelter Schedule
A2.0 Exterior Shelter Elevations
A3.0 Foundation Plans
A3.1 Foundation Details
A4.0 Floor Panel Plan & End Wall Pan&
A5.0 Side Wall & Roof Panel
A6.0 Shelter Section & Details
A7.0 Miscellaneous Details
A8.0 Miscellaneous Details
A9.0 Interior Finishes & Misc. Details
A10.0 General Specifications
E1.0 Electrical Layout
E2.0 Electrical Specifications
I CERTIFY THAT THE ATTACHED DRAWINGS AND ANALYSIS WERE PREPA
MY SUPERVISION AND UNDER THE LAWS OF THIS STATE, OF ICH l AM
REGISTERED PROFESSIONAL ENGINEER.
CERTIFIED BY:
DATE:
UNDER
MAR O
1. DESIGN CRITERIA
a. Concret
(shelter) Sand lightweight concrete mix obtaining a 4000 psi minimum
compressive strength in 28 days.
(foundation) Normal weight concrete mix obtaining a 3000 psi minimum
compressive strength in 28 days.
b. Concrete Reinforcement
ASTM A615 grade 60 (fy = 60 ksi)
ASTM A185 smooth welded wire fabric
c. Connections
Plates, bars, etc...
Welding electrodes
Headed studs
d. Loads
: ASTM A36 (Fy = 36 ksi)
: E70XX
: ASTM A108 (F, = 60 ksi)
Floor Live Load
R21 140 psf (min) to 200 psf (max)
Wind
Check for worst code based on 120 mph (EXP. C) I = 1.0
BOQA
P = P„IKGCP
Pv = 36.9 Pst
I = 1.0
Exposure coeff. (K) = 0.80
Gust response factor (G) = 1.32
Wall pressure coeef. (CP) = 0.8 + 0.5 = 1.3
Roof pressure coeef (CP) = -0.7
P = 36.9 (1.0)0.8 (1.32) 1.3 = 51Ps'
Pu = 36.9 (1.0)0.8 (1.32)-0.7 = 27Psf
1
1. DESIGN CRITERIA (cont'd)
d. Loads (cont'd)
Wind (cont'd)
SBC
Velocity pressure q
= 0.00256V2(H/33)21
q = 0.00256(120)2(15/33)21= 29.4ps'
Use factor = 1.0
GCp Coeff = 1.2 (lateral) P = 29.4(1.0)(1.2) = 35
GCp Coeff = 1.4 (uplift) P„ = 29.4(1.0)(1.4) = 41
1
1
1
1
1
UK I
Basic wind speed 120 MPH
C@ = 1.06 Cq = 1.3 (lateral)
Cq = -0.7 (uplift)
I = 1.0
Q, = 36.9"/
Lateral P = C,Cq Q, I = 1.06(1.3)36.9(1.0) = 510$'
Uplift P, = 1.06(-.07)36.9(1.) = 27pst
Seismic
BOCA & SBS
V = Cs W Cs = 2.5 Aa
R
A, = 0.4 R = 4.5
C, = 2.5(9.4) = 0.222
4.5
V = 0.222 W
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1. DESIGN CRITERIA (cont'd}
d. Loads (cont'd)
Seismic (cont'd)
UBC
V = 2.5CaI W
R I = 1.0
N$ = 1.5 C. = 0.36(1.5) = 0.54
Na = 1.1 Ca = 0.44(1.1) = 0.48
R = 4.5
V = 2.5(0.54)1,0 W = 0.30W
4.5
3
2. ROOF
a. Code Requirements
Assumptions: f'c = 4000 psi fy = 60,000 psi
4" roof: 4" © edge and 5.5" @ ridge
Design roof for snow Toad and wind uplift.
Try to use only 4" thick roof panels.
per ACI 318- Pm;, (temperature and shrinkage) = 0.0018
1"
1�4"
4' =rn
A$= 4.5'(12) .0018 = 0.0972 1N2/FT #3#4002112
(6).37
- Concrete cover = 2" at middle
3/4" at end
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2. ROOF (confd)
b. Loads
Dead Load
4" concrete (4.751 12)118 = 46.7 Psf
roofing = 0.5"f
ceiling = 1.0 Ps1
miscellanous = 1.5 PI
49.7 Psr X1.4=70 Pg
5
2. ROOF (cont'd)
c. Member Design
Shear
d=4-1.75=2.25
b = 12"
4" cpv, = 0.85(2) SQRT(4000)(12)2.25 = 2903# x 0.85 = 246fr
W„ = 2468 = 448 Psi
11/2
W,=(448-70)11.7 =222Ps'
say okay for 50 °g' snow
6
2. ROOF (cont'd)
c. Member Design (cont'd)
Flexure
f, = 4000 Psi fy = 60
ksi
- Try #4 at maximum spacing
Maximum spacing = 3 x slab thickness < 18"
4"spacing =3x4.5=13.5,.12"
4" Roof
d=4314"-314-314- 114=3.0"
#4@12"
p=0.213.0x12=.00556
"M„ = 0.9(60).00556(12)(3.0)2 (1 - 8.85 x .00556) = 30.8k'r
Wu = (49.7 x 1.4 + 50 x 1.7) = 155°s1
M„= 155x(11.3)218=29.7k"<cpM„
Check for Wind Uplift
Wu=49.7x0.9+1.3(-41)=-8.6psf
#4112 d=.75x2+5116= 1.81"
p=._=.00921
12 x 1.81
cpM, = .9(60).00921(12)(1.81)2 (1 - 8.85 x .00921) = 18.0k•r
M„ = 0.0086(11.33)2/8 = 0.138"' x 12 = 1.66k" okay
2. ROOF (QQnt'd).
c. Member Design (cont'd1
Ilelleslimi
fr = 7.5 sqrt (4000) = 474 psi x 0.85 = 403 Psi
E = 42.3 sqrt (4000) = 2675"'
max span = 11.33'
defl = 5w14
384(E 1)
(4") Ig = (4.75)312112 = 107.2'?
MCr = 403(107.2) = 18.19k"
2.375
1
1
1
1
1
1
Deflections
4" slab (assume 52 Psf live load for 2 Ps' of water ponding) I
reinf. Ma DL Ma (LL=52 Psf) a irr '
IN k"!
#4©12 9.52 9.96 0.88 12.47
reinf. ,(MQr/Ma)3 Je LL def(pL defl LL defl LL 1
© cr. above cr.
#4@12 0.81 89.6 .064 .058 .078
Total DL I.t. mult. = 2 (5 year or more)
60 psf LL I.t. mult. = 1 (3 months)
* look at long term deflection of LL = 52 Psf
defl =.064x(2+1)+(.058+.078)(1+1)=.46"=I/ 296
initial slope of roof = 114" per foot
Therefore assume a 1 112" rise in the roof, so maximum ponding
is 0.46 - 1.5 = 0.264"
Therefore no ponding
:.50 Ps' < 52 Psf
okay
8
1
1
1
1
1
1
1
1
1
3. WALLS
Wind Pressure Resistance
Two criteria: 1. max Toad - 120 mph wind Exp. C 1= 1.0
2. minimum reinf to be used is 4x4-W4.0xW4.0 WWF
4"
WWF
Wind Pressure
P = 51 °sf
Mu=51(10)2/8x1.3x12=9.9k"r
V„=51(10/2)x1.3=0.33"
Shear
cpVe = .85(2) SQRT(4000)(12)(2) = 2580# x .85 = 2193*
VVc > vu
* THEREFORE SHEAR JS OKAY *
Deflections
By comparison to roof and the temporary nature of the load
lay okay.
Axial and Flexure
w/o ASI Load
4x4xW4.0xW4.0 WWF (As = 0.12 in2m)
p = _,12, _ .005
2(12)
cpMc = .9(60).005(12)(2)2 (1 - 8.85 x .005) = 12.39"
Mu=9.9k"r
* THERFORE FLEXURE IS OKAY *
9
3. WALLS (cont'd)
Wind Pressure Resistance (cont'd1
W/Axial Load
Pa = 49.7 x 12' 12 + 4/12(118)(10) = 495*r
P, =
50x1212=300#!
P,f = 1212x27 Ps' = 162'x'
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3. WALLS (cont'd)
Wind Pressure Resistance (cont'd)
w/ Axial Load (cont'd1
Combinations
1. p+S
w=o
P = 495 (1.4) + 300(1.7) = 1203#1
2. D+S+W/2(ExpD)
w = 51 Ps' /2x.75x1.7=3r
P = 495 x 1.4 = 693
300 x 1.7 = 510 } 1065 x .75 = 799rer
-162/2x1.7 = -138
3. p + W
w = 51 x 1.3 = 66.3*r
P = 495 x .9 = 446 } 235#r
-162x1.3=-211
4. D+S/2+W
w = 51x.75x1.7=65#r
p = 495 x 1.4 = 693
300/2 x 1.7 = 255 } 673 x .75 = 5058r
-162 x 1.7 = -275
11
3. WALLS (cont'd)
Wind Pressure Resistance (cont'd)
w/Axial Load (cont'd)
Re: "Design of Concrete Structures" by Winter/Nilson
(9T' edition) page 314
Pd = cpPn = cp.85 fc' bd [-pu + 1 - g + SQRT(1 - g )2 + 2 e'pu]
d d d
u = 60,0001.85(4000) = 17.65
d = 2" fc=b= 12" d = 2" p=.87
Pd = 71.0 [-17.65p + 1 - + SQRT[(1 - g')2 + 17.65 pe']]
2 2
Comb. Mik?)
1 0
E(k) e
1.2 ----
p
= .55(1.7)4(48)
[1 - .88)
= 8.87' Qk
2 5.0 .80 6.25 .005 2.6 gk
3 9.9 .24 41.3 .005 .30 gji
4 2.1 ,51 19A .005 S2fi 91
Summary
4" concrete wall reinforced with 4x4 - W4.0 x W4.0 WWF is okay.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
12 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4. FLOOR
a. LOADS
LL = 140 PS'TO 200 P"
DL = >
RIBS@24"O.C.
REBAR
STRUCT - 34 Psf
VINYL TILE - 1 Psf
MISC -
36 PS`
WT = 2(24) x 118 = 39.3
144
6(4) x118 = 19.7
144
12)6(5) x 118 x 1.67 = 7.5
144 11 67 = 34 Ps'
4. FLOOR (cont'd)
b. RIB DESIGN
FLANGE', AS = 2(12).0018 = 0.043 in 2"`-
Use W2,$ x W2.9-6x6 WWF.
RIB: Since Rib is Tess than 4" wide - design as beam
Shear
re: ACI 11.5.5.1 total depth < 10",
or 2 1/2(2) = 5" or, 112x3=1 1/2"
cpVc = 0.85(2)(4000)1' (4)(8-1.25) = 2903' x 0.85
= 2467*
Vu = W1(11 -1.46)12-6.75/12)=2467#
W„ = 586# 12'-0 Rib Spacing = 293 ps1
LL = (293 - 36 x 1.4)11.7 = 140 vst (No stirrups)
4. FLOOR (cont'd)
b. lib design (cont'd1
if LL _200PSF
W„=(52 x 1.4 + 200 x 1.7)2 = 826#r
Vu = 826 ((11 - 1.46)12 - 6.75) = 3475# > 2467#
12
Provide Shear Reinf.
Min. Ay - 50 bw S / fy => A„ / S = 50 x 4160000 =.00333
S,,,,4x=d/2=6.75/2=3.375#
S = 3" A„=.01 int/3"
V8=(3894-24671= 1975# =8„fd
.85 x .85 S
AIS = 1.975 = .00488 #3 @ 3" Reinf.
60(6.75)
DIST. 3894# - 826(x) = 2467#
x=1.73x12=20.7"
LL = 200 Ps' For 21" out use #3 t 3"
or W2.5 x W2.5 - 3x3 WWF
LL = < 140 Psf no shear reinforcing
SPAN = 11.0' LL (PSF) W(KI,) {K") A.cn 2) BOTT.
,0 .58 105 .00241 0.39 #6
200 /7 140 .0032 0.51 #7
P=
m
m
.9(60)24(6.75)2(1 - 8.85p) 59,049(1 - 8.85p)
#4 REQ'D FOR GRAVITY IN-SITU
(PSF)
BAR ALLOW LL
#6 140
#7 200
15
4. FLOOR (cont'd)
b. lib design (cont'd)
CONCENTRATED LOADS
2000 asf Over 6.25'1 Area per ASCE 7-99
2.5' x 2.5'
If concentrated Toad has 2-112' x 2-1/2'
dimension then Toad will sit on a rib
Shear is Q
Flexure
M -> 34(1.4)(11)2 x 12 = 8639#"
8
Per PCI Handbook Pg 4-57 a Concentrated Load Has a
Effective Width Of 0.5L. If L=11'-0", Effective Width
=5'-6". Therefore 2 Joists Are Effective.
2000(1.7)11 x 12 = 56,100#
4 x 2 joist
Mu = 64,739r < cpMN = 10511/4..Q1
5. LATERAL
a. LOADS - Worst Case - Long, High & Narrow
WIND
Base Shear = 51(36.3)(11.1) = 20.51`
17
BTM OF SHELTER
T/FND WALL LINE
GRADE LINE
5. LATERAL (contiid)
a. Loads (cont'd)
SEISMIQ
OCA
Structure Wt:
Roof: (4.75112)(12 * 36.3)(118) = 20346#
Side Wall: (4112)(11.1 * 35.3)(118)2 = 30824#
End Wall: (4/12)(11.1 * 12)(118)2 = 10478
Floor:
(2112)118(12)2 = 472
(4x61144)10.67x 118
2(5112)(1.67) x 118
2(9x6)1144 x 2 x 118
42.6[12x(36.3-1.67)]
1.67x12x118
= 210
= 164
=
1023# / 2x12 = 42.6Ps'
= 17703
2365
81,716#
Wall Cover 2.5 psf x 11.1(12 + 36.3)2 = 2,681#
Floor 1.0 psf 12(36.3) = 436
Roof 1.0 psf 12(36.3)
436
85,269#
Snow 50.0 psf 12(36.3) = 21.780
107,049#
Floor live Toad: 0.25 (200)(10.67)(35.0) = 18673#
Base Shear:
see design criteria
V = 0.30 W
V = 0.30 W
V = 0.30 (107,049 + 18673) = 37.7k
W = 0.3(20346 + 30824 + 10478 + 2681 + 436 + 21780) = 19366#
2 2 2
W = = 19366 = 5301
36.3 36.3
18
5. LATERAL (cont'd)
b. ROOF DIAPHRAGM
36.3' 1
Flexure
Mu = 0.534(36.3)2 x 1.43 = 126k'
8
V„ = 0.534(36.3.) x 1.43 = 13.9k
2
p = 126 x 12 = 1 = .00077
0.9(60)4.0(96)2 (1-8.85p) 1316(1-8.85p)
AS = 0.00077(413) 4 (96) = 0.39 int (1) #§ Around Perimeter
Shear
cpVV = 0.85 SQRT(4,000)(96)4 x .85 = 17.5k > Vu =13.9k
No Shear Reinf
Read
19
5. LATERAL (cont'd)
c. END WALL DESIGN
VU = 13.9 KIPS
U
12`--0"
FLEXURE
Mu = 13.9X 11.1 = 154 K`
P = 154 X 12
.9(60)4(140)2 (1-8.85 P)
= 1
2290(1-8.85 P)
P = .00044 X 4/3 = .00058
As = .00058(140)4 = 0.322 IN
•
• .
SHEAR
0 Vc
1#5 © PERIMETER
0.850 (4)96 X .85
= 25.6 KIPS > Vu OK
For distribution to floor slab, assume side wall takes the moment. Assume the
shear load is resisted by floor plates.
Wall plates: V, = (154)1(11' x 5 PL) = 2.8k
Floor plates: V, = 13.915 PL = 2.8k
20
5. LATERAL. (corit'd)
c. End Wall (cont'd)
Check wall for combined wind. (2 way plate for out -of -plane loads)
51 x 0.7+0.25
1.3
= 37.3 PSF
beff = 4t + 5" (plate width)
a/b = 1.5 WORST B = .485
r = .485(37.3)(8)2/(.33)2 = 10.63 KSF
Mu = 10.63(1.3)(.332/6) = 0.251 K'/'x12 = 3.0 K"/'
Pu = 14 K
P = .24 = .01 m = .60 = 17.64
12 2) .85 4)
e' = 0.16"
cPPN = (1)0.55 fc Ag [1 - (iSla2l
32h
cPPN = 132 x (1 - 0.57)
cWPN = 55.6K> P„ = 14.0k QAC
Ref. "Design of Concrete Structure" by Winter & Nelson
Pu = 18.5k Mu = 3.0k"'
e' = 0.16" CPP„ = 121k QK
As,* = 0.002A9 = .002(4 x 12) = 0.096" 2"` okay
Use 4 x 4 - W4 x W4 WWF
Check side wall for it's contribution
Embeds = 3.7k
Compression Side: R„ = 14.0k -- Assume it gets distributed for
width = to height.
w = 11.1'
minimum of 3 embed plates
.. Rek+aea = ± 14.0/5 = ± 2.8k
21
5. LATERAL (cont'd)
c. End Wall (cont'd)
CHECK SIDE WALL CONTRIBUTION
Pp = 495v x 0.9 = 466*"
Pup =27(12)/2=162" x1.3 = 210"
Comp. Side
P = 446x4+2800 -210x4 = 3744"
Tension Side
P„ = (446 - 210)4 - 2800 = -1856"
Wu = (51)1.3 = 66 psf
Mu = 6.6(121 112)218 = 839'1)(12 = 10.1"
P = 10.1 = 1 = .00405
0.9(60)(2)2(12)(1-8.85p) 256(1-6.85p)
A, _ .00405(2)12 = 0.097in2
App„, = 0.12(WWF) okay
A8 = 1.86 = .01
.9(60)(4)
AsTOT = 0.107in2 < Asprov dislY
Check for P -D Effects
q P, _> E0 = 2675ks` Ig = 64'"4”` Bd = 0 1= 68480
Pc = Tr2(6848Q) = 46.2k Sb = 1 = 1.09
1212 (1 - 2,8 )
.7(46.2)
Ma = 58.7 (121/12)2/8 fr = 7.5 SQRT(4000) = 474 pg'
Ma = 746"
Mcr = 474(4)3 = 15.171"
2 12
Ma < Mcr = 1264"
.•. cracking doesn't occur
Defl. = (0.746) 10.082(180) = 0.08"
2675 (64)
22
1
5. LATERAL (cont'd)
c. End Wall (cont'd)
Check Side Wall Contribution (cont'd)
P -Delta Effect:
Mu = 20.4 + 0.08 (2.8)1.09 = 20.6'`"
Pu = 2.8k e'=7.36"
pP„ = 0.87(.85)4(21)2[-.01(17.64)+1-7.3612+SQRT {(1-7.36,2)2
+2(7.36)(.01)17,64}]
2
= 6.93K > Pu = 2.8K gE
Side Wall is Okay as Designed
Eor Component Wind Pressure
4. SIDE WALL
Okay for lateral force by comparison to end wall and a small area to pick up wind
Toad.
23
6. FOUNDATIONS
a. DETERMINE LOAD COMBINATIONS
FOR CONCRETE DESIGN
Per ACI 318
U=1.4D+1.7L
U = 0.75 (1.4D+1.7L+1.7W) } with wind
U= 0.9 D+ 1.3W
U = 0.75 (1.4D+1.7L+1.87E) } with seismic
U = 0.9D + 1.43E
b. DETERMINE LOAD COMBINATIONS
FQR BUILDINGS &OTHER STRUCTURES
DEAD PLUS FLOOR LIVE PLUS ROOF LIVE (OR SNOW)
DEAD PLUS FLOOR LIVE PLUS WIND (OR SEISMIC)
1.4
DEAD PLUS FLOOR LIVE PLUS WIND PLUS 1/2 SNOW
DEAD PLUS FLOOR LIVE PLUS SNOW PLUS 1/2 WIND
DEAD PLUS FLOOR LIVE PLUS SNOW PLUS SEISMIC *
1.4
* Snow Toads 30psf or Tess are not req'd. to be combined with seismic.
Tmax = .625
Ab = 8X8 = 64
p = -1
Pmin = 1.0
SEISMIC = pEh + E, Where p = 1.0, E, = 0
Per BOCA
DEAD PLUS FLOOR LIVE PLUS ROOF LIVE (OR SNOW)
DEAD PLUS WIND (OR SEISMIC)
DEAD PLUS FLOOR LIVE PLUS ROOF LIVE (OR SNOW) PLUS WIND (OR
SEISMIC)
Seismic = + 1.0 Qe ± 0.5 A„ D
PER SBC
DEAD PLUS FLOOR LIVE PLUS ROOF LIVE (OR SNOW)
DEAD PLUS FLOOR LIVE PLUS WIND (OR SEISMIC)
DEAD PLUS FLOOR LIVE PLUS WIND + 1/2 SNOW
DEAD PLUS FLOOR LIVE PLUS 1/2 WIND + SNOW
DEAD PLUS FLOOR LIVE PLUS SNOW + SEISMIC
UBC Seismic of 0.3W divided by 1.4 is approximately equal to SBC & BOCA
Seismic of 0.22W
Therefore use UBC Toad combination for seismic Toads.
24
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6. FOUNDATIONS (cont'd)
c. DETERMINE SNOW LOADS FOR FLAT ROOF
PER UBC
(A) Pf = C, I P2 (Contiguous U.S.)
Ce=0.9 Dense Forest
1 =1.10 All others
assume smallest PQ = 5P"
PrMIN
• PfMIN
DESION
= 1.2(1.10)5 P"
= 6.Ops' < 20P' min. roof live load
= 20p5'
= 50psf
25
6. FOUNDATIONS (cont'd)
d. Toad distribution
DETERMINE DISTRIBUTION OF LOADS TO FOUNDATION
DEAD LOAD (SELF WT)
�vj
(1) Roof (4.75"/12")W(118#/CF) = 23.35W
2
(2) Roof (4.75"/12")W(118#ICF) = 7.78W
6
(3) Walls (4112)H (118#/CF) = 39.3H
(4) (from floor design) 42.6PSF (uL) = 21.3W
2
FOR ANY SHELTER WIDTH WL
FTG.(A) WDL = 23.35W + 21.3W + 39.3H
= 44.65"2 W + 39.3H <-- Unfactored
FTG.(B) WDL = 7.78W + 39.3H <-- Unfactpred
LIVE_.OAD (SNOW)
FTG.(A) WSL = W PSL <-- Unfactored
2
FTG.(B) WSL = W PSL <-- Unfactored
6
LIVE LOAD (INTERIOR FLRI
FTG.(A) WLL = W PLL <-- Unfactored
2
FTG.(B) WLL = 9
DETERMINE DEAD LOAD FOR EACH WIDTH
8'-4" W = 44.65(8.33') + 39.3H
= 371.9*" + 39.3H
19'-4" W = 461.2" + 39.3H
12'-9" W = 536" + 39.3H
26
6. FQUNDATIONS (cont'd)
d. toad distribution (cont'd)
DETERMJI LIVE LOAD FOR EACH WIDTH
UNIFORM LIVE LOAD 50 psf
8'-4" WLL
10'-4" WLL
12'-0"
WLL
= 8.33'(50#'x)
2
= 208.25#"
= 258.25#m
= 300.0#"
Multiply WLL by 2.8 for 140PSF LIVE LOAD
WLL by 4.0 for 200PSF LIVE LOAD
DETERMINE DEAD LOAD FOR EACH HEIGHT
9'-5"
10'-5"
11'-1"
W = 44.65W + 39.3 (9.42')
= 44.65W + 370.2"
W = 44.65W + 409.5*"
W = 44.65W + 435.6'"
6. FOUNDATIONS (pont'd)
e. DETERMINE SHELTER DEAD LOAD DISTRIBUTED TO FTG "A"
FOR EACH WIDTH & HT.
Width 8'-4"
HT 9-'5"
10'-5"
11'-1"
Width 10'-4"
HT 9'-5"
10'-5"
11-1"
Width 12'-0"
HT 9'-5"
10'-5"
11'-1"
Wei. = 371.9*" + 370.2"
Wog = 371.9u" + 409.5"
WDL = 371.9" + 435.6"
WDL = 461.2" + 370.2"
WDL = 461.2*" + 409.5"
WDL = 461.2" + 435.6"
= 742.1 "n`
= 780.5"t"
= 807.5'"
= 831.4u"
= 870.7"`"'
= 896.8"
WDL = 536" + 370.2u" = 906.2*"
WDL = 536" + 409.5u" = 945.5"
WDL = 536" + 435.6" = 971.6u"
TABLE 1
28
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
B. FOUNDATIONS (can#'d)
f. CREATE A_MATRIXFOR FLOOR LL FOR ALL WIDTHS AND HEIGHTS
140PSf 200 psf
WIDTH/HEIGHT LIVE LOAD LIVE LOAD
W 12'-0" 840 pif 1200 pif
W 10'-4" 723.1 pif 1033 pif
W 8'-4" 583.1 pif 833 pif
TABLE 2
g. DETERMINE SNOW LOAD ON FTG "A" FOR EACH WIDTH
WSJ = 50W
2
Ef Wsl(W=8.33'1 WSL(W=10.33) WSL(W=12'-)")
50 208.3pif 258.3pIf 300.0pIf
TABLES
29
6. FOUNDATIONS (cont'd)
h. wind distribution
DISTRIBUTION OF LOADS TO FOOTING
WIND LOAD - COUPLE METHOD (FOR 11'-1"HT)
= 5.55 IND (L OR W)
FTG(A)
FTG(B)
WwIND = (11.1' / 2)
= 5.55 PwIND
WWIND = (11.172 + 0.572)
= 5.80 PWIND
5.5 WIND
5.80
PWIND
0
Wwi = [5.55Pw,ND L(13.6') + 5.80 Pwind L(2.5')]1(WxL)
= Pw,ND(89.98)/W
Ww� = [5.55 PwIND W(13.6') + 5.80 PWIND W(2.5')]/(WxL)
Pw1ND(89.98)/L
30
(L OR W)
(L OR W)
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6. FOUNDTIONS (cont'd)
h. wind distribution (cont'd)
SECTION MODULUS METHOD
q = �.
S
Sw = LL+1)(W+1)3-(L-1)(W-1)3
6(W+1)
SL = (L+1)3(W+1)-(L-1)3(W-1)
6(L+1)
WIND LOAD ON LONG SIDE
■
WIND
q = M = PWIND(L)78.88 FT2
Sw [(L.+1)(W+1)3-(L-1)(W�-1)31
6(W+1)
WIND LOAD ON SHORT SIDE
w+s
[ASSUME BOX ACTS
AS SHORT COLUMN]
M = (P"ND(L)11.61)(13.612)
= PWIND(078.88 FT2
M = (PwIND(W)11.6)(13.6')
2
pWEND
0
q -' M = fEwEND(W)78.88 T2
SL 10 -1 -1)3N+1) -(1--1)3(W-1)]
6(L+1)
31
= PWND(W)78.88 ft2
6. FOUNDATJONS (cont'd1
h. wind distribution (cont'd)
COMPARING METHODS
FOR FTG (A) Assume 10' width x 30' length
Assume 100 PSF wind pressure
Assume 11.1' height
COUPLE METHOD:
Ww. = 100PSF(89.98) = 899.80
10.0'
SECTION MODULUS METHOD:
WDA =
100PSF(3Q0')78.88 FT2
3_ • • Iu 3
6(11.0')
776.3 psf
(FOR 1'-0" FTG WIDTH)
THEREFORE, USE COUPLE METHOD TO FACILITATE CALCULATIONS
SINCE ONLY TWO UNKNOWNS VS THREE AND MORE CONSERVATIVE
USING COUPLE METHOD
DETERMINE LOADS TO FTG FOR 9'-5" HIGH SHELTER & 10'-5" HIGH
SHELTER
H =/9.43' ABOVE FTG
(A) Ww_ EWIN
+
ON) (L)
EWIND-Mal
W
(B) Wm_ = EWIND (68.54)
L
H = 10.43' ABQVEYTQ
(A) Wwi = EWNDJl10.42/2)L(12.92)+(10.4212+0.5'12)L(2.5')l
(L) (W)
(B) WwI =
E MND (80.961
W
EWIND (80.961
L
H = 11.08' ABOVE FTG
(A) Wm. = PwIND(89.98)IW (calculated previously)
(B) W,, = PwIND(89.98)/L (calculated previously)
32
1
1
1
6. FOUNDATIONS (cont'd)
h. wind distribution fcont'd)
WIND PRESSURES FOR 120mph WIND SPEED
I WALLS:
P = 51 psf or P = 35 psf
1
1
1
ROOF:
U = 27psf or P = 41 psf
51 psf lateral & 27psf uplift condition controls.
1 DETERMINE LOAD ON FOOTING "A" FROM WIND
1
1
1
1
1
1
1
1
1
1
1
LOAD FOR ALL WIDTHS & HEIGHTS
For H = 9.42' Wm. = + 51 psf(68.54) - 27psf W
W 2
For H = 10.42' W,,,,L = + 51psf(80.96) - 27psf W
W 2
For H = 11.1' Wm = + 51psf(89.98)- 27psf W
W 2
SHELTER
WIDTH WWL(H=9.42') WWL(H=10.423 WWL(H=11.1')
8'-4" +307/-532p1f +383/-608p1f *438/-663p1f
10'-4" +199/-478p1f +260/-539p1f +305/-583p1f
12'-0" +129/-458p1f +1821-506p1f +2201-544p1f
TABLE 4
33
6. FOUNDATIONS (cont'd)
1. seismic
PER V Q
DETERMINE LOAD DISTRIBUTION TO FTG "A"
V = 2,5C81 W
R
I = 1.0
R = 4.5
V = 2.5Ca(1.0) W = 0.556CaW
4.5
[8'-4" WIDE X 11'-? HIGH X 81-4" LONG]
WDL = Roof + Walls
= [49.7psf(8.33')2 + 39.3psf(4))8.33')(11.1')]
2
= 10,716#
ZONE 4:
Ca = 0.54 (see Toad calcuations)
V = 0.556(0.54)(10716#) = 3217#
WsEISMlc = 3217# (13.6) = 631p1f
8.33 8.33
[10'-4" WIDE X 11'-1" HIGH X 10'-4" LONG]
WDL = 49.7psf(10.33')2 + 39.3psf(4)(11.1'12)(10.33')
= 14,316#
ZONE 4:
V = 0.556(0.54)(14316#) = 4298*
WSEISMIC = 4298# (13.6) 1 = 548#"
10.33 10.33
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
34 1
6. FOUNDATIONS (cont'd)
i. seismic (cont'd)
Per UBC
[12'-0" WIDE X 11'-1" HIGH X 12'-4" LONG]
WDL = 49.7psf(12.0')(12.33')
+ 39.3psf(2)(11.1'12)[l2.0' + 12.331]
17,967*
ZONE 4:
V = 0.556(0.59)(17967) = 5394*
WSEISM1C = 5394 x 13.6 x 1/12.33 = 496*"
12
DETERMINE FACTORS TO MULTIPLY WITH FOR OTHER HEIGHTS -
FOR UBC
8'-4" WIDTH
FOR 9'-5" HEIGHT
W = 9616* 9616 = 0.897
10716
(9.42'+2.5) = 0.172
8.33 8.33
0.172 = 0.878
0.196
FACTOR = 0.897(0.878) = 0.788
FOR 10'-5" HEIGHT
FACTOR = 0.91
35
6. FOUNDATIONS (cont'd)
i. seismiQ(cont'd)
Per UBC (cont'd)
10'-4" WIDTH
FOR 9'-5" HEIGHT FACTOR = 0.793
10'-5" HEIGHT FACTOR = 0.913
12'-0" WIDTH
FOR 9'-5" HEIGHT FACTOR = 0.798
10'-5" HEIGHT FACTOR = 0.916
UBC
8'1-4" WIDTH 10'-4" WIDTH 12'-0" WIDTH
ZONE'moi" 10'-5" IlLt 9'-5" 10'-5" 11'-1" 9L5" 10'•5" 11'-1"
4 497 574 631 435 500 548 396 454 496
TABLE 5a
* Footing toad (±) for DL ofshelter for additional load due
to floor live load and snow see following pages
36
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
t
1
6. FOUNDATIONS (cont'd)
i. seismic
PER BOCA
DETERMINE LOAD DISTRIBUTION TO FTG "A"
V = 2.5A,. W
R
R = 4.5 V = 2.5Aa W = 0.556Aa W
4.5
[8'-4" WIDE X 11'-1" HIGH X 8'-4" LONG]
WDL = Roof + Walls
[49.7psf(8.33')2 + 39.3psf(4)(8.33') 11
= 10,716*
2
ZONE 4:
Aa = 0.4
V = 0.556(0.4)(10716*) = 2383*
WseisMIC = 2383* (13.6) 1 = 467p1f
8.33 8.33
[10'-4" WIDE X 11'-1" HIGH X 10'-4" LONG]
WDL = 49.7psf(10.331)2 + 39.3psf(4)(11.1'12)(10.33')
= 14,316*
ZONE 4:
V = 0.556(0.4)(14316*) = 3184*
WseisMic = 3184* (1&) 1 = 405"
10.33 10.33
[12'-0" WIDE X 11'-1" HIGH X 12'-4" LONG]
WDL = 49.7psf(12.0')(12.33')
+ 39.3psf(2)(11.1'/2)[12.0' + 12.33']
= 17,967*
ZONE 4:
V = 0.556(0.4)(17967) = 3996*
WseisMic = 3996 x 13.6 x 1/12.33 = 367#/ft
12
See UBC Seismic calculations for factors for shelters of other heights.
37
6. FOUNDATIONS (cont'd)
i. seismic (cont'd)
Per BOCA (cont'd)
81-4" WIDTH
ZONE 10'-5" 11'-11
BOCA
10'-4" WIDTH
-5" 10'-5" 111-1"
4 368 425 467 320 369 405
TABLE 5b
12'-0" WIDTH
9L5_1! 10'-5" 11'-1"
292 334 367
* Footing Toad (±) or DL of shelter for additional load due
to floor live load and snow see following pages
Per UBC
TO DETERMINE FOOTING LOADS (±) DUE TO ADDITION OF FLOOR LIVE
LOAD
1. DETERMINING SHEAR AT FLOOR LEVEL DUE TO SEISMIC LATERAL
MOVEMENT PER 50ps' OF FLOOR LIVE LOAD
2. DETERMINE HEIGHT/WIDTH FACTORS
V = FLOOR LIVE (WIDTH) 2.5C8
R
UBC
DETERMINE FOOTING LOADS FOR FLOOR LIVE LOAD IN SEISMIC EVENT -
50PSF INCREMENTS. (25% OF LOAD SHALL BE CONSIDERED.)
8'-4" WIDTH
(ZONE 4) V = 1(5D )(8.33')(0.556)(0.54) = 31.26"T/50psf
4
10'-4" WIDTH
(ZONE 4) V = 1.24 (31.26) = 38.76'
12'-0" WIDTH
(ZONE 4) V = 1.44 (31.26) = 45.02'Psf
38
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6. FOUNDATIONS (cont'd)
i. seismic (cont'd)
HEIGHTIWIDTH FACTORS
Per UBC
8'-4" 2.518.33 = 0.30
101-4" 2.5110.33 = 0.24
12'-0" 2.5112.0 = 0.21
WSEISMIc SL = [V x HEIGHT / WIDTH FACTOR](LL 150psf)
8'-4" WIDTH
140 psf 200 psf
ZONE 92zE 10'-5" 11'-1" ZONE 9LE 10'-5" 1"
4 26 26 26 4 38 38 38
10'-4" WIDTH
140 psf 200 psf
ZONE 92S_' 10'-5" 11'-1'1 ZONE ; 10,_5"
4 26 26 26 4 38 38 38
12'-0" WIDTH
140 psf 200 psf
ZONE'`5" 10'-5" 112"1" ZONE '- " 10'-5" 11'-1"
4 26 26 26 4 38 38 38
1
TABLE 6a
W
FLOOR LIVE
■
ia.
39
6. FOUNDATIONS (cont'd)
i. seismic (cont'd)
Per BOC&
TO DETERMINE FOOTING LOADS (±) DUE TO ADDITION OF FLOOR LIVE
LOAD.
1. DETERMINING SHEAR AT FLOOR LEVEL DUE TO SEISMIC LATERAL
MOVEMENT PER 50°s` OF FLOOR LIVE LOAD
2. DETERMINE HEIGHT/WIDTH FACTORS
V = FLOOR LIVE (WIDTH) 2.5A,
R
BOCA
DETERMINE FOOTING LOADS FOR FLOOR LIVE LOAD IN SEISMIC EVENT -
50psf INCREMENTS. (25% OF LOAD SHALL BE CONSIDERED.)
8'-4" WIDTH
(ZONE 4) V = 1(50w)(8.33')(0.556)(0.40) = 23.16'"mo°
4
10'-4" WIDTH
(ZONE 4) V = 1.24 (23.16) = 28.72'"6°P°
12'-0" WIDTH
(ZONE 4) V = 1.44 (23.16) = 33.35"5°5Psf
1
W
FLOOR LIVE
41 V
z
40
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6. FOUNDATIONS (cont'd)
i. seismic (cont'd)
HEIGHTNVIDTH FACTORS
Per BOCA
Wse1sMIC SL = [V x HEIGHT / WIDTH FACTOR](LL 150psf)
8'-4" WIDTF(
140 psf 200 psf
ZONE 9'-5" 10'-5" 11'-l" ZONE 9L -5f 10'-5".1=
4 19 19 19 4 27 27 27
10'-4" WIDTH
140 psf 200 psf
ZONE '-5" 1'- Mr ZONE 9'-5" 10'-5" 11'-1„
4 19 19 19 4 27 27 27
12'-0" WIDTH
140 psf 200 psf
ZONE 9LE 10'-5" 11'-1" ZONE 9'-5" 10'-5" 11'-l"
4 19 19 19 4 27 27 27
TABJE6b
41
6. FOUNDATIONS (it'd)
i. seismic (cont'd)
Per UBC
TO DETERMINE FOOTING LOADS (±) DUE TO ADDITION OF SNOW ON
ROOF
1. DETERMINING SHEAR AT ROOF LEVEL DUE TO SEISMIC LATERAL
MOVEMENT PER 10Ps' OF SNOW ON ROOF
2. DETERMINE HEIGHTIWIDTH FACTORS
V = SNOW (WIDTH) 2,5C,
R
UBC
DETERMINE FOOTING LOADS FOR SNOW LOAD IN SEISMIC EVENT -
10PSF INCREMENTS.
8'4" WIDTH
(ZONE 4) V = 10Ps'(8.33')(0.556)(0.54) = 25.01"15b0Ps1
10'-4" WIDTH
(ZONE 4) V = 1.24 (25.01) = 31 A1' 10's`
12'-0" WIDTH
(ZONE 4) V = 1.44 (25.01) = 36.034415'°Pgf
1
W
SNOW
1
T
•
2
U
42
1
1
1
1
1
1
1
1
1
WIDTH SLE 9LE 10'-5" 11=1"
10'-4" 4 178.31 193.81 204.67
6. FOUNDATIONS (cont'dJ
i. seismic fcont'd)
HEIGHT/WIDTH FACTORS
Per UBQ
8'-4" x 9'-5" (9.42 + 2.5) / 8.33 = 1.43
10'-5" (10.42 + 2.5)/8.33 = 1.55
11'-1" (11.1 + 2.5)18.33 = 1.63
10'-4" x 9'-5" (11.92)/10.33 = 1.15
10'-5" (12.92) / 10.33 = 1.25
11'-1" (13.6)/10.33 = 1.32
12'-0" x 9'-5" (11.92) / 12.0 = 0.99
10'-5" (12.92)/12.0 = 1.08
11'-1" (13.6)/12,0 = 1.13
WSE1sMlc SL = [V x HEIGHT / WIDTH FACTOR](50 psf/ l0psf)
WIDTH ZONE 9 1 '- " 11'-,1
8'-4" 4 178.88 193.83 203.83
1
1
1
1
1
1
1
1
1
WIDTH ZONE 9 ', 10'-5" 11'-1"
12'-0" 4 178.35 194.56 203.57
s
TABLE 7a
43
6. FOUNDATIONS (cant'cd)
i. seismic (c9nt'd)
Per BOCA
TO DETERMINE FOOTING LOADS (±) DUE TO ADDITION OF SNOW ON
ROOF
1. DETERMINING SHEAR AT FLOOR LEVEL DUE TO SEISMIC LATERAL
MOVEMENT PER 10ps' OF SNOW ON ROOF
2. DETERMINE HEIGHT/WIDTH FACTORS
V = SNOW (WIDTH) 2.5A.
R
BOCA
DETERMINE FOOTING LOADS FOR SNOW LOAD IN SEISMIC EVENT -
1OINCREMENTS.
8'-4" WIDTH
(ZONE 4) V = 10PSf(8.33')(0.556)(0.40) = 18.53#'"0P
10'-4" WIDTH
(ZONE 4) V = 1.24 (18.53) = 22.97'"010
12'-0" WIDTH
(ZONE 4) V = 1.44 (18.53) = 26.681"hb0p
1
W
SNOW
i
i
• ■
r ♦ V
T
44
1
1
1
1
1
1
1
1
1
1
1
6. FOUNDATIONS (cont'd)
i. seismic (cont'd)
HEIGHT/WIDTH FACTORS
Per BOCA
81-4" x 9'-5" (9.42 + 2.5) / 8.33 = 1.43
10'-5" (10.42 + 2.5) / 8.33 = 1.55
11'-1" (11.1 + 2.5)/8.33 = 1.63
10'-4" x 9'-5" (11.92) / 10.33 = 1.15
10'-5" (12.92)/10.33 = 1.25
11'-1" (13.6) / 10.33 = 1.32
12'-0" x 9'-5" (11.92) / 12.0 = 0.99
10'-5" (12.92) / 12.0 = 1.08
11'-1" (13.6) / 12.0 = 1.13
WSEISMIC SL = N x HEIGHT / WIDTH FACTOR)(50psf 110psf)
WIDTH ZONE 92=E 10'-5" 11'-1"
81-4" 4 132.49 143.61 151.02
WIDTH ZONE
10'-4" 4 132.08 143.56 151.60
WIDTH ZOJVE 9'-5" 10'-5"
12'-0" 4 132.07 144.07 150.74
TABLE7b
45
6. FOUNDATIONS (cont'd)
k. summary of load tables
The following computer output is the tabulation of the loading combinations and
the associated load to soil. Based on these values, the required width of
foundation wall is able to be established. By adding up the required widths, the
proper overall foundation width is available.
46
Project: Rohn Shelters
DETERMINE REQUIRED FOOTING WIDTH FOR EACH SHELTER
SIZE AND FOR EACH LOAD COMBINATION
(PER UBC)
LIVE LOAD =
SNOW LOAD =
WIND SPEED =
SOIL PRESSURE =
140 PSF
50 PSF
120 MPH
2500 PSF
SHELTER SIZE = 8.33 FT WIDE x 9.42 FT HIGH
DL + LL + SL 1533 LB/FT WIDTH =
DL + LL + WL 1632 LB/FT WIDTH =
DL + LL + SL + 1/2 WL 1687 LB/FT WIDTH =
DL + LL + WL + 1/2 SL 1736 LB/FT WIDTH =
DL + LL + E/1.4 1827 LB/FT WIDTH =
DL + LL + SL + E/1.4 2035 LB/FT WIDTH
SHELTER SIZE = 8.33 FT WIDE x 10.42 FT HIGH
DL + LL + SL 1572 LB/FT WIDTH =
DL + LL + WL 1747 LB/FT WIDTH =
DL + LL + SL + 1/2 WL 1763 LB/FT WIDTH =
DL + LL + WL + 1/2 SL 1851 LB/FT WIDTH =
DL + LL + E/1.4 1931 LB/FT WIDTH =
DL + LL + SL + E/1.4 2139 LB/FT WIDTH
SHELTER SIZE = 8.33 FT WIDE x 11.1 FT HIGH
DL + LL + SL 1599 LB/FT
DL + LL + WL 1829 LB/FT
DL+LL+SL+1/2WL 1818 LB/FT
DL + LL + WL + 1/2 SL 1933 LB/FT
DL + LL + E/1.4 2006 LB/FT
DL+LL+SL+EJ1.4 2214 LB/FT
WIDTH =
WIDTH =
WIDTH =
WIDTH =
WIDTH =
WIDTH =
7.4 INCHES
5.9 INCHES
6.1 INCHES
6.2 INCHES
6.6 INCHES
7.4 INCHES
7.5 INCHES
6.3 INCHES
6.4 INCHES
6.7 INCHES
7.0 INCHES
7.7 INCHES
7.7 INCHES
6.6 INCHES
6.5 INCHES
7.0 INCHES
7.2 INCHES
8.0 INCHES
Project: Rohn Shelters
DETERMINE REQUIRED FOOTING WIDTH FOR EACH SHELTER
SIZE AND FOR EACH LOAD COMBINATION
(PER UBC)
LIVE LOAD =
SNOW LOAD =
WIND SPEED =
SOIL PRESSURE =
140 PSF
50 PSF
120 MPH
2500 PSF
SHELTER SIZE = 10.33 FT WIDE x 9.42 FT HIGH
DL + LL + SL 1812 LB/FT WIDTH = 8.7 INCHES
DL + LL + WL 1753 LB/FT WIDTH = 6.3 INCHES
DL + LL + SL + 1/2 WL 1912 LB/FT WIDTH = 6.9 INCHES
DL + LL + WL + 1/2 SL 1882 LB/FT WIDTH = 6.8 INCHES
DL + LL + EI1.4 2010 LB/FT WIDTH = 7.3 INCHES
DL + LL + SL + E/1.4 2268 LB/FT WIDTH : 8.2 INCHES
SHELTER SIZE = 10.33 FT WIDE x 10.42 FT HIGH
DL + LL + SL 1852 LB/FT WIDTH = 8.9 INCHES
DL + LL + WL 1854 LB/FT WIDTH = 6.7 INCHES
DL + LL + SL + 1/2 WL 1982 LB/FT WIDTH = 7.1 INCHES
DL + LL + WL + 1/2 SL 1983 LB/FT WIDTH = 7.1 INCHES
DL + LL + E/1.4 2108 LB/FT WIDTH = 7.6 INCHES
DL + LL + SL + E/1.4 2366 LB/FT WIDTH = 8.6 INCHES
SHELTER SIZE = 10.33 FT WIDE x 11.1 FT HIGH
DL + LL + SL 1878 LB/FT WIDTH = 9.0 INCHES
DL + LL + WL 1925 LB/FT WIDTH = 6.9 INCHES
DL + LL + SL + 1/2 WL 2030 LB/FT WIDTH = 7.3 INCHES
DL + LL + WL + 1/2 SL 2054 LB/FT WIDTH = 7.4 INCHES
DL + LL + E/1.4 2176 LB/FT WIDTH = 7.8 INCHES
DL + LL + SL + E/1.4 2434 LB/FT WIDTH = 8.8 INCHES
1
1 Project: Rohn Shelters
DETERMINE REQUIRED FOOTING WIDTH FOR EACH SHELTER
' SIZE AND FOR EACH LOAD COMBINATION
(PER UBC)
I LIVE LOAD = 140 PSF
SNOW LOAD = 50 PSF
WIND SPEED = 120 MPH
ISOIL PRESSURE = 2500 PSF
SHELTER SIZE = 12 FT WIDE x 9.42 FT HIGH
1 DL + LL + SL 2046 LB/FT WIDTH = 9.8 INCHES
DL + LL + WL 1875 LB/FT WIDTH = 6.8 INCHES
IDL + LL + SL + 112 WL 2111 LB/FT WIDTH = 7.6 INCHES
DL + LI + WL + 1/2 SL 2025 LB/FT WIDTH = 7.3 INCHES
DL + LL + E/1.4 2175 LB/FT WIDTH = 7.8 INCHES
• DL + LL + SL + E/1.4 2475 LB/FT WIDTH = 8.9 INCHES
111 SHELTER SIZE = 12 FT WIDE x 10.42 FT HIGH
IDL + LL + SL 2086 LB/FT WIDTH = 10.0 INCHES
DL + LL + WL 1968 LB/FT WIDTH = 7.1 INCHES
DL + LL + SL + 1/2 WL 2177 LB/FT WIDTH = 7.8 INCHES
IDL + LL + WL + 1/2 SL 2118 LB/FT WIDTH = 7.7 INCHES
DL + LL + E/1.4 2268 LB/FT WIDTH = 8.2 INCHES
DL + LL + SL + E/1.4 2568 LB/FT WIDTH = 9.2 INCHES
1 SHELTER SIZE = 12 FT WIDE x 11.1 FT HIGH
DL + LL + SL 2112 LB/FT WIDTH = 10.1 INCHES
IDL + LL + WL 2032 LB/FT WIDTH = 7.4 INCHES
DL + LL + SL + 1/2 WL 2222 LB/FT WIDTH = 8.0 INCHES
DL + LL + WL + 1/2 SL 2182 LB/FT WIDTH = 7.9 INCHES
DL + LL + E/1.4 2331 LB/FT WIDTH = 8.4 INCHES
aDL + LL + SL + E/1.4 2631 LB/FT WIDTH = 9.5 INCHES
Project: Rohn Shelters
DETERMINE REQUIRED FOOTING WIDTH FOR EACH SHELTER
SIZE AND FOR EACH LOAD COMBINATION
(PER UBC)
LIVE LOAD =
SNOW LOAD =
WIND SPEED =
SOIL PRESSURE =
200 PSF
50 PSF
120 MPH
2500 PSF
SHELTER SIZE = 8.33 FT WIDE x 9.42 FT HIGH
DL + LL + SL 1783 LB/FT WIDTH = 8.6 INCHES
DL + LL + WL 1882 LB/FT WIDTH = 6.8 INCHES
DL + LL + SL + 1/2 WL 1937 LB/FT WIDTH = 7.0 INCHES
DL + LL + WL + 1/2 SL 1986 LB/FT WIDTH = 7.1 INCHES
DL + LL + E/1.4 2085 LB/FT WIDTH = 7.5 INCHES
DL + LL + SL + E/1.4 2293 LB/FT WIDTH = 8.3 INCHES
SHELTER SIZE = 8.33 FT WIDE x 10.42 FT HIGH
DL + LL + SL 1822 LB/FT WIDTH = 8.7 INCHES
DL + LL + WL 1997 LB/FT WIDTH = 7.2 INCHES
DL + LL + SL + 112 WL 2014 LB/FT WIDTH = 7.3 INCHES
DL + LL + WL + 1/2 SL 2101 LB/FT WIDTH = 7.6 INCHES
DL + LL + E/1.4 2190 LB/FT WIDTH = 7.9 INCHES
DL + LI + SL + E/1.4 2398 LB/FT WIDTH = 8.6 INCHES
SHELTER SIZE = 8.33 FT WIDE x 11.1 FT HIGH
DL + LL + SL 1849 LB/FT WIDTH = 8.9 INCHES
DL + LL + WL 2079 LB/FT WIDTH = 7.5 INCHES
DL + LL + SL + 1/2 WL 2068 LB/FT WIDTH = 7.4 INCHES
DL + LL + WL + 1/2 SL 2183 LB/FT WIDTH = 7.9 INCHES
DL + LL + E/1.4 2265 LB/FT WIDTH = 8.2 INCHES
DL + LL + SL + E/1.4 2473 LB/FT WIDTH = 8.9 INCHES
1
1 Project: Rohn Shelters
DETERMINE REQUIRED FOOTING WIDTH FOR EACH SHELTER
111 SIZE AND FOR EACH LOAD COMBINATION
(PER UBC)
I LIVE LOAD = 200 PSF
SNOW LOAD = 50 PSF
WIND SPEED = 120 MPH
ISOIL PRESSURE = 2500 PSF
SHELTER SIZE = 10.33 FT WIDE x 9.42 FT HIGH
1 DL + LL + SL 2122 LB/FT WIDTH r 10.2 INCHES
DL + LL + WL 2063 LB/FT WIDTH = 7.4 INCHES
IDL + LL + SL + 1/2 WL 2222 LB/FT WIDTH = 8.0 INCHES
DL + LL + WL + 1/2 SL 2192 LB/FT WIDTH = 7.9 INCHES
DL + LL + E/1.4 2329 LB/FT WIDTH = 8.4 INCHES
• DL + LL + SL 4- E/1.4 2587 LB/FT WIDTH = 9.3 INCHES
SHELTER SIZE = 10.33 FT WIDE x 10.42 FT HIGH
IDL + LL + SL 2162 LB/FT WIDTH = 10.4 INCHES
DL + LL + WL 2164 LB/FT WIDTH = 7.8 INCHES
DL + LL + SL + 1/2 WL 2292 LB/FT WIDTH = 8.3 INCHES
IDL + LL + WL + 1/2 SL 2293 LB/FT WIDTH = 8.3 INCHES
DL + LL + E/1.4 2427 LB/FT WIDTH = 8.7 INCHES
DL + LL + SL + E/1.4 2685 LB/FT WIDTH = 9.7 INCHES
1 SHELTER SIZE = 10.33 FT WIDE x 11.1 FT HIGH
DL + LL + SL 2188 LB/FT WIDTH = 10.5 INCHES
I
DL + LL + WL 2235 LB/FT WIDTH = 8.0 INCHES
DL + LL + SL + 1/2 WL 2341 LB/FT WIDTH = 8.4 INCHES
DL + LL + WL + 1/2 SL 2364 LB/FT WIDTH = 8.5 INCHES
DL + LL + E/1.4 2495 LB/FT WIDTH = 9.0 INCHES
I DL + LL + SL + E/1.4 2753 LB/FT WIDTH = 9.9 INCHES
Project: Rohn Shelters
DETERMINE REQUIRED FOOTING WIDTH FOR EACH SHELTER
SIZE AND FOR EACH LOAD COMBINATION
(PER UBC)
LIVE LOAD =
SNOW LOAD =
WIND SPEED =
SOIL PRESSURE =
200 PSF
50 PSF
120 MPH
2500 PSF
SHELTER SIZE = 12 FT WIDE x 9.42 FT HIGH
DL + LL + SL 2406 LB/FT WIDTH = 11.5 INCHES
DL + LL + WL 2235 LB/FT WIDTH = 8.0 INCHES
DL + LL + SL + 1/2 WL 2471 LB/FT WIDTH = 8.9 INCHES
DL + LL + WL + 1/2 SL 2385 LB/FT WIDTH = 8.6 INCHES
DL + LL + E/1.4 2543 LB/FT WIDTH = 9.2 INCHES
DL + LL + SL + E/1.4 2843 LB/FT WIDTH = 10.2 INCHES
SHELTER SIZE = 12 FT WIDE x 10.42 FT HIGH
DL + LL + SL 2446 LB/FT WIDTH = 11.7 INCHES
DL + LL + WL 2328 LB/FT WIDTH = 8.4 INCHES
DL + LL + SL + 1/2 WL 2537 LB/FT WIDTH = 9.2 INCHES
DL + LL + WL + 1/2 SL 2478 LB/FT WIDTH = 8.9 INCHES
DL + LL + E/1.4 2637 LB/FT WIDTH = 9.5 INCHES
DL + LL + SL + E/1.4 2937 LB/FT WIDTH = 10.6 INCHES
SHELTER SIZE = 12 FT WIDE x 11.1 FT HIGH
DL + LL + SL 2472 LB/Fr WIDTH = 11.9 INCHES
DL + LL + WL 2392 LB/FT WIDTH = 8.6 INCHES
DL + LL + SL + 1/2 WL 2582 LB/FT WIDTH = 9.3 INCHES
DL + LL + WL + 1/2 SL 2542 LB/FT WIDTH = 9.2 INCHES
DL + LL + E/1.4 2699 LB/FT WIDTH = 9.8 INCHES
DL + LL + SL + E/1.4 2999 LB/FT WIDTH = 10.8 INCHES
1
1 Project: Rohn Shelters
DETERMINE REQUIRED FOOTING WIDTH FOR EACH SHELTER
1 SIZE AND FOR EACH LOAD COMBINATION
(PER BOCA)
' LIVE LOAD = 140 PSF
SNOW LOAD = 50 PSF
WIND SPEED = 120 MPH
SHELTER SIZE = 8.33 FT WIDE x 9.42 FT HIGH
IDL + (LL + SL)*.75 1335 LB/FT WIDTH = 5.5 INCHES
DL + WL 1049 LB/FT WIDTH = 5 INCHES
DL + (LL + SL + WL)*.75 1566 LB/FT WIDTH = 6.6 INCHES
DL + E 1261 LB/FT WIDTH = 6.1 INCHES
DL + (LL + SL)*.75 + E 1854 LB/FT WIDTH = 8.9 INCHES
SHELTER SIZE = 8.33 FT WIDE x 10.42 FT HIGH
IDL + (LL + SL)*.75 1374 LB/FT WIDTH = 5.7 INCHES
DL + WL 1164 LB/FT WIDTH = 5.6 INCHES
IDL + (LL + SL + WL)*.75 1662 LB/FT WIDTH = 7 INCHES
DL + E 1369 LB/FT WIDTH = 6.6 INCHES
DL + (LL + SL)*.75 + E 1962 LB/FT WIDTH = 9.4 INCHES
1 SHELTER SIZE = 8.33 FT WIDE x 11.1 FT HIGH
DL + (LL + SL)*.75 1401 LBIFT WIDTH = 5.8 INCHES
1 DL + WL 1246 LBIFT WIDTH = 6 INCHES
DL + (LL + SL + WL)*.75 1730 LBIFT WIDTH = 7.3 INCHES
DL + E 1445 LB/FT WIDTH = 6.9 INCHES
IDL + (LL + SL)*.75 + E 2038 LB/FT WIDTH = 9.8 INCHES
Project: Rohn Shelters
DETERMINE REQUIRED FOOTING WIDTH FOR EACH SHELTER
SIZE AND FOR EACH LOAD COMBINATION
(PER BOCA)
LIVE LOAD =
SNOW LOAD =
WIND SPEED =
140 PSF
50 PSF
120 MPH
SHELTER SIZE = 10.33 FT WIDE x 9.42 FT HIGH
DL + (LL + SL)*.75 1567 LB/FT WIDTH = 6.5 INCHES
DL + WL 1030 LB/FT WIDTH = 4.9 INCHES
DL + (LL + SL + WL)*.75 1716 LB/FT WIDTH = 7.2 INCHES
DL + E 1302 LB/FT WIDTH = 6.2 INCHES
DL + (LL + SL)*.75 + E 2038 LB/FT WIDTH = 9.8 INCHES
SHELTER SIZE = 10.33 FT WIDE x 10.42 FT HIGH
DL + (LL + SL)*.75 1607 LB/FT WIDTH = 6.7 INCHES
DL + WL 1131 LBIFT WIDTH = 5.4 INCHES
DL + (LL + SL + WL)*.75 1802 LB/FT WIDTH = 7.6 INCHES
DL + E 1403 LBIFT WIDTH = 6.7 INCHES
DL + (LL + SL)*.75 + E 2139 LBIFT WIDTH = 10.2 INCHES
SHELTER SIZE = 10.33 FT WIDE x 11.1 FT HIGH
DL + (LL + SL)*.75 1633 LB/FT WIDTH = 6.8 INCHES
DL + WL 1202 LB/FT WIDTH = 5.8 INCHES
DL + (LL + SL + WL)*.75 1862 LB/FT WIDTH = 7.9 INCHES
DL + E 1473 LB/FT WIDTH = 7.1 INCHES
DL + (LL + SL)*.75 + E 2209 LB/FT WIDTH = 10.6 INCHES
Project: Rohn Shelters
DETERMINE REQUIRED FOOTING WIDTH FOR EACH SHELTER
SIZE AND FOR EACH LOAD COMBINATION
(PER BOCA)
LIVE LOAD =
SNOW LOAD =
WIND SPEED =
140 PSF
50 PSF
120 MPH
SHELTER SIZE = 12 FT WIDE x 9.42 FT HIGH
DL + (LL + SL)*.75 1761 LB/FT
DL + WL 1035 LB/FT
DL + (LL + SL + WL)*.75 1858 LB/FT
DL + E 1349 LB/FT
DL + (LL + SL)*.75 + E. 2204 LB/FT
SHELTER SIZE = 12 FT WIDE x 10.42 FT HIGH
DL + (LL + SL)*.75 1801 LB/FT
DL + WL 1128 LB/FT
DL + (LL + SL + WL)*.75 1938 LB/FT
DL + E 1443 LB/FT
DL + (LL + SL)*.75 + E 2298 LB/FT
SHELTER SIZE = 12 FT WIDE x 11.1 FT HIGH
DL + (LL + SL)*.75 1827 LB/FT
DL + WL 1192 LB/FT
DL + (LL + SL + WL)*.75 1992 LB/FT
DL + E 1509 LB/FT
DL + (LL + SL)*.75 + E 2364 LB/FT
WIDTH =
WIDTH =
WIDTH =
WIDTH =
WIDTH =
WIDTH =
WIDTH =
WIDTH =
WIDTH =
WIDTH =
WIDTH =
WIDTH =
WIDTH =
WIDTH =
WIDTH =
7.4 INCHES
5 INCHES
7.8 INCHES
6.5 INCHES
10.6 INCHES
7.5 INCHES
5.4 INCHES
8.2 INCHES
6.9 INCHES
11 INCHES
7.6 INCHES
5.7 INCHES
8.4 INCHES
7.2 INCHES
11.3 INCHES
Project: Rohn Shelters
DETERMINE REQUIRED FOOTING WIDTH FOR EACH SHELTER
SIZE AND FOR EACH LOAD COMBINATION
(PER BOCA)
LIVE LOAD =
SNOW LOAD =
WIND SPEED =
200 PSF
50 PSF
120 MPH
SHELTER SIZE = 8.33 FT WIDE x 9.42 FT HIGH
DL + (LL + SL)*.75 1523 LBIFT WIDTH = 6.4 INCHES
DL + WL • 1049 LBIFT WIDTH = 5 INCHES
DL + (LL + SL + WL)*.75 1753 LBIFT WIDTH = 7.5 INCHES
DL + E 1269 LB/FT WIDTH = 6.1 INCHES
DL + (LL + SL)*.75 + E 2050 LB/FT WIDTH = 9.8 INCHES
SHELTER SIZE = 8.33 FT WIDE x 10.42 FT HIGH
DL + (LL + SL)*.75 1562 LB/FT WIDTH = 6.6 INCHES
DL + WL 1164 LBIFT WIDTH = 5.6 INCHES
DL + (LL + SL + WL)*.75 1849 LB/FT WIDTH = 7.9 INCHES
DL + E 1377 LB/FT WIDTH = 6.6 INCHES
DL + (LL + SL)*.75 + E 2234 LB/FT WIDTH = 10.4 INCHES
SHELTER SIZE = 8.33 FT WIDE x 11.1 FT HIGH
DL + (LL + SL)*.75 1589 LB/FT WIDTH = 6.7 INCHES
DL + WL 1246 LB/FT WIDTH = 6 INCHES
DL + (LL + SL + WL)*.75 1917 LB/FT WIDTH = 8.2 INCHES
DL + E 1453 LB/FT WIDTH = 7 INCHES
DL + (LL + SL)*.75 + E 2234 LB/FT WIDTH = 10.7 INCHES
1
1 Project: Rohn Shelters
1 DETERMINE REQUIRED FOOTING WIDTH FOR EACH SHELTER
SIZE AND FOR EACH LOAD COMBINATION
(PER BOCA)
' LIVE LOAD = 200 PSF
SNOW LOAD = 50 PSF
WIND SPEED = 120 MPH
ISHELTER SIZE = 10.33 FT WIDE x 9.42 FT HIGH
IDL + (LL + SL)*.75 1799 LB/FT WIDTH = 7.6 INCHES
DL + WL 1030 LB/FT WIDTH = 4.9 INCHES
DL + (LL + SL + WL)*.75 1948 LB/FT WIDTH = 8.4 INCHES
I
DL + E 1310 LBIFT WIDTH = 6.3 INCHES
DL + (LL + S!_)*.75 + E 2278 LB/FT WIDTH = 10.9 INCHES
SHELTER SIZE = 10.33 FT WIDE x 10.42 FT HIGH
IDL + (LL + SL)*.75
1839 LB/FT WIDTH = 7.8 INCHES
DL + WL 1131 LB/FT WIDTH = 5.4 INCHES
I
DL + (LL + SL + WL)*.75 ...
DL + E 2034 LB/FT WIDTH = 8.7 INCHES
1411 LB/FT WIDTH = 6.8 INCHES
DL + (LL + SL)*.75 + E 2379 LB/FT WIDTH = 11.4 INCHES
1 SHELTER SIZE = 10.33 FT WIDE x 11.1 FT HIGH
• DL + (LL + SL)*.75 1865 LBIFT WIDTH = 7.9 INCHES
111 DL + WL 1202 LB/FT WIDTH = 5.8 INCHES
DL + (LL + SL + WL)*.75 2094 LB/FT WIDTH = 9 INCHES
DL + E 1481 LB/FT WIDTH = 7.1 INCHES
' DL + (LL + SL)*.75 + E 2449 LB/FT " WIDTH = 11.8 INCHES
Project: Rohn Shelters
DETERMINE REQUIRED FOOTING WIDTH FOR EACH SHELTER
SIZE AND FOR EACH LOAD COMBINATION
(PER BOCA)
LIVE LOAD =
SNOW LOAD =
WIND SPEED =
200 PSF
50 PSF
120 MPH
SHELTER SIZE = 12 FT WIDE x 9.42 FT HIGH
DL + (LL + SL)*.75 2031 LB/FT WIDTH = 8.7 INCHES
DL + WL 1035 LB/FT WIDTH = 5 INCHES
DL + (LL + SL + WL)*.75 2128 LB/FT WIDTH = 9.1 INCHES
DL + E 1357 LB/FT WIDTH = 6.5 INCHES
DL + (LL + SL)*.75 + E 2482 LB/FT WIDTH = 11.9 INCHES
SHELTER SIZE = 12 FT WIDE x 10.42 FT HIGH
DL + (LL + SL)*.75 2071 LB/FT WIDTH = 8.8 INCHES
DL + WL 1128 LB/FT WIDTH = 5.4 INCHES
DL + (LL + SL + WL)*.75 2208 LB/FT WIDTH = 9.5 INCHES
DL + E 1451 LB/FT WIDTH = 7 INCHES
DL + (LL + SL)*.75 + E 2576 LB/FT WIDTH = 12.4 INCHES
SHELTER SIZE = 12 FT WIDE x 11.1 FT HIGH
DL + (LL + SL)*.75 2097 LB/FT WIDTH = 8.9 INCHES
DL + WL 1192 LB/FT WIDTH = 5.7 INCHES
DL + (LL + SL + WL)*.75 2262 LB/FT WIDTH = 9.7 INCHES
DL + E 1517 LB/FT WIDTH = 7.3 INCHES
DL + (LL + SL)*.75 + E 2642 LB/FT WIDTH = 12.7 INCHES
1
1
6. FOUNDATIONS (cont'd)
I. slab on grade foundation
1. Criteria: use slab on grade w/ 8" of washed gravel for foundation.
2. Where frost is a concern extend the washed gravel down to frost depth.
3. Since shelter doesn't have overturning problems, the foundation is the same
as the perimeter beams for the bearing pressures. Provide a turned down
edge to provide proper edge distance for expansion anchors. The turned
down edge width will be the same as the perimeter beam which depends on
the floor loads.
4. Longitudinal Steel:
pmb, = 0.0018
As = 0.0018(10x14) = 0.252 in2
Temp steel in slab:
A8 = 0.0018(6x18) = 0.194 in2/18"
USE 2#4 bars
USE #4 c@D 18"
7. CONNECTIONS
a. Roof to Sido end End Walls
1. Wind Uplift
Pu = 27 psf
roof wt. = (4.75/12)118 = 46.7 psf
»» Max. load per conn. = (27 - 46.7)6(4) = (-)#
no load due to uplift
okay by inspection -- other conditions will control
2. Wirtd lateral (120 MPH)
Note that lateral loads acting in the short direction will control due to the
fewer number of plates at the roof to endwall connection.
P = 51 psf (See Wind Calculations)
V = 51 x 11.1 x = 5095#
2 2
There are six plates in endwalls, therefore
Vpl = 5095'" = 849#`P'
6
Seismic Lateral
2.1
Roof (4.75)118(12) = 561 plf
12
Wall 0118(9.6712)2 = 380!
12 Wo = 941v
Snow 50 psf x 12 Ws = 600!
WTM = 1541!
V = 0.556(0.54)WW) = 8330!
2
VpI = 8330 = 1390#
6
Therefore seismic controls
48
7. CONNECTIONS (cont'd)
a. Roof to Side and End Walls (cont'd)
Re: PCI Design Handbook
Weld "A" V = 1390*
Iv, = 2" (min per PCI)
Tw = 15 in = 0.1" (effective throughout)
5
Lw = 0.941* = 0.66" min.
0.3(70ksi)(0.1 ")
use 3" min. weld
Plate "B"
3"
R
Shear: 1.1(1.3)(1390) = 1988*
Reaction: 1988 (2.5 in) = 1656*
3 in
49
7. CONNECTIONS (cont'd)
a. Roof to Side and End Walls (cont'd)
Anchor: Vah = min 10330# (0.85) (Nelson Stud Design
r Manual
0.85(800)(0.2h2)(0.85)14000 psi {PCI) 1
f 8780" 1
111
= min 1 73118) <--r-- Controls
Vah = min (8720 - 5800)# (0.85) {Nelson Stud Design
I Manual
0.85(2)(rr)(2.5 in2)(0.85) V4000 psi (PCI} 1
f 2482# 1 I
= min l 1794# I 4--- Controls
fr l2 [r 12l r
IC = l 10.85(1998),2(7311)) + L 10.85(1656)/1794) 11/0.85
= 0.74<1.0o.k, 1
Plate: V = 1390#
Fv = 1390# = 890 psi (NEGLIGIBLE) 1
5 in (5/16 in)
1
Plate 5/16 x5x5 w/ (2) 112" DIA x 2" HAS
7. CONNECTIONS (cont'd)
a. Roof to Side and End Walls (contsdl
2. lateral (cont'd)
plate "C"
shear: Vu = 1.988k
Plate and studs will be adequate by comparison to Plate B.
use Plate 5/16 x3x5 w/ (2) 1/2" DIA x 2" HAS
51
7. CONNECTIONS (coact)
b. SIDE WALL TO END WALL
1. WIND SUCTION ON END WALL
Since wall is approx. square, it will act as a 2 -way PL.
p=5lpsf
11'-8'
5 plates along Ht. of wall . .
R = 51(10.08)(11.67)14 = 1500#
R,,Ax = 1500 = 300#
5
WELD "A"
R = 300# 1w=3"(min) fw=300/3 = 100*'
FW = 2.lkTn OK
3" long weld
7. CONNECTIONS (c_ot'd)
b. Side Wall to End Wall (cont'/)
ELLE
TRY (2)1/2" Dia x 2 HAS. edge dist. = 4"
Pullout
Pc = 0.85(4)(0.85)/4000 (3+2x2)(0+2x2) = 5.1k
IC = 1/.85 [(0.3x1.3)/5.1] = 0.09 < 1.0 Qj
PL "C"
Shear
Vu = 0.3 x 1.3 = 0.39k
cpVc = 0.85(800)(0.2) .85 SQRT(4000) = 7.3k
cpV'c . 0.85(12.5)(2.5)'•5 0.8514000 = 2.26k
Cw = 1+ 3.5(2.5) i = 1.34
Ct = ...._4___1.0
1.3(2.5)
Cc= 1.0
(PVc = 2.26(1.34) = 3.0k > V„ = 0.36k
cpVc > V„ = 0.36# Q
PL. Thick = 2/3 x 1/2 DIA = 1/3 .. 5/16" PL.
PJ,. "B" & "Q" PL 5/16x5x5 W/(2) 1/2"Djax2 HAS
53
7. CONNECTIONS (cont'_d)
2. UPLIFT OF BLDG. & SUCTION ON END WALL
Wall suction:
P = 0.7(36.9)(1.06)1.0
= 27.4Ds'
See Part 1. - Modify Reaction
R = 300(27.4151) = 161° x 1.3 = 0.21k
. Uplift:
when uplift tries to occur it will lift the back wall and 1/2 the roof and 1/2 the floor.
Therefore, design wall connections to transfer Toad to end wall.
Side Wall = 4112(11.1x36.3)118 = 15849#
Roof = 4.75/12(12x36.3)118/2 = 10173
Floor = (17703+2365)/2 = 10034
Misc. = (2681+436x2)12 - 17771"
37,833#
R = 1.84 K
54
7. CONNECTIONS (cont'd)
b. Side Wail to End Wall (cont'd)
2.Uplift of Bldg. & Suction on End Wall (cont'd.)
Seismic
V-->
V=.0.3W MVI
Roof (4.75)118(8.33)36.33 = 14135 4241 10.33 43810
12
Wall ( 4)118(36.33+8.33)11.1(2) = 38997 11699 5.17 60484
12
Floor (52)(7.33)(35.33) = 13466 4040 .33 1333
66599* 19979# 105627*'
Snow 50(8.33)(36.3) = 15119 4536 10.33 46854#
152,481'
W/o Snow:
MRES =
W/ Snow:
MRES
66,599(8.33 / 2) = 277,385#' > 105,627* okay
(66,599 + 15,119)(8.33/2) = 340,355*' > 152,481#' okay
.-. no uplift in connections due to seismic
Wind
PH = 51 psf
Pu = 27psf
MOT = 51(36.3)(11.1)2 + 27(8.33)2(36.3) = 148053#
2 2
MRES = 66,599(8.33) / 2 = 277,385*' > 1.5 MOT
no overturning
Req'd holddown force (F) (subtract out end walls)
(4)
F = 148.053 - (12)118(8.33)(11.1)2(8.33) / 2 = 14,137#
8.33
55
7. CONNEQTIONS (cont'd'
b. Side Wall to End Wall (cont'd1
5 Connections per side (2 sides)
R/Conn. = 14,137¢/(5 x 2) = 1.41k
1.84k
1
1
1
WELD "A° 1
R = 1.41k V = .16k
Iw = 1.4x.75 = 0.5"
2.1
R' = SQRT[(1.41)2+(.16)2] = 1.4k
SAY 3" LG. WELD
1
BLit! 1
1.84K
VU, 1
0.21K 1
1
1
1
1
Q=1 + 1.84 x 2.5 = 1.64k
2 3
VU2 = 1.84k
V ' = 0.85(12.5)(2.5)1.5 0.85 , 4000 = 2.26k 1
�P CPER
1
1
IC=1(1.64x.85/2.26) + (1.84x.85/4.52)! 1/0.85=0.59 1.0 I
QK
1
5 Plates each W/(2) 1/2" DIA bolts
C„, = 1
Ct 1
C,, —s 1
PPVC'PAR
TVC'PER = 2.26k
2 PVC'PER = 4.52k
1
56 1
7. CONNECTIQNS (cont'd)
b. Side Wail to End Wall (cont'd)
PL "B': thickness = 2/3 x 1/2" = 1/3 5/16" PL x 5 x 11
PL "C"
R„ = 1.84k anchor bolt edge dist. = 4"
V„ = .21k
cpVc = 0.85(0.85) 800(.2) SQRT(4000)
= Min edge dist.
cpVS = 45000 (0.2) x .85
cpPc = 0.85(4).85 ,4000 (3+2x2)(0+2x2)
IC = [(1.84/7.31)2+ (.21/5.2)211/0.85
IC = [(1.84/7.31x2)513 + (.21/(5.2)$1-1
= 7.31k
= 7 1/2" - Controls
= 9.0k
= 5.2
= 0.08<1.0 OK
= 0.11 < 1.0 Q.K
(2) 1/2" Dia Bolts
PL = 1/2 x 2/3 5/16" PL 3 x 5
57
7. CONNECTIONS (cont'd)
c. Side Wail to Floor DL & LL Case
1. LOADS:
DL: Roof = 4.75112(6)(118) = 280*t
2.5(6) = 15
Wall = 4/12(11.1)118 = 436.6
2.5(11.1) =
760* x 4' = 3040# x 1.4 = 4256
LL: Snow = (50 x 6) = 300*' x 4' = 1200* x 1.7 = 2040*
4240* 6296*
MAX. CONN. SPACING = 4'-0
P = 4240* (6296*)
58
7. CONNECTIONS (c9pt'g)
c. Side Wall to Floor
WELD "A"
Fw = 2.1K*"
V = 4240*
iw = 4.24/2.1
PL "B"
= 2.02" weld length = 3" min.
Vu = 6.3K
cpVc = 0.85(0.85) 800(.2) SQRT(4000) = 7.31k
0.85(12.5)(7.5)15 .85+4000 = 11.7k - controls
Cy, = 1 +_ = 1.11
3.5(7.5)
C, = 4 - = 0.41
1.3(7.5)
cc -. 1.0
qVc = 11.7(1.11)0.41 = 5.32k
cpVs = 45000(.2) = 9.0k
Vu .6.3K
PL 1/2x2/3_5/16
PL5/16x5x5
w/(2) 1/2" Dia studs © 5.3/6.3 x 48"
= 31-4"
V„ = 6.3K
pVc = 0.85(0.85)800(0.2) S2111(4000) = 7.31k
= 0.85(12.5)(4)15 (.85) /'4000 = 4.6k - Controls
CW = 1+ = 1.2
3.5(4)
Ct = — — 0.1.0
1.3(4)
1.0
cpVc = 1.2(4.6) = 5.5k
L 5x1 1/2 x 5/16 x 01-5
w/(2)1/2" Dia x4" HAS
&(1)1/2"Dia x2"@5x48"= 3'-6"
6.3
59
Use 31-4"
7. CONNECTIONS (cont'd)
c. Side Wall to Floor (cont'd)
2. DL + SNOW + WIND CASE
Note that wind uplift is conservatively neglected
DL + SNOW
WTOT
WLW
= 4240* (62964 x .75 = 4722'") = P (Pu)
= 51 psf
= 51 (0.5) = 19.6 psf
1.3
H = 19.6(11.1)/2 x 4' = 435# x 1.7 x 0.75 = 555#
WELD "A"
V = SQRT[(435)2 + (4240)2] = 4262'"
FW = 2.11`11"
Iw = 4.26/2.1 = 203 x 0.75 = 1.52"
3" of weld length req'd.
60
7. CONNECTIONS (cont'd)
c. Side Wall to Floor (cont'd)
ELIE
cpVc = 5.3k (see DL + LL section)
cpPc = (4.33 - 1.22)(0.85) = 2.64k
l 1
IC = ((0.85 x (0.56)x12(2.64)) + ( 0.85 x (4.72)15.31 2) 1/0.85 =
PL 5/16 x5 w/12)_1/2" Dia x 0'-2 Studs
PL "C"
Anchor (2)
V„ = 4.72k
4.72 K = P cpVc = 5.5k > Vu QK
0.56 K
^ Hu=0.56k
components Vu = .707(0.56)=0.4k
Ru = .707(0.56)=0.4k
cpVc = 0.85(0.85) 12.5(1.41)1.5 SQRT(4000)=956*
t
12114 r,
cpRc = 0.85(0.85)(4)(3.2x2)SQRT(4000)=1170*
Try (1) 1/2" Dia x 0'-2 HAS.
0.68
1.0 OK
(0.85x4001956
x x= ) + l 0.85 x (400)11170) )110.85 = 0.25 ,— 1.0 QK
(1)112"Diaz 0'-2 Bolts w/ L 5 x 1 1/2x5/16x0'-5"
7. CQNNECTIONS (cont'd)
c. Side Wall to Floor (cont'd)
3. DL + WIND CASE
t
P
fiii H (THIS FORCE IS
TAKEN THROUGH BEARING)
Fly--FOUNDATIONS
i
LOADS:
Hold down for uplift forces.
MOT = 51 (11.1)(11.1)112(36) + 27 (36)(8.33)(8.33)112 = 147 k'
DLREs = ROOF (4.75/12)118(36)(8.33) = 14.0
WALL (11.1)(4112)118(36 + 8.0)2 = 2$,4
52.41(
MRES = 52.4 (8.3312) = 218k'
Hold Down Force © PL (FHD)
FHD = (147-218) = (-)
8.33
Therefore Floor Weight is Not Required To Holddown The Building
62
7. CONNECTIONS (cont'd)
d. End Wall to Floor
See lateral - end wall design section for Toad
Rys = R„0 = 9.7Kx1.3x1.1 = 13.9K
WELD "A"
Vtot = 9.7K
Consider 4 plates active when endwall has door opening.
V/pl = 9.7/4 = 2.42K
Fw = 2.1kr
Iw = (2.42 / 2.1) x 0.75 = 0.87"
use 3" min weld
PLATE "B"
Vu = 13.9/4 = 3.48k
pVc = 0.85(0.85)800(0.2)SQRT(4000) = 7.31k
cpVS = 10.33 (0.85) = 8.78k
*Of Anchors = 3.517.31 = 0.5 ., (2) 1/2" Dia x 0'-2 Anchors
Min edge dist. = 7 1/2")
PLATE "C"
Vu = 3.48K
R = 3.48k (4"/3") = 4.64k
pVc = 7.31k
cpR, = (8.72 - 2.87)(0.85) = El_
0.85(2)(1)(4 in)2(0.85) i4000 psi
= 4.6k
R 'B"
rt 11c
FOUNDATIONS
IC = 110.85 x (3.48)12(7.31)) 2 + l 0.85 x (4.64)14.6) 2) 1/0.85 = 0.92 •— 1.0 OS
(2) 1/2" DIA x 0'-4 Anchors
(Min. Edge dist = 7 112")
7. CONNECTIONS (cont'd)
e. Floor to Foundation
Look at 8'-4" wide x 36'-4" long shelter because it will overturn easier
Shelter DL -->
roof - 8.33(36.3)4.75(118) = 14,124
12
side wall - (4/12)118(36.3)(11.1)(2) = 31,697
end wall - (4/12)118(8.3)11.1(2) = 7,248
floor - 42.6(8.3)36.3 = 12.835
WT = 65,904#
MRES = 65.90(4.16)x213 = 182.8"
Wind
P
MOT
= 51 psf
= 51 (11.1)2 (36.3) = 114.0 k'
2
27 (36.3)(8.33)2/2 = 34.0 K
148.0 k. QL
Seismic
W = 14,124 + 31697 + 7248 = 33,596°
2 2
V = 0.556 (0.54)(33,596) = 10.09'
MOT
= 10.09" (11.1)
= 112.0k' (No uplift)
w/50 psf snow
AW = 50 (36.33)8.33 = 15.1k
V = 0.556 (0.54)(33.6 + 15.1) = 14.6k
MOT = 14.6 (11.1) = 162"
MRES = 182.8 + 15.1(4.16)2/3 = 224.7' QIS
Therefore no overturning
64
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
7. CONNECTIONS (cont'd1
e. Floor to Fnd (cont'd)
Lateral Sliding Resistance
Net Wt = 65,904 - 27(36.3x8.33) = 57,740#
Use 3" x 3" brg pads
If spacing = 4'-0 oc : # of pads = (36.3+8.3)2/4 = 23
Wt/Pad = 57,740/23 = 2510 Ib
Comp. Stress = 25101(3x3) = 279 psi < 8000 psi (pad) QAC
Fp = 0.7 (0.85)(3 ksi) = 1785 psi (concrete) Oil
65
7. CONNECTIONS (cont')
e. Floor to Fnd (cont'd)
Lateral Sliding Resistance (cont'd)
Mina: p = 51 psf V = 20,549 Ib
Coefficient of friction = 0.2
Vnet = 20,549 - 0.2 (57,740) = 9,000 Ib
Seismic
V = 0.3(15,100) = 24,3001b.
Vnet = 24,300 - 0.2 (15,100) = 8100#
Plate 3/16 x 9 x
S = (3/16)2 x 9/6 = 0.0527 in3
M = 0.0527(27)4/3 = 1.898K"
V = M/1" = 1898#
# of Plates Req'd
= 9000/1898
= 4.74 plates
therefore spacing = 36.3/4.74
= 7.66'
use: 6'-0 min. spacing and a minimum of
(2) plates per side wall
use: Plate 3/16 x 9 x 9 w/ (2)1/2 dia.
exp. bolts c 6'-0 oc with 3x3 pads
3'-0 oc for seismic zones 3 & 4
and wind speeds > 95 mph.
661
1
1
1
1
1
1
1
1
8. SHELTER TRANSPORT
Analysis & design of shelter for handling & shipping
Determine Panel Weights
End: 81-4" x 9'-5" [118 (40](8.33')(9.42') = 3086*
12
x 10'-5" 39.3(8.33')(10.42') = 3411*
x 11'-1" 39.3(8.33')(11.1') = 3634*
10'-4" x 9'-5" 39.3(10.33')(9.42') = 3824*
x 10'-5" 406(10.42') = 4231*
x 11'-1" 406(11.1') = 4507*
12'-0" x 9'-5" 39.3(12.0')(9.42') = 4442*
x 10'-5" 471.6(10.42') = 4914*
x 11'-1" 471.6(11.1') = 5235*
Side: 9'-5" ht 39.3(9.42') = 370a
10'-5" ht 39.3(10.42') = 406#t
11'-1" ht 39.3(11.1') = 472*t
8. SHELTER TRANSPORT (cont')
analysis & design of shelter (cQnt'd)
Roof: 8'-4" width
10'-4" width
12'-0" width
Floor: 8'-4" width
10'-4" width
12'-0" width
[1180)](8.33') = 369*'
12
44.25(10.33') = 457"
44.25(12.0') = 531#r
52(8.33') = 433#r
52(1.0.33') = 537'
52(12.0') = 624#r
See attached computer outputs for analysis and design of handling and shipping
stresses.
68
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
PROJECT: ROHN SHELTERS
CALCULATION OF STRESS IN SIDE WALL PANELS
DUE TO HANDLING AND SHIPPING
WIDTH = 8.33 ft
HEIGHT = 9.42 ft
LENGTH = 36.33 ft
LIFT POINT(LP) = 1.33 ft
Assumed door size = 6'-0" wide x 7'-4" high
fc (handling)=
fc (shipping) =
fs
CONC WT
2200 psi
3500 psi
36000 psi
118 pcf
Section Properties:
!gross = 481476.61 inA4
(door = 176033.85 in^4
Sgross =
Sdoort
Sdoorb =
Sabove door =
8518.69 in"3
5530.53 in^3
2167.62 in"3
267.73 inA3
Loads:
P = t/12 x width x height /2 = 1543.22 Ibs
w = (52 psf + 25 psf) x width / 2 + ((t/12) x width /2 + (t/12) x height) x conc. wt. _
Total wt. = 70.53 kips
HANDLING
Load Factor =
Lift Point Reactions =
Moments:
1.2
17.63 kips
Msupport = (P x LP + w x (LP)A2/2) = 2835.89 ft-Ibs
Mdoor = (w x 7.75"2)-Msupport = 23764.74 ft-Ibs
Mmax+ _ (w x (Length 2*LP)"218)-Msupport = 122684.67 ft-Ibs
Mabove door =>
V1 = w x (Lengthl2-LP) - w x (edge of door dist.+door opening/2) _
Mad = V1*door opening/2 - w x door opening/2"2/2
Sdoortb = 14931.44 in"3
885.77 ft -Ib
10704.47 Ibs
28127.47 ft -Ib
Tensile stresses:
ft support = (Msupport*12/Sgross)*LF = 4.79 psi OK
ft door = (Mdoor"12/Sdoorb)*LF = 157.87 psi OK
ft max+ _ (Mmax+ *12/Sgross)*LF = 207.39 psi REINF.
ft ad = ((-Mdoor l2/Sdoort)+(Mad*12/Sad))*LF = 1450.95 psi REINF.
Ft = 5 x .85 x sqrt(fc) = 199.34 psi
Steel Requirements:
As = W(-91)ed)
SHIPPING
Load Factor = 1.5
Tensile Stresses:
As support =
As door =
Asmax+=
Asad=
0.01 inA2
0.10 inA2
0.49 inA2
0.69 inA2
ft support = (Msupport"12/Sgross)*LF = 5.99 psi OK
ft door = (Mdoor*12/Sdoorb)*LF = 197.34 psi OK
ft max+ _ (Mmax+ "12/Sgross)*LF = 259.23 psi REINF.
ft ad =((-Mdoor"12/Sdoort)+(Mad*12/Sad))"LF = 1813.69 psi REINF.
Ft = 5 x .85 x sqrt(fc) = 251.43 psi
Steel Requirements:
As = M/(.9fy*d)
C:eft.
As support =
As door =
As max+ _
Asad=
68a
0.01 inA2
0.12 inA2
0.61 inA2
0.87 inA2
PROJECT: ROHN SHELTERS
CALCULATION OF STRESS IN SIDE WALL PANELS
DUE TO HANDLING AND SHIPPING
WIDTH = 8.33 ft
HEIGHT = 10.42 ft
LENGTH = 36.33 ft
LIFT POINT(LP) = 1.33 ft
Assumed door size = 6'-0" wide x T-4" high
fc (handling)=
fc (shipping) _
fs
CONC WT =
2200 psi
3500 psi
36000 psi
118 pcf
Section Properties:
(gross = 651666.87 inA4
Idoor = 223070.97 in"4
Sgross
Sdoort
Sdoorb
Sabove door =
10423.33 in"3
7062.13 in"3
2386.98 InA3
684.37 in"3
Loads:
P = t/12 x width x height /2 = 1707.04 Ibs
w = (52 psf + 25 psf) x width / 2 + ((J12) x width t2 + (t/12) x height) x conc. wt. _
Total wt. = 74.05 kips
HANDLING
Load Factor =
Lift Point Reactions =
Moments:
1.2
18.51 kips
Msupport = (P x LP + w x (LP)"212)
Mdoor = (w x 7.75"2)-Msupport
Mmax+ _ (w x (Length-2"LP)"218)-Msupport =
Mabove door =>
V1 = w x (Length/2-LP) - w x (edge of door dist.+door opening/2)
Mad = Vi•door opening/2 - w x door opening/2"22 =
Tensile stresses:
ft support =
ftdoor =
ftmax+=
ft ad =
Steel Requirements:
(Msupport'12/Sgross)'LF
(Mdoor12/Sdoorb)'LF =
(Mmax+'12/Sgross)"LF =
((-Mdoorl =
Ft = 5 x .85 x sqrt(fc) = 199.34 psi
As = M/(.9fy'd)
SHIPPING
Load Factor = 1.5
Tensile Stresses:
ft support =
ft door =
ft max+ _
it ad=
Steel Requirements:
As support =
As door =
As max+ =
Asad=
(Msupporrl2/Sgross)"LF =
(Mdoor"12/Sdoorb)•LF
(Mmax+ "12/Sgross)'LF
((-Mdoor"12/Sdoort)+(Mad'121Sad))'LF =
Ft = 5 x .85 x sqrt(fc) = 251.43 psi
Asa M/(.9fy'd)
As support =
As door =
Asmax+=
As ad =
68b
3088.57 ft-Ibs
24693.30 ft -lbs
128005.87 ft -lbs
4.27 psi
148.97 psi
176.84 psi
567.76 psi
0.01 inA2
0.09 inA2
0.46 in"2
0.43 inA2
5.33 psi
186.21 psi
221.05 psi
709.70 psi
0.01 inA2
O.i1 inA2
0.58 inA2
0.54 inA2
Sdoortb = -492349.49 in"3
925.10 ft -lb
11179.82 Ibs
29376.50 ft -Ib
OK
OK
OK
REINF.
OK
OK
OK
REINF.
PROJECT: ROHN SHELTERS
CALCULATION OF STRESS IN SIDE WALL PANELS
DUE TO HANDLING AND SHIPPING
WIDTH = 8.33 ft
HEIGHT = 11.1 ft
LENGTH = 36.33 ft
LIFT POINT(LP) = 1.33 R
Assumed door size = 6'-0" wide x 7-4" high
fc (handhing)=
fc (shipping) =
fs =
CONC WT =
2200 psi
_ 3500 psi
36000 psi
118 pcf
Section Properties:
(gross = 787755.46 in"4
Idoor =
Sgross = 11828.16 inA3
Sdoort = 7723.11 inA3
Sdoorb = 2575.78 inA3
Sabove door = 1077.36 inA3
Loads:
P - t/12 x width x height /2 = 1818.44 lbs
w = (52 psf + 25 psf) x width / 2 + ((I/12) x width /2 + (t/12) x height) x conc. wt. =
Total wt. = 76.43 kips
HANDLING
Load Factor =
Lift Point Reactions =
Moments:
1.2
19.11 kips
Msupport = (P x LP + w x (LP)A2/2) = 3260.38 ft -lbs
Mdoor = (w x 7.75"2)-Msupport = 25324.72 ft -lbs
Mmax+ _ (w x (Length-2*LP)"218)-Msupport = 131624.28 ft -lbs
Mabove door =>
VI = w x (Length/2-LP) - w x (edge of door dist.+door opening/2) =
Mad = V1"door opening/2 • w x door opening/2"22 =
951.85 ft -Ib
11503.05 lbs
30225.84 ft -Ib
Tensile stresses:
ft support = (Msupport'12/Sgross)'LF = 3.97 psi OK
ft door = (Mdoor'12/Sdoorb)'LF = 141.58 psi OK
ft max+ _ (Mmax+ *12/Sgross)'LF = 160.24 psi OK
ft ad =((•Mdoor12/Sdoort)+(Mad'12/Sad))`LF = 356.78 psi REINF.
Ft = 5 x .85 x sqrt(fc) = 199.34 psi
Steel Requirements:
As = W(.9fy'd)
SHIPPING
Load Factor = 1.5
Tensile Stresses:
As support =
As door =
Asmax+=
As ad =
0.01 inA2
0.09 inA2
0.45 inA2
0.35 inA2
ft support = (Msupport'12/Sgross)'LF = 4.96 psi OK
ft door = (Mdoor'12/Sdoorb)'LF = 176.97 psi OK
ft max+ _ (Mmax+'12/Sgross)'LF = 200.30 psi OK
ft ad =((-Mdoor'12/Sdoort)+(Mad'12/Sad))•LF = 445.98 psi REINF.
Ft = 5 x .85 x sqrt(fc) = 251.43 psi
Steel Requirements:
As = M/(.9fy'd)
As support =
As door =
Asmax+=
As ad =
68c
0.01 inA2
0.11 inA2
0.56 inA2
0.44 inA2
PROJECT: ROHN SHELTERS
CALCULATION OF STRESS IN SIDE WALL PANELS
DUE TO HANDLING AND SHIPPING
WIDTH = 10.33 ft
HEIGHT = 9.42 ft
LENGTH = 36.33 ft
LIFT POINT(LP) * 1.33 ft
Assumed door size = 6'-0" wide x T-4" high
fc (handling)=
fc (shipping)
fs =
CONC WT =
2200 psi
3500 psi
36000 psi
118 pcf
Section Properties:
(gross = 481476.61 in"4
Idoor = 176033.85 inA4
Sgross
Sdoort =
Sdoorb
Sabove door =
8518.69 inA3
5530.53 in"3
2167.62 inA3
267.73 inA3
Loads:
P = t/12 x width x height /2 = 1913.74 lbs
w = (52 psf + 25 psf) x width / 2 + ((t/12) x width /2 + (1/12) x height) x conc. wt. =
Total wt, = 81.00 kips
HANDLING
Load Factor =
Litt Point Reactions
Moments:
1.2
20.25 kips
Msupport = (P x LP + w x (LPr2/2) = 3438.10 ft-tbs
Mdoor = (w x 7.75A2)-Msupport = 26877.65 fl -lbs
Mmax+ _ (w x (Length-2*LP)A2/8) Msupport = 139613.00 fl -lbs
Mabove door =>
V4 = w x (Length/2-LP) - w x (edge of door dist.+door opening/2) =
Mad = V1*door opening/2 - w x door opening/2"22
1009.47 ft -Ib
12199.49 lbs
32055.83 ft -Ib
Tensile stresses:
ft support = (Msupport*12/Sgross)*LF = 5.81 psi OK
ft door = (Mdoor412/Sdoorb)*LF = 178.55 psi OK
ft max+ _ (Mmax+ *12/Sgross)*LF = 236.00 psi REINF.
ft ad -((-Mdoor"12/Sdoort)+(Mad*12/Sad))*LF = 1654.13 psi REINF.
Ft = 5 x .85 x sqrt(fc) = 199.34 psi
Steel Requirements:
As = M/(.9fy*d)
SHIPPING
Load Factor = 1.5
Tensile Stresses:
As support =
As door=
As max+ =
As ad =
0.01 inA2
0.11 inA2
0.56 inA2
0.79 inA2
ft support = (Msupport*12/Sgross)*LF = 7.26 psi OK
ft door= (Mdoor12/Sdoorb)*LF= 223.19 psi OK
ft max+ _ (Mmax+ "12/Sgross)*LF * 295.00 psi REINF.
ft ad = ((- Mdoor12/Sdoort)+(Mad*121Sad))*LF = 2067.66 psi REINF.
Ft = 5 x .85 x sqrt(fc) = 251.43 psi
Steel Requirements:
As = M/(.9fy"d)
As support =
As door =
As max+ _
Asad=
68d
0.02 inA2
0.13 inA2
0.70 inA2
0.99 inA2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
PROJECT: ROHN SHELTERS
CALCULATION OF STRESS IN SIDE WALL PANELS
DUE TO HANDLING AND SHIPPING
WIDTH = 10.33 ft
HEIGHT = 10.42 ft
LENGTH = 36.33 It
LIFT POINT(LP) = 1.33 ft
Assumed door size = 6'-0" wide x T-4" huh
fc (handling)=
fc (shipping) _
fs
CONC WT =
2200 psi
3500 psi
36000 psi
118 pcf
Section Properties:
(gross or 651666.87 inM
Idoor = 223070.97 104
Sgross =
Sdoort
Sdoorb =
Sabove door=
10423.33 in"3
7062.13 in"3
2386.98 in"3
684.37 in"3
Loads:
P = t/12 x width x height /2 = 2116.89 Ibs
w = (52 psf + 25 psf) x width / 2 + (4/12) x width /2 + 0/12) x height) x conc. wt.
Total wt. _
HANDLING
84.67 kips
Load Factor =
Lift Point Reactions =
Moments:
1.2
21.17 kips
Msupport = (P x LP + w x (LP)"2/2)
Mdoor = (w x 7.75"2)-Msupport
Mmax+ _ (w x (Length-2•LP)"2/8)-Msupport
Mabove door =>
V1 = w x (Length/2-LP) - w x (edge of door dist.+door opening/2) =
Mad it V1'door opening/2 - w x door opening/2"2/2 =
3743.08 ft-Ibs
27753.90 ft -lbs
144881.88 ft -lbs
Tensile stresses:
ft support =
ft door =
ft max+ =
Rad=
(Msupport-12/Sgross)'LF =
(Mdoor'12/Sdoorb)'LF =
(Mmax+'12/Sgross)'LF
((-Mdoor l2/Sdoort)+(Mad'12/Sad))"LF =
Ft = 5 x .85 x sgrt(fc) = 199.34 psi
Steel Requirements:
As = M/(.9fy'd)
SHIPPING
Load Factor =
Tensile Stresses:
ft support =
ft door =
ft max+ =
ft ad =
Steel Requirements:
As support =
As door=
As max+
Asad=
1.5
(Msupporrl2/Sgross)'LF =
(Mdoor'12/Sdoorb)'LF
(Mmax+ "12/Sgross)"LF =
((-Mdoor'12/Sdoort)+(Mad`12/Sad))"LF =
Ft = 5 x .85 x sgrt(f c) = 251.43
As = W(.9fy'd)
As support =
As door =
As max+ =
As ad =
psi
68e
5.17 psi
167.43 psi
200.16 psi
644.18 psi
0.01 in"2
0.10 in^2
0.52 1n"2
0.49 in"2
6.46 psi
209.29 psi
250.20 psi
805.22 psi
0.02 in"2
0.13 inA2
0.65 in"2
0.62 in"2
1048.81 ft -lb
12674.83 Ibs
33304.86 ft -Ib
OK
OK
REINF.
REINF.
OK
OK
OK
REINF.
PROJECT: ROHN SHELTERS
CALCULATION OF STRESS IN SIDE WALL PANELS
DUE TO HANDLING AND SHIPPING
WIDTH = 10.33 ft
HEIGHT = 11.1 ft
LENGTH = 36.33 ft
LIFT POINT(LP) = 1.33 ft
Assumed door size - 6'-0' wide x T-4" high
fc (handling)=
fc (shipping)
fs
CONC WT =
2200 psi
3500 psi
36000 psi
118 pcf
Section Properties:
(gross = 787755.46 InA4
Idoor 257284.96 inA4
Sgross =
Sdoort =
Sdoorb
Sabove door =
11828.16 inA3
7723.11 inA3
2575.78 inA3
1077.36 inA3
Loads:
P - t/12 x width x height /2 = 2255.04 Ibs
w = (52 psf + 25 psf) x width / 2 + ((t/12) x width /2 + (t112) x height) x conc. wt. _
Total wt. = 87.17 kips
HANDLING
Load Factor =
Lift Point Reactions =
Moments:
1.2
21.79 kips
Msupport = (P x LP + w x (LP)A2/2) = 3950.48 ft -lbs
Mdoor = (w x 7.75A2)-Msupport = 28349.74 ft-Ibs
Mmax+ _ (w x (Length-2•LP)A2/8) Msupport = 148464.72 ft-Ibs
Mabove door =>
V1 = w x (Length/2-LP) - w x (edge of door dist.+door opening/2) =
Mad = Vl•door opening/2 - w x door opening/2A2/2
1075.55 ft -Ib
12998.06 Ibs
34154.20 ft -Ib
Tensile stresses:
It support = (Msupport'12/Sgross)'LF = 4.81 psi OK
ft door = (Mdoor*12/Sdoorb)•LF = 158.49 psi OK
ft max+ _ (Mmax+ `12/Sgross)*LF = 180.75 psi OK
ft ad = ((-Mdoor"121Sdoort)+(Mad*12/Sad))`LF = 403.65 psi REINF.
Ft= 5x.85xsgrt(fc)= 199.34
Steel Requirements:
As = M/(.9fy`d)
SHIPPING
Load Factor = 1.5
Tensile Stresses:
As support =
As door
As max+ =
As ad =
psi
0.01 inA2
0.10 inA2
0.50 inA2
0.40 inA2
ft support = (Msupport•12/Sgross)*LF = 6.01 psi OK
ft door - (Mdoor12/Sdoorb)`LF = 198.11 psi OK
ft max+ _ (Mmax+ *12/Sgross)*LF = 225.93 psi OK
ft ad =((-Mdoor*12/Sdoort)+(Mad•12/Sad))'LF = 504.56 psi REINF.
Ft = 5 x .85 x sgrt(fc) = 251.43 psi
Steel Requirements:
As = M/(.9fy`d)
As support = 0.02 inA2
As door = 0.12 inA2
As max+ - 0.63 inA2
As ad = 0.50 inA2
68f
PROJECT: ROHN SHELTERS
CALCULATION OF STRESS IN SIDE WALL PANELS
DUE TO HANDLING AND SHIPPING
WIDTH = 12.00 ft
HEIGHT = 9.42 ft
LENGTH = 36.33 ft
LIFT POINT(LP) = 1.33 ft
Assumed door size = 6'-0" wide x 7-4" high
fc (handling)=
fc (shipping) =
fs
CONC WT =
2200 psi
3500 psi
36000 psi
118 pd
Section Properties:
'gross = 481476.61 in"4
'door= 176033.85 ln"4
Sgross =
Sdoort
Sdoorb =
Sabove door=
Loads:
P = t/12 x width x height /2 = 2223.12 Ibs
w = (52 psf + 25 psf) x width / 2 + ((t/12) x width /2 + (t/12) x height) x conc. wt. _
Total wt. =
HANDUNG
Load Factor =
Lift Point Reactions -
Moments:
89.75 kips
1.2
22.44 kips
8518.69 in"3
5530.53 inn
2167.62 inn
267.73 in"3
Msupport = (P x LP + w x (LP)"22) = 3940.94 ft-Ibs
Mdoor = (w x 7.75"2)-Msupport = 29476.94 ft-Ibs
Mmax+ _ (w x (Length_2"LP)"2/8)-Msupport = 153748.15 ft-Ibs
Mabove door =>
V1 = w x (Length/2-LP) - w x (edge of door dist.+door opening/2)
Mad = V1 *door opening/2 - w x door opening2112 =
1112.77 ft -Ib
13447.83 Ibs
35336.01 ft -Ib
Tensile stresses:
ft support = (Msupport'12/Sgross)'LF = 6.66 psi OK
ft door = (Mdoorl2/Sdoorb)"LF = 195.82 psi OK
ft max+ _ (Mmax+ "12/Sgross)'LF = 259.90 psi REINF.
ft ad =((-Mdoor12/Sdoort)+(Mad*12/Sad))'LF = 1823.78 psi REINF.
Ft = 5 x .85 x sqrt(fc) = 199.34 psi
Steel Requirements:
As = M/(.9fy'd)
SHIPPING
d=
d=
d=
d=
Load Factor = 1.5
Tensile Stresses:
111.04 in
111.04 in
111.04 in
18.04 in
As support =
As door =
As max+ =
Asad=
0.02 in"2
0.12 in"2
0.62 in"2
0.87 in"2
ft support = (Msupport'12/Sgross)'LF = 8.33 psi OK
ft door = (Mdoor`12/Sdoorb)"LF = 244.78 psi OK
ft max+ = (Mmax+ •12/Sgross)*LF = 324.87 psi REINF.
ft ad =((-Mdoor12/Sdoort)+(Mad'12/Sad))'LF = 2279.73 psi REINF.
Ft = 5 x .85 x sqrt(fc) = 251.43 psi
Steel Requirements:
As = M/(.9fyd)
d=
d
d=
d=
111.04 in
111.04 in
111.04 in
18.04 in
As support =
As door =
As max+ _
As ad =
0.02 In"2
0.15 in"2
•0.77 in"2
1.09 in"2
PROJECT: ROHN SHELTERS
CALCULATION OF STRESS IN SIDE WALL PANELS
DUE TO HANDLING AND SHIPPING
WIDTH = 12.00 ft
HEIGHT = 10.42 ft
LENGTH = 36.33 ft
LIFT POINT(LP) = 1.33 ft
Assumed door size = 6'-0" wide x 7'-4" high
fc (handling)=
fc (shipping) _
fs
CONC WT =
2200 psi
3500 psi
36000 psi
118 pcf
Section Properties:
(gross = 651668.87 inM
Idoor = 223070.97 inM
Sgross
Sdoort =
Sdoorb =
Sabove door=
10423.33 inA3
7062.13 inA3
2386.98 inA3
684.37 inA3
Loads:
P = t/12 x width x height /2 = 2459.12 Ibs
w = (52 psf + 25 psf) x width / 2 + ((t/12) x width /2 + (t/12) x height) x conc. wt. =
Total wt. = 93.55 kips
HANDLING
Load Factor=
Lift Point Reactions =
Moments:
1.2
23.39 kips
Msupport = (P x LP + w x (LP)"2/2) = 4289.61 ft -lbs
Mdoor = (w x 7.75"2)-Msupport = 30309.50 ft-Ibs
Mrnax+ _ (w x (Length-2'LP)"2/8)-Msupport = 158973.36 ft -lbs
Mabove door =>
V1= w x (Length/2-LP) - w x (edge of door dist.+door opening/2) =
Mad = Vi'door opening/2 - w x door opening/2142/2 =
1152.10 ft -Ib
13923.17 Ibs
36585.04 ft -Ib
Tensile stresses:
ft support = (Msupport`12/Sgross)*LF = 5.93 psi OK
ft door = (Mdoor'12/Sdoorb)'LF = 182.85 psi OK
ft max+ = (Mmax+'12/Sgross)'LF = 219.62 psi REINF.
ft ad =((-Mdoor12/Sdoort)+(Mad'12/Sad))'LF = 707.99 psi REINF.
Ft = 5 x .85 x sqrt(fc) = 199.34 psi
Steel Requirements:
As = W(.9fy'd)
As support =
As door =
As max+ =
As ad =
SHIPPING
0.02 inA2
0.11 inA2
0.57 inA2
0.54 inA2
Load Factor = 1.5
Tensile Stresses:
ft support = (Msupport'12JSgross)'LF = 7.41 psi OK
ft door = (Mdoor'12/Sdoorb)'LF = 228.56 psi OK
ft max+ _ (Mmax+ "12/Sgross)'LF = 274.53 psi REINF.
ft ad =((-Mdoor12/Sdoort)+(Mad'12/Sad))'LF = 884.98 psi REINF.
Ft = 5 x .85 x sqrt(fc) = 251.43 psi
Steel Requirements:
As = M/(.9fyYd)
As support =
As door =
As max+ _
Asad=
0.02 inA2
0.14 inA2
0.72 inA2
0.68 inA2
68h
PROJECT: ROHN SHELTERS
CALCULATION OF STRESS IN SIDE WALL PANELS
DUE TO HANDLING AND SHIPPING
WIDTH =
HEIGHT =
LENGTH =
LIFT POINT(LP)
Assumed door size =
12.00 ft
1110 ft
38.33 ft
1.33 ft
6'-0" wide x T-4" high
fc (handling)=
fc (shipping) =
fs
CONC WT =
2200 psi
3500 psi
38000 psi
118 pct
Section Properties:
(gross = 787755.46 in"4
Idoor = 257284.96 in'4
Sgross = 11828.16 inn
Sdoort = 7723.11 iM3
Sdoorb = 2575.78 in"3
Sabove door = 1077.36 in"3
Loads:
P = t/12 x width x height /2 = 2619.60 Ibs
w = (52 psf + 25 psf) x width / 2 + ((t/12) x width /2 + (t/12) x height) x conc. wt. =
Total wt. =
HANDLING
96.13 kips
Load Factor =
Lift Point Reactions =
Moments:
1.2
24.03 kips
Msupport - (P x LP + w x (LP)"2/2)
Mdoor = (w x 7.75"2)-Msupport
Mmax+ _ (w x (Length-2`LP)"2/8)-Msupport =
Mabove door =>
V1 = w x (Length/2-LP) - w x (edge of door dist+door opening/2) _
Mad = V1 `door opening/2 - w x door opening2"2/2
4526.70 ft-Ibs
30875.64 ft-Ibs
162526.50 ft-Ibs
Tensile stresses:
ft support =
ft door =
ftmax+=
ftad=
(Msupport`12/Sgross)"LF
(Mdoor"12/Sdoorb)`LF =
(Mmax+ `12FSgross)`LF
((-Mdoor`12/Sdoort)+(Mad'12/Sad))"LF
Ft= 5x.85xsgrt(fc)=
Steel Requirements:
As = M/(.9fy`d)
SHIPPING
Load Factor = 1.5
Tensile Stresses:
ft support =
ft door=
ft max+ =
ft ad =
Steel Requirements:
199.34 psi
As support =
As door =
Asmax+=
As ad =
(Msupport"12/Sgross)`LF =
(Mdoor"12/Sdoorb)`LF
(Mmax+ `12/Sgross)`LF =
((-Mdoor12/Sdoort)+(Mad"i 2/Sad))`LF =
Ft = 5 x .85 x sqrt(fc) = 251.43 psi
As = M/(.9fy`d)
As support
As door =
Asmax+=
As ad =
5.51 psi
172.61 psi
197.87 psi
442.78 psi
0.02 in"2
0.10 in"2
0.55 in"2
0.44 in"2
6.89 psi
215.76 psi
247.33 psi
553.47 psi
0.02 in"2
0.13 in"2
0.69 in"2
0.54 in"2
1178.85 ft -lb
14246.40 Ibs
37434.38 ft -Ib
OK
OK
OK
REINF.
OK
OK
OK
REINF.
PROJECT: ROHN SHELTERS
CALCULATION OF STRESS IN SIDE WALL PANELS
DUE TO HANDLING AND SHIPPING
WIDTH = 8.33 ft
HEIGHT = 9.42 ft
LENGTH = 26.33 ft
LIFT POINT(LP) = 1.33 ft
Assumed door size = 6'-0" wide x T-4" high
fc (handling)=
fc (shipping) =
fs =
CONC WT =
2200 psi
3500. psi
36000 psi
118 pcf
Section Properties:
(gross = 481476.61 in"4
Idoor = 176033.85 in"4
Sgross =
Sdoort =
Sdoorb =
Sabove door =
8518.69 in"3
5530.53 103
2167.62 in"3
267.73 in"3 '
Loads:
P = t/12 x width x height /2 = 1543.22 lbs
w = (52 psf + 25 psf) x width / 2 + ((t/12) x width /2 + (t/12) x height) x corn. wt. _
Total wt. = 52.82 kips
HANDLING
Load Factor =
Lift Point Reactions =
Moments:
1.2
13.20 kips
Msupport = (P x LP + w x (LP)"2/2)
Mdoor = (w x 7.75"2)-Msupport
Mmax+ _ (w x (Length-2*LP)"2/8) Msupport =
Mabove door =>
V1 - w x (LengtW2-LP) - w x (edge of door dist+door openingl2)
Mad = VI *door opening/2 - w x door openingl2"2/2 =
2835.89 ft -lbs
23764.74 ft -lbs
59197.45 ft-Ibs
Sdoortb = 14931.44 in"3
885.77 ft -Ib
6275.65 Ibs
14841.00 ft -Ib
Tensile stresses:
ft support = (Msupport*12/Sgross)*LF = 4.79 psi OK
ft door = (Mdoor12/Sdoorb)*LF = 157.87 psi OK
ft max+ _ (Mmax+ *12/Sgross)*LF = 100.07 psi OK
ft ad =((-Mdoor*12/Sdoort)+(Mad*12/Sad))*LF = 736.34 psi REINF.
Ft = 5 x .85 x sqrt(fc) = 199.34 psi
Steel Requirements:
As = M/(.9fy*d)
SHIPPING
Load Factor = 1.5
Tensile Stresses:
As support =
As door =
As max+ _
Asad=
0.01 in"2
0.10 in"2
0.24 in"2
0.37 in"2
ft support = (Msupport*12/Sgross)`LF = 5.99 psi OK
ft door = (Mdoor*12/Sdoorb)*LF = 197.34 psi OK
ft max+ _ (Mmax+ *12/Sgross)`LF = 125.08 psi OK
ft ad =((-Mdoor`12/Sdoort)+(Mad*12/Sad))*LF = 920.43 psi REINF.
Ft = 5 x .85 x sqrt(fc) = 251.43 psi
Steel Requirements:
As = M/(.9fy`d)
As support = 0.01 in"2
As door = 0.12 in"2
As max+ = 0.30 in"2
As ad = 0.46 in"2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
PROJECT: ROHN SHELTERS
CALCULATION OF STRESS IN SIDE WALL PANELS
DUE TO HANDLING AND SHIPPING
WIDTH = 8.33 ft
HEIGHT = 11.1 ft
LENGTH = 28.33 ft
LIFT POINT(LP) = 1.33 ft
Assumed door size = 6'-0" wide x T-4" high
fc (handling)=
fc (shipping) _
fs
CONC WT =
2200 psi
3500 psi
36000 psi
118 pcf
Section Properties:
(gross = 787755.46 inA4
(door
Sgross = 11828.16 inA3
Sdoort = 7723.11 inA3
Sdoorb = 2575.78 inA3
Sabove door = 1077.36 In43
Loads:
P = t/12 x width x height /2 = 1818.44 Abs
w = (52 psf + 25 psf) x width / 2 + ((t/12) x width /2 + (t/12) x height) x conc. wt. _
Total wt. = 61.21 kips
HANDLING
Load Factor =
Lift Point Reactions =
Moments:
1.2
15.30 kips
Msupport = (P x LP + w x (LP)A2/2) =
Mdoor = (w x 7.75"2)-Msupport
Mmax+ _ (w x (Length-2*LP)"218)-Msupport =
Mabove door =>
V1 = w x (Length/2-LP) - w x (edge of door dist.+door opening/2) _
Mad = V1*door opening/2 - w x door opening/2'2/2 =
3260.38 ft -Abs
25324.72 ft -Abs
75141.79 ft -Abs
951.85 ft -Ib
7695.67 Abs
18803.70 ft -Ib
t Tensile stresses:
R support = (Msupport*12/Sgross)*LF = 3.97 psi OK
ft door = (Mdoor*12/Sdoorb)*LF = 141.58 psi OK
ft max+ _ (Mmax+ *12/Sgross)*LF = 91.48 psi OK
ft ad =((-Mdoor*12/Sdoort)+(Mad*12/Sad))*LF = 204.11 psi REINF.
Ft = 5 x .85 x sqrt(fc) = 199.34 psi
Steel Requirements:
As = M/(.9fy*d)
SHIPPING
Load Factor = 1.5
Tensile Stresses:
As support =
As door =
Asmax+=
Asad=
0.01 inA2
0.09 inA2
0.25 inA2
0.22 inA2
ft support • (Msupport*12/Sgross)*LF = 4.96 psi OK
ft door = (Mdoor*12/Sdoorb)*LF = 176.97 psi OK
ft max+ _ (Mmax+ *12/Sgross)*LF = 114.35 psi OK
ft ad =((-Mdoor12/Sdoort)+(Mad*12/Sad))*LF = 255.14 psi REINF.
Ft = 5 x .85 x sqrt(fc) = 251.43 psi
Steel Requirements:
As = M/(.9fy*d)
As support =
As door
As max+ _
As ad =
68k
0.01 inA2
0.11 inA2
0.32 inA2
0.27 in^2
PROJECT: ROHN SHELTERS
CALCULATION OF STRESS IN SIDE WALL PANELS
DUE TO HANDLING AND SHIPPING
WIDTH = 12.00 ft
HEIGHT = 9.42 ft
LENGTH = 24.33 ft
LIFT POINT(LP) = 1.33 ft
Assumed door size = 6'-0" wide x 7'-4" high
fc (handling)=
fc (shipping) =
fs
CONC WT=
2200 psi
3500 psi
36000 psi
118 pcf
Section Properties:
(gross = 481476.61 in"4
Idoor = 176033.85 in"4
Sgross =
Sdoort
Sdoorb =
Sabove door =
Loads:
P=t/12xwidth xheight /2= 2223.12 Ibs
w = (52 psf + 25 pst) x width / 2 + ((t112) x width /2 + (t/12) x height) x conc. wt. =
Total wt. = 63.04 kips
HANDLING
Load Factor =
Lift Point Reactions =
Moments:
1.2
15.76 kips
Msupport = (P x LP + w x (LP)A2/2) =
Mdoor = (w x 7.75"2)-Msupport =
Mmax+ = (w x (Length-2•LP)"2/8) Msupport =
Mabove door =>
V1 = w x (Length/2-LP) - w x (edge of door dist.+door opening/2) =
Mad = V1'door opening/2 - w x door opening/2A2/2
8518.69 in"3
5530.53 in"3
2167.62 in"3
267.73 in"3
3940.94 ft -lbs
29476.94 ft -lbs
61377.12 ft -lbs
1112.77 ft -Ib
6771.21 lbs
15306.15 ft -Ib
Tensile Stresses:
ft support = (Msupport12/Sgross)"LF = 6.66 psi OK
ft door = (Mdoor•12/Sdoorb)'LF = 195.82 psi OK
ft max+ = (Mmax+ *12/Sgross)*LF = 103.75 psi OK
ft ad =((-Mdoor"121Sdoort)+(Mad'l2/Sad))'LF = 746.49 psi REINF.
Ft = 5 x .85 x sgrt(t'c) = 199.34 psi
Steel Requirements:
As = M/(.9fy"d)
SHIPPING
Load Factor =
Tensile Stresses:
d=
d=
d=
d=
1.5
111.04 in
111.04 in
111.04 in
18.04 in
As support =
As door =
As max+ =
As ad =
0.02 in"2
0.12 in"2
0.25 in"2
0.38 in"2
ft support = (Msupport'12/Sgross)'LF = 8.33 psi OK
ft door = (Mdoor12/Sdoorb)'LF - 244.78 psi OK
ft max+ _ (Mmax+ •12/Sgross)'LF = 129.69 psi OK
ft ad =((-Mdoor•12/Sdoort)+(Mad'12/Sad))'LF = 933.11 psi REINF.
Ft = 5 x .85 x sgrt(Pc) = 251.43 psi
Steel Requirements:
As = M/(.9fy"d)
d=
d
d=
d=
111.04 in
111.04 in
111.04 in
18.04 in
681
As support =
As door =
As max+ _
As ad =
0.02 in"2
0.15 in"2
0.31 In"2
0.47 in"2
PROJECT: ROHN SHELTERS
CALCULATION OF STRESS IN SIDE WALL PANELS
DUE TO HANDLING AND SHIPPING
WIDTH = 12.00 ft
HEIGHT = 11.10 ft
LENGTH - 24.33 ft
LIFT POINT(LP) = 1.33 ft
Assumed door size = 6'-0" wide x 7.-4" high
fc (handling)=
fc (shipping) _
fs
CONC WT =
2200 psi
3500 psi
36000 psi
118 pcf
Section Properties:
igross = 787755.46 in"4
(door = 257284.96 inA4
Sgross = 11828.16 inA3
Sdoort = 7723.11 inA3
Sdoorb = 2575.78 inA3
Sabove door = 1077.36 inA3
Loads:
P = t/12 x width x height /2 = 2619.60 Ibs
w = (52 psf + 25 psf) x width / 2 + ((t/12) x width /2 + (t/12) x height) x conc. wt.
Total wt. = 67.84 kips
HANDLING
Load Factor =
Lift Point Reactions =
Moments:
1.2
16.96 kips
Msupport = (P x LP + w x (LP)A2/2) _
Mdoor = (w x 7.75"2)-Msupport
Mmax+ _ (w x (Length-2'LP)"2/8) Msupport
Mabove door =>
V1 = w x (Length/2-LP) - w x (edge of door dist+door opening/2) _
Mad = V1*door opening/2 - w x door opening/2A2/2 =
4526.70 ft-Ibs
30875.64 ft -lbs
64670.16 ft -lbs
1178.85 ft -Ib
7173.30 Ibs
16215.08 ft -Ib
Tensile stresses:
ft support - (Msupport*12/Sgross)'LF = 5.51 psi OK
ft door = (Mdoor*12/Sdoorb)*LF = 172.61 psi OK
ft max+ = (Mmax+ *12/Sgross)*LF = 78.73 psi OK
ft ad =((-Mdoor"121Sdoort)+(Mad'12/Sad))'LF = 159.16 psi OK
Ft= 5x.85xsgrt(fc)= 199.34 psi
Steel Requirements:
As = M/(.9fy"d)
SHIPPING
Load Factor = 1.5
Tensile Stresses:
As support =
As door =
As max+ =
Asad=
0.02 inA2
0.10 inA2
0.22 in"2
0.19 inA2
ft support = (MsupportM12/Sgross)'LF = 6.89 psi OK
ft door = (Mdoorl 2/Sdoorb)*LF - 215.76 psi OK
ft max+ _ (Mmax+ *12/Sgross)"LF = 98.41 psi OK
ft ad =((-Mdoor"12/Sdoort)+(Mad'12/Sad))*LF = 198.95 psi OK
Ft = 5 x .85 x sqrt(fc) = 251.43 psi
Steel Requirements:
As = W(.9fy"d)
As support =
As door =
As max+
Asad=
68m
0.02 inA2
0.13 inA2
0.27 inA2
0.24 inA2
8. Shelter Transport (cont'
Lifting Plate
load capacity
Design for 8 1/2 ton & 12 ton
f c = 4,000psi (28 day); for handling use fci = 3,000psi
Re: PCI DESIGN HANDBOOK & ACI -349
Handling factor = 1.2
8 1/2 ton design
P = 17K assume angle = 70°
P = 17 x 1.2 = 20.4
20.4
rod & clevis:
7.42K
20'
21.7K
70'
Use 1"(8 112 ton) clevis
Re: M°MASTER'S CATALOG pg 426 (1989)
43
11
F„=0.22 F„
Fb=0.75FY
Fu > 13.81 1.22
F,, > 17.351.75
V = 21.712 = 10.85K
M = 21.712x(4-311116) = 1.70K."
2
A = 0.78541'2
1" dia bar l = 0.0491n4
S = 0.098"
fy = 10.85 / 0.7854 = 13.81 ksi
ft, = 1.7010.098 = 17.35ksi
= 62.8ksi
= 23.13ksi
Use A572 GR. 50 1" dia rod
69
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
8. Shelter Transport (cont'd)
Lifting Plate (cont'd)
8 1/2 ton design (corgi)
shear capacity
horizontal shear
classify lifting plate as an insert
V, = 1.4(7.42) = 10.4K
1 a"
vertical shear
cpV, = (0.85)(0.85)4 sqrt(3000)(3 1/2)
(8.75 + 13.75)2 = 24.9K
cpV, = > V, therefore QE
FAILURE PLANE
t
16" ! 12"
V„ = 20.4(1.4) = 28.6K
shear friction:
A, = 0.44 + 0.12(7 + 8.5)1112 = 0.601n2
= 0.60(60){(1.4 x 0.85) Sin 45 + Cos 45} = 55.7K
9V„ = 55.7K > 0.2(3)(7 + 8.514 = 52.6K
Sin 45
cpV„ = 0.85(52.6) = 44.7K > V„
70
8. Shelter Transport (cont'd)
Lifting Plate (cont'd)
8 1/2 ton design (cont',)
r
s
co
rAlli DOOR
.
41
co
Co
0
try shear friction:
V„=A„fyu
A„ = 2(0.31) + (0.44) + 0.12(18.5) = 1.25
12
fy = 60ksi
u = 1.4(.85) = 1.19
V„ = 1.25(60) {1.19 (Sin 45) + 803.45} = 116K
> V, = 0.2(3) (5.5 + 18.5)4 = 81.5K
sin 45
WV„ = 0.85(81.5) = 69.2K > V, = 28.6K OK
71
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
8. Shelter Transport (contl)
Lifting Plate (cont'd)
8 1/2 ton (cont'd)
bearing pressure
vertical P = 20.4K
#'G = 3,000psi Fp = 0.7(0.85 x 3,000 x A1) / 1.4 = 1.28 Al
AREQ = 20.411.28 = 15.9h2
APROV = 3 7/8 x 4 3/4 = 18.02 a ARE. gl
check plate
P = 17 x 1.2 = 20.4K
fp = 20.41 18.4 = 1.11 ksi
4"
t = 0.61" Use 5/8" plate
horizontal
P = 7.4x1.2 = 8.9"
AREQ = P 11.28 = 7fn2
APROV = 1 118(12)2 = 27in2 QK
fp = 8.9127 = 0.33ksi
M = 0.33(1.125)212 = 0.21"'x'
S = 0.0077''
t = 0.22"
.•. use 3/8 plate
72
T = fgb2
12
T = 0.56(1.11)(4)2 = 27ksi
t2
8. Shelter Transport (cont'cl)
Lifting Plate (cont'd)
8 1/2 ton (cont'd)
welds
vortical
1" dia bar to sideplate:
P = 21.712 = 10.85K
circum. 1" dia bar = 3.14"
fw = 10.8513.14 = 3.45Kr
1/4" fillet
side plate to top plate:
P = 10.2K
w = 3 112"
w = 2.9K1"
1/4" fillet weld
horizontal
side plate to back plate:
P = 7.4212 = 3.71K
Iw = 12
fw = 0.31"'"
3/16" fillet
73
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
8. Shelter Transport (cont'si)
Lifting Plate (cont'd)
12 ton
P = 24K
P = 24 x 1.2 = 28.8K
rod & clevis
use 1 114" shackle (12 ton)
Re: M`MASTER CATALOG pg 426 (1989)
514.
= 15.311.227 = 12.5ksi
fb = 0.9610.1918 = 4.99ksi
28.8K
10.5K
20'
30.6K
V = 30.6K/2 = 15.3K
M = 15.3(4.625 - 4.5)(1/2) = 0.96'
1 114" dia pin
A = 1.2271n2
I = 0.1198'"4
8 = 0.19181n3
Use 1 114" dia rod. A572. GR. 50 steel
Fy = 65(.22) = 14.3ksi V = 17.5K
Fb = 50(.75) = 37.5ksi M = 7.19K"
74
8. Shelter Transport (cont'd)
Lit Plate (cont'4)
12 ton (QQnt'd)
horizontal
Vu = 10.5 x 1.4 = 14.7K
cpVc = 24.9K > Vu QK
vertical
= 28.8K x 1.4 = 40.3K
cpV„ = 44.7K > V„ all
bearing pressure
vertical
P = 28.8
A = 28.811.28 = 22.5n2
APRox = 3 718 x 5 718 = 22.8°i2
fp = 28.8122.8 = 1.27ksi
plate:
M = 1.27(0.56)(4.625J2 = 27ksi t = 0.75"
t2
J,orizontal
P = 10.5K
AREQ = 10.511.2$ = 8.2`i2 < ^PRov = 27"fP = 10.5127 = 0.39ksi
M = 0.39(1.125)2/ 2 = 0.247Kr
5 = 0.091°'3
t = 0.23"
Use 3/8" plate
75
Use 3/4" plata
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6. Shelter Transport (cont'd)
Jift Plate (cont'd)
12 ton (cont'd)
welds
vejical
1 1/4" dia bar:
P = 30.6K / 2 = 15.3K
circum. = 3.9271' = Iw
fw = 3.9'
5/16" fillet
side plate to top plate:
P = 14.4K
L = 3.5"
fw = 4.1'
5/16" fillet
horizontal
side plate to back plate:
P = 10.5K / 2 = 5.25K
L = 12
fw, = 0.44'
3/16" fillet
76
9. Fire Rating
UBC requires 3.8" thick sand - lightweight concrete for a 2 hour fire rating.
The shelter has a 4" thick walls and roof. Therefore the 2 hour rating is provided in the roof
and wall members.
10. Thermal Efficiency
Wall
1" thick insulation
outside air film
4" sand-It.wt. conc 0.19x4
1" foam board insulation
314" fiberglass faced plywood
inside air film
1 1/2" thick insulation
outside air film
4" sand-It.wt. conc 0.19x4
1 1/2" foam board insulation
3/4" fiberglass faced plywood
inside air film
2" thick insulation
outside air film
4" sand-It.wt. conc 0.19x4
2" foam board insulation
3/4" fiberglass faced plywood
inside air film
2 1/2" thick insulation
outside air film
4" sand-It.wt. conc 0.19x4
2 1/2" foam board insulation
3/4" fiberglass faced plywood
inside air film
3" thick insulation
outside air film
4" sand-It.wt. conc 0.19x4
3" foam board insulation
3/4" fiberglass faced plywood
inside air film
Roof
outside air film
4" sand-It.wt. conc. 0.19x4
4" foam board insulation
3/4" fiberglass faced plywood
inside air film
= 0.17
= 0.76
= 5.0
= 0.94
=
R = 7.55
U = 1/R=0.132
= 0.17
= 0.76
= 7.5
= 0.94
=
R = 10.05
U = 1/R = 0.100
= 0.17
= 0.76
= 10.0
= 0.94
= !$
R = 12.55
U = 1/R = 0.080
= 0.17
= 0.76
= 12.5
= 0.94
=
R = 15.05
U = 1/R = 0.066
= 0.17
0.76
= 15.0
= 0.94
=9.0$
R = 17.55
U = 11R = 0.057
= 0.17
= 0.76
= 20.0
= 0.94
= DAD
R = 22.55
U = 1/R = 0.044
78
11. Wall Openings
1. Opening Sizes
Door: 3'-0" x 7'-O"
3'-6" x 7'-O"
4'-O" x 7'-0"
6'-0" x 7'-0"
AC Window Unit: 18"high x 28"wide
HVAC: case supply return space betw. opn'gs
1 8x20 12x20 20
2 8x28 14x28 18
3 10 x30 16 x 30 30
Wave Guide Plate:
4 x 12 - 17"high x 20 3/4"wide
4 x 8 -11 "high x 20 3/4"wide
4 x 4- 4"high x 20 3/4"wide
Exhaust Fan: (one high/one low)
12" sq. -12112"x12112"
16" sq. -16112"x16112"
18" sq. - 18 1/2" x 18 1/2"
20" sq. - 20 1/2" x 20 1/2"
0
0
1
1
1
1
1
1
1
1
Louver: (no other openings in combination with louver) 111
42 112"wide x 50 1/2"high
79
1
1
1
1
1
1
1
1
1
1
11. WALL OPENINGS (cont'd)
2. Opening Combinations
- Door and AC
- Door and Exhaust
- (2) HVAC and Wave Guide
- Maximum allowable biockout available
3. End Wall Sizes
HEIGHT
W 8'-0"
I $ x x x
D 9LC x x x
E 11'-8" x x x
x - indicates the shelter is available in that size
4. Out of plane design for end wall
4.1 w/ door
max. wind load = 51 psf
Ht. = 9'-8"
M/ft. = 51 x (9.67)2 = 596v
8
flexure: door size = 6'-0"
8'-0" wide shelter
M = 596 x 8/2 = 2384'' x 1.3 = 3100"
p = 3.1x12 = 1
.9(60)12(2)2(1-8.85 x p) 69.7(1-8.85 x p)
p = 0.01686 As = 0.40 in2Ift
10'-0" wide shelter
M = 596 x 10/4 = 1490" x 1.3 = 1937v
p = 1.937 x 12 = 1
.9(60)12(2)2(1-8.85 x p) 111.5(1-8.85 x p)
p = 0.00982 As = 0.24 int/ft
12'-0" wide shelter
M = 596 x 12/6 = 1192v x 1.3 = 1550v
p = 1.55x12 = 1
.9(60)12(2)2(1-8.85 x p) 139.4(1-8.85 x p)
p = 0.0077 As = 0.18 in2/ft
11. WALL OPENINGS (cont'd)
shear:
cpV, = (.85)22 x sqrt(4000) x 2(12) = 2190#
V„/ft = 51(1.3)9.67/2 = 321#"
V„ = 321 x 812 = 1282# < (Wu = 2190# okay
4.2 w/ penetrations
max. Toad:
0.75 pba1 = 0.75(0.85)2(4/60)87(87 + 60) = 0.02138
As = 0.513 int/ft
Map
Wal
= 0.9(60)12(2)2(0.02138)(1-8.85x0.02138) = 44.91('
= 44.9 x 8 = 246#" = 51 psf x 4.8'
12 x 1.3 x (9.67)2
Therefore 3/4 of the shelter width_ may be openings (max),
10
0
0
11
0
0
12
7
8
9
©
©
0
4
5
6
0
0
4" THICK
cr
Nr
1
2
3.5' I
3
7.0' !
13.9 K
(SEE ENDWALL DESIGN)
MEM CI A(in2) 166 y,(k) m(k')
1 10 40 333 3.68 4.48
2 10 40 333 6.46 6.34
3 10 40 333 3.75 4.78
4 10 40 333 3.56 4.22
5 10 40 333 5.81 7.05
6 10 40 333 4.53 5.30
7 '12 48 576 2.94 5.41
8 12 48 576 3.40 6.40
9 12 48 576 2.13 4.22
10 12 48 576 2.60 5.30
See Attached Computer Output For Model of In -Plane Toads
81
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
End Wall With Openings
Lateral Design
Units Option : US Standard
AISC Code Checks : No
Shear Deformation: No
P -Delta Effects : No
Redesign : No
Edge Forces : No
A.S.I.F. : 1.333
Node Boundary Conditions
No X-Coord Y-Coord X-dof Y-dof Rotation Temp.
(ft)-- (ft) (in,Klin)----(in,Kfin)----(r,K-ft/r) (F)--
1 0.00 0.00 R R 1 0.00
2 3.50 0.00 R 1 0.00
3 7.00 0.00 R 1 0.00
4 0.00 3.34 R 0.00
5 3.50 3.34 R 0.00
6 7.00 3.34 R 0.00
7 0.00 4.92 0.00
8 3.50 4.92 0.00
9 7.00 4.92 0.00
10 0.00 7.25 0.00
11 3.50 7.25 0.00
12 7.00 7.25 0.00
Material Elastic Poisson's Thermal Weight Yield Stress
Label Modulus Ratio Coefficient Density (Fy)
(Ksi) (F) (K/ft3) (Ksi)
1 2675.00 0.30000 0.65000 0.118 1.000
Section Database Matl. Area Moment of As yly
Label Shape Set Inertia Coef
(in" 2) (inM)
COLUMN 1 40.00 333.000 1.20
BEAM 1 48.00 576.000 1.20
81a
End Wall With Openings
Lateral Design
I J I Releases J End Offsets
No Node Node Section x y z x y z Sec Sway I J Length
(in) ----(in) (ft) --
1 4 - 7 COLUMN 1.58
2 5 - 8 COLUMN 1.58
3 6 - 9 COLUMN 1.58
4 7 - 10 COLUMN 2.33
5 8 - 11 COLUMN 2.33
6 9 - 12 COLUMN 2.33
7 7 - 8 BEAM 3.50
8 8 - 9 BEAM 3.50
9 10 - 11 BEAM 3.50
10 11 - 12 BEAM 3.50
Panel Panel Comers Matl
Number UL UR LR LL Thickness Set
(m)
1 4 5 2 1 4.000 1
2 5 6 3 2 4.000 1
BLC Basic Load Case Load Totals
No. Description Nodal Point Dist.
1 LATERAL 1
Nodal Loads, BLC 1: LATERAL
Node
Number Global X Global Y Moment
(K)(K-ft)---
12 13.900 0.000 0.000
Load Combination Self Wt BLC BLC BLC BLC BLC W E
No. Description Dir Fac Fac Fac Fac Fac Fac DYNA S V
1 lateral endwall 1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
End Wall With Openings
Lateral Design
Load Combination is 1 : lateral endwall
Nodal Displacements
Node Global X
(in)
1
2
3
4
5
6
7
8
9
10
11
12
0.00000
0.00222
0.00306
0.00498
0.00407
0.00466
0.01114
0.01118
0.01143
0.02925
0.03041
0.03348
Load Combination is 1 :
Reactions
Global Y
(in)
0.00000
-0.00000
- 0.00000
0.00208
-0.00047
-0.00193
0.00298
-0.00030
-0.00299
0.00354
- 0.00018
-0.00368
lateral endwall
Rotation
(rad)
0.00000
0.00000
0.00000
-0.00000
-0.00000
- 0.00000
-0.00040
-0.00031
-0.00046
-0.00037
-0.00021
- 0.00045
Node Global X
(K)
1
2
3
4
5
6
Totals
-13.90000
0.00000
0.00000
0.00000
0.00000
0.00000
-13.90000
Load Combination is 1 :
Member End Forces
Global Y
(K)
-14.11361
3.89065
10.22297
0.00000
0.00000
0.00000
-0.00000
lateral endwall
Moment
(K -ft)
0.00000
0.00000
0.00000
4.48238
6.33950
4.77509
15.59696
Nodes 1 -End J -End
No I 3 Axial Shear Moment Axial Shear Moment
(K) (K) (K -ft) (K) (K) (K -ft) --
1 4 - 7 -5.07 3.68 4.48 5.07 -3.68 1.34
2 5 - 8 -0.94 6.46 6.34 0.94 -6.46 3.87
3 6 - 9 6.01 3.75 4.78 -6.01 -3.75 1.15
4 7 - 10 -2.13 3.56 4.07 2.13 -3.56 4.22
5 8 - 11 -0.47 5.81 6.50 0.47 -5.81 7.05
6 9 - 12 2.60 4.53 5.25 -2.60 -4.53 5.30
7 7 - 8 -0.12 -2.94 -5.41 0.12 2.94 -4.87
8 8 - 9 -0.77 -3.40 -5.50 0.77 3.40 -6.40
9 10 - 11 -3.56 -2.13 -4.22 3.56 2.13 -3.23
10 11 - 12 -9.37 -2.60 -3.82 9.37 2.60 -5.30
81c
End Wall With Openings
Lateral Design
Load Combination is 1 : lateral endwall
Panel Corner Forces
Panel UL UR LR LL
No X Y X Y X Y X Y
(K) (K) (K) (K) (K) (K) (K) (K)--
1 3.68 5.07 5.80 7.20 4.42 1.84 -13.90 -14.11
2 0.67 -6.26 3.75 -6.01 -0.00 10.22 -4.42 2.05
81d
11. WALL OPENINGS (contsd)
4 x 10 section:
Vu = 6.46k
Mu = 7.05k
pVV = (0.85)2(2) {sgrt(4000)}(4)8.5 = 3107#
shear: cpV, = 0.85(0.04)(60)(8.5) = 4335#
4
cpV„ = 3107 + 4335 = 7442# >Vu = 6460#
Therefore 4x4 - W4xW4 WWF is okay
flexure: p = 7.05 x 12 = 1
.9(60)4(8.5)2(1-8.85 x p) 184(1-8.85 x p)
p = 0.00517 As=0,19 int
4 x 12 section:
Vu = 3.40'
Mu = 6.40k'
shear:
cpVG = (0.85)2(2){ SQRT(4000)}4(10.5) = 3.84 k > Vu
Min. Shear Reinf. Is Available
Therefore 4x4-W4xW4WNFisokay
flexure:
p = 6.40x12 = 1
.9(60)4(10.5)2(1-8.85 x p) 310(1-8.85 x p)
p = 0.00332
As = 0.00332(4)10.5 = g.,1,12
82
11. WALL OPENINGS (cont'd)
4. Out - of - Plane (cont'd)
4.3 ppterrnjne Allowable Amount of Openings W/ Various Wind Speeds
If ratio of concrete to openings = 1 : 1.5
Assume:
#5/ft Ai = 0.31 in2/ft --> p = 0.31 / (2)(12) = 0.01292
(or 244)
Flexure
Mau = 0.9(60)(2)2 12(0.0129)(1-8.85 x .0129)
= 29.6k.
Wal = 29.6 x 8 = 1621r
12 x 1.3 (9.67)2
p = 51 psf
162 = 3.17
51
Use 1:2 Ratio Of Concrete To Openings
Shear
PVC = (0.85)2(2),14000 (2)(12) = 2193°
WSH = Ilk x_2_ = 348''>W,
1.3 9.67
.•. flexure controls
83
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
11. WALL OPENINGS (cont'd)
4. Out - of - Plane (cont'd)
4.4 Check in - Plane Loads
Wind
P (Psf)
51x36.3x11.114x1.3
Seismic
Shear © top
of wall (k)
6.68k
—> Use narrowest width since that allows the least concrete available to resist
Toad.
HEIGHT
roof wt = 8.33(36.3)(4.75)118 = 14.12 Q'=Q" 1,QLQf 1 '
12
snow = 50 x 8.33(36.3) = 15.12
wall = (H)/2(4112)118(36.3)2 = 12.85 14.28 15.23
W = 42.09 43.52 44.47
Zone 4
V = 0.556(0.54)(W/2)(1.1)(1.3) = 9.03k 9.34k
84
9_54k
11. WALL OPENINGS (cont'd)
5. in plane design of end wall
5.1 w/ door opening
8'-O" wide x 8'-0" (+12") high end wall:
4'-0" wide door (Re. computer output attached)
flexure:
Mu =
33.2' X 12 = 398"
p = 398 = 1 = 0.00377
.9(60)4(22.5)2(1-8.85 x p) 275.5(1-8.85 x p)
ATOT = (Asm = 0.38) + (At = 2.00 x 1.3 / 54 x 2) = 0.404n2
#6 (or 244)
p = 398 = 1 = 0.00723
.9(60)4(16.5)2(1-8.85 x p) 148 (1-8.85 x p)
ATOT = (ASm = 0.27) + (At = 5.1 x 1.3 / 54 x 2) = 0.33in2
#6(or 244)
M„ = 3.24k' x 12 = 38.9'
p = 38.9 = 1 = 0.00973
_9(60)4(4.5)2(1-8.85 x p) 112(1-8.85 x p)
ATOT = (Asm = 0.08) + (At = 2 x 1.3/54 x 2) = 0.104in2
#5(or 244)
shear:
member 1 & 2 V„ = 4.56k
cpV, = (.85)SQRT(4000)4(22.5).85 = 4.1k
(Ns) = (bM,)50/f,, = 0.0033 s = 4" Av = 0.0133
use 4x4 - W4xW4 WWF for shear reinforcement
member 3 Vu = 10.97k
cpV, = (.85)SQRT(4000)4(16.5)(.85)(2) = 6.0k
cpV` = 0.85(0.Q4)(60)(16.5) = 8.42k
4
min = 6 + 8.42 = 14.42k > V„
use 4x4 - W4xW4 WWF for shear reinforcement
See Attached Computer Output For Model Of In -Plane Loads
85
8' x 9' Endwall with 4' x 7' Door Opng
Lateral Design
Units Option : US Standard
AISC Code Checks : No
Shear Deformation: No
P -Delta Effects : No
Redesign : No
Edge Forces : No
A.S.I.F. : 1.333
Node
No X-Coord
(ft)
Boundary Conditions
Y-Coord X-dof Y-dof Rotation
(ft) (in,Klin)----(in,K/in)---(r,K-f /r)
1 0.00 0.00 R R
2 6.00 0.00 R
3 0.00 8.00
4 6.00 8.00
Temp.
(F)--
0.00
0.00
0.00
0.00
Material
Label
Elastic Poisson's Thermal
Modulus Ratio Coefficient
(Ksi) (F)
1 2675.00 0.30000 0.65000
Weight Yield Stress
Density (Fy)
(K/ft3) (Ksi)
0.118 36.000
Section
Label
side
top
bottom
Database Matl. Area Moment of As y/y
Shape Set inertia Coef
(in^2) (in^4)
1 96.00 4608.000 1.20
1 72.00 1944.000 1.20
1 24.00 72.000 1.20
I J I Releases J
No Node Node Section xyz x y z
1
2
3
4
1
2
3
1
- 3
- 4
- 4
- 2
side
side
top
bottom
End Offsets
Sec Sway I J Length
(in) (in) (ft) -
BLC Basic Load Case Load Totals
No. Description
Nodal Point Dist.
1 lateral 1
85a
8.00
8.00
6.00
6.00
8' x 9' Endwall with 4' x T Door Opng
Lateral Design
Nodal Loads, BLC 1: lateral
Node
Number Global X Global Y Moment
(K) (K) (K -ft) ----
3 9.030 0.000 0.000
Load Combination Self Wt BLC BLC BLC BLC BLC W E
No. Description Dir Fac Fac Fac Fac Fac Fac DYNA S V
1 lateral endwall 1 1
Load Combination is 1 : lateral endwall
Nodal Displacements
Node Global X Global Y Rotation
(in)- (in) (rad)
1 0.00000 0.00000 -0.00245
2 0.00502 -0.00000 -0.00237
3 0.19528 0.00410 -0.00105
4 0.19361 -0.00410 -0.00100
Load Combination is 1 : lateral endwall
Reactions
Node Global X Global Y Moment
(K) (K) (K -ft)
1 -9.03000 -12.04000 0.00000
2 0.00000 12.04000 0.00000
Totals -9.03000 0.00000 0.00000
Load Combination is 1 : lateral endwall
Member End Forces
Nodes 1 -End J -End
No I J Axial Shear Moment Axial Shear Moment
(K)- (K) (K -ft) (K)- (K) (K -ft) --
1 1 - 3 -10.97 4.56 3.24 10.97 -4.56 33.20
2 2 - 4 10.97 4.47 3.21 -10.97 -4.47 32.59
3 3 - 4 4.47 -10.97 -33.20 -4.47 10.97 -32.59
4 1 - 2 -4.47 -1.07 -3.24 4.47 1.07 -3.21
8'x 10' Endwall with 4' x 7' Door Opng
Lateral Design
Units Option : US Standard
AISC Code Checks : No
Shear Deformation: No
P -Delta Effects : No
Redesign : No
Edge Forces : No
A.S.I.F. : 1.333
Node Boundary Conditions
No X-Coord Y-Coord X-dof Y-dof Rotation Temp.
{ft) (ft)(in,KTin)----(in,Kfm)-_-(r,K-ftir) (F)-
1 0.00 0.00 R R 0.00
2 6.00 0.00 R 0.00
3 0.00 8.50 0.00
4 6.00 8.50 0.00
Material Elastic Poisson's Thermal Weight Yield Stress
Label Modulus Ratio Coefficient Density (Fy)
(Ksi) (F) (K/ t3) (Ksi)
1 2675.00 0.30000 0.65000 0.118 36.000
Section Database Matl. Area Moment of As y/y
Label Shape Set Inertia Coef
(in^2) (in^4)
side 1 96.00 4608.000 1.20
top 1 120.00 9000.000 1.20
bottom 1 24.00 72.000 1.20
I J I Releases J End Offsets
No Node Node Section x y z x y z Sec Sway I J Length
{in) ----(in) (ft) --
1 1 - 3 side 8.50
2 2 - 4 side 8.50
3 3 - 4 top 6.00
4 1 - 2 bottom 6.00
BLC Basic Load Case Load Totals
No. Description Nodal Point Dist.
1 lateral 1
8' x 10' Endwall with 4' x 7' Door Opng
Lateral Design
Nodal Loads, BLC 1: lateral
Node
Number Global X Global Y Moment
(K) (K) (K -ft) ----
3 9.340 0.000 0.000
Load Combination Self Wt BLC BLC BLC BLC BLC W E
No. Description Dir Fac Fac Fac Fac Fac Fac DYNA S V
1 lateral endwall 1 1
Load Combination is 1 : lateral endwall
Nodal Displacements
Node Global X Global Y Rotation
(in) (in) (rad)
1 0.00000 0.00000 -0.00209
2 0.00516 -0.00000 -0.00202
3 0.15959 0.00489 -0.00037
4 0.15856 -0.00489 -0.00035
Load Combination is 1 : lateral endwall
Reactions
Node Global X Global Y Moment
(K) (K) (K -ft)
1 -9.34000 -13.23167 0.00000
2 0.00000 13.23167 0.00000
Totals -9.34000 0.00000 0.00000
Load Combination is 1 : lateral endwall
Member End Forces
Nodes 1 End J End
No 1 J Axial Shear Moment Axial Shear Moment
(K) (K) (K -ft) (K) (K) (K -ft) ---
1 1 - 3 -12.32 4.74 2.77 12.32 -4.74 37.55
2 2 - 4 12.32 4.60 2.73 -12.32 -4.60 36.35
3 3 - 4 4.60 -12.32 -37.55 -4.60 12.32 -36.35
4 1 - 2 -4.60 -0.92 -2.77 4.60 0.92 -2.73
8' x 10'-8" Endwall w/ 4' x 7' Door Opng
Lateral Design
Units Option : US Standard
AISC Code Checks : No
Shear Deformation: No
P -Delta Effects : No
Redesign : No
Edge Forces : No
A.S.LF. : 1.333
Node Boundary Conditions
No X-Coord Y-Coord X-dof Y-dof Rotation Temp.
(ft) (ft) (in,Klin)----(in,Klin)---(r.1( fth) (F)-
1 0.00 0.00 R R 0.00
2 6.00 0.00 R 0.00
3 0.00 8.58 0.00
4 6.00 8.58 0.00
Material Elastic Poisson's Thermal Weight Yield Stress
Label Modulus Ratio Coefficient Density (Fy)
(Ksi) (F) (Kift3) (Ksi)
1 2675.00 0.30000 0.65000 0.118 36.000
Section Database Matl. Area Moment of As y/y
Label Shape Set Inertia Coef
(in^2) (in^4)
side 1 96.00 4608.000 1.20
top 1 152.00 18291.000 1.20
bottom 1 24.00 72.000 1.20
I J I Releases J End Offsets
No Node Node Section x y z x y z Sec Sway 1 J Length
(in) ----(in) (ft) -
1 1 - 3 side 8.58
2 . 2 - 4 side 8.58
3 3 - 4 top 6.00
4 1 - 2 bottom 6.00
BLC Basic Load Case Load Totals
No. Description Nodal Point Dist.
1 lateral 1
85e
8' x 10'-8" Endwall w14' x 7' Door Opng
Lateral Design
Nodal Loads, BLC 1: lateral
Node
Number Global X Global Y Moment
(K) (K) (K -ft) ----
3 9.540 0.000 0.000
Load Combination Self Wt BLC BLC BLC BLC BLC W E
No. Description Dir Fac Fac Fac Fac Fac Fac DYNA S V
1 lateral endwall 1 1
Load Combination is 1 : lateral endwall
Nodal Displacements
Node Global X Global Y Rotation
(irk) (in) (rad)
1 0.00000 0.00000 -0.00207
2 0.00525 -0.00000 -0.00199
3 0.15598 0.00511 -0.00026
4 0.15515 -0.00511 -0.00025
Load Combination is 1 : lateral endwall
Reactions
Node Global X Global Y Moment
(K) (K) (K -ft)
1 -9.54000 -13.64220 0.00000
2 0.00000 13.64220 0.00000
Totals -9.54000 0.00000 0.00000
Load Combination is 1 : lateral endwall
Member End Forces
Nodes I End J End
No I J Axial Shear Moment Axial Shear Moment
(K) (K) (K -ft) (K) (K) (K -ft) --
1 1 - 3 -12.74 4.85 2.74 12.74 -4.85 38.91
2 2 - 4 12.74 4.69 2.70 12.74 -4.69 37.50
3 3 - 4 4.69 -12.74 -38.91 -4.69 12.74 -37.50
4 1 - 2 -4.69 -0.91 2.74 4.69 0.91 -2.70
11. Wall Opejings (cont'd)
5. In plane design of end wall (cont'd)
5.1 w/ door opening (cont'd)
member 4 V„ = 0.38 x 1.3 = 0.5k
cpV, = (0.85)2SQRT(4000)4(6.5) = 1.19k
use 4x4 - W4xW4 WWF for shear reinforcement
8'-0" wide x 9'-0" (+1211) high:
flexure:
M, = 37.55r x 12 = 451r
p = 451 = 1
.9(60)4(22.5)2(1-8.85 x p) 242(1-8.85 x p)
ATOT
AREQ
shear:
= 0.00429
= (As, = 0.25)+(At = 4.8x1.3/54x2) = 0.31in2
#6(or 244)
= 0.00429(4) 22.5 = 0.39h,2
member 1 & 2 V, = 4.74k
cpV, = (.85)2 SQRT(4000)4(22.5) = 4.1k
(A„/S),,,r, = 50b /fy = 0.00333 S = 4 A„ = 0.0133
x3
0.0400 in2/ft
use 4x4 - W4xW4 WWF
member 3 Vu = 12.32k
cpV, = (.85)2 (2) {SQRT(4000)}4(28.5) = 10.4k
cpV, = 0.85 (0.04)(60)(28.5) = 14.5k
4
cpVn = 10.4 + 14.5 = 24.9k > V„
use 4x4 - W4xW4 WWF
8'-O" wide x 9'-8" (+12"): flexure:
M„ = 38.91 k. x 12 = 467k"
p = 467 = 1 = 0.00445
.9(60)4(22.5)2(1-8.85 x p) 234(1-8.85 x p)
ATOT = (ASm = 0.23) + (At = 4.3 x 1.3 / 54 x 2) = 0.291n2
#6(or 244)
= 0.00445 (4) 22.5 = 0.40m2
AREQ
86
1
1
1
1
1
1
1
1
1
1
1
1
1
1
APPENDIX "A"
1
1
1
1
1
1
1
f
1
1
1
1
1
1
1
1
1
1
1
PFS Corporation
14 SEWN TESTGATE DRIVE
CREDSBCRo. NORTH CAROL8IA 2140? TEL.E?NONE= MN) 854-914
PROJECT: Bullet Resistance Test
DATE: February 6, 1990
Reported To: UHR-Rohn
P.O. Box 2000
Peoria, Illinois 62656
On January 16, 1990, our representative, Melvin Johnson arrived at Van Doren
Industries, Hays, Kansas and was metby Mr. Richard Malmberg, General Manager. Mr.
Malmberg and our representative discussed the bullet test procedures to be followed
before conducting the actual tests. The bullet resistance test was to be conducted
on a wall assembly of the Standard Rohn Concrete Shelter.
The tests were designed as closely as possible to meet U.L. 752 weapon and
ammunition specifications. The test procedure followed the U.L. listed
specifications as shown below.
1) 'Range - 15 feet or less
2) Sample - Rigidly mounted with corrugated cardboard 18" behind
3) jigh.Powered Rife - Based on Sample resistance to one shot.
4) Tests Conducted - At room temperature, 22 degrees + 3 degrees C. (71.6 degrees
+ 5 degrees 7). There must be no penetration of projectile through test
sample, and no spelling of material on projected site to extent that fragments
imbed in or damage cardboard.
Our representative witnessed the test as follows:
Test Panel - Side panel of subject enclosure
Material of Panel - 4" thick concrete - 112 density4000
t weight coarse a - psi composed of expanded
shale li
gh gh aggregate with regular weight sand fines back surface of
panel - 1" foam board and 1/2" plywood fastened to panel.
Bullet Test Weapon/Ammunition - (1) high power rifle 24" barrel (2) Remington
bullets -30-06 rifle -high velocity - 220 grain soft point core Lokt-R 30067.
Test Sample - Material was of commercial construction as noted above. The six test
shots were fired from a distance of 15 feet and in a grid pattern with cardboard
indicator, approximately -1/8" thick, double face, was placed at a distance of 18
inches behind the protected side of the test panel.'
Obleervation - Using the designated rifle and ammunition, shots were placed at
various locations on the test panel to allow penetration of the projectile with
sufficient force to imbed into the panel. It was found in all six samples, that the
projectile was imbedded into the panel approximately 1 1/2 inches. There was no
penetration of the wall section by the projectile or of any other material. There
was no debris released into the interior as the result of the impact and there were
1
1
1
1
1
1
1
1
1
1"
1
1
1
1
1
1
no visible signs on the interior surface of the projectiles' impact.
Conclusion - The above referenced, as modified, Bullet Resistance Test Was conducted
using til. 752 as the criteria. None of the six (6) samples witnessed allowed the
bullet allowed the bullet to penetrate through the test specimen. The samples
prevented any debris or damage as required.
Thank You.
Sincerely,
Ken W. Houglan
General Manager, Southeast Region
cc: Rick Malmberg
Melvin Johnson
Larry Beineke
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
APPENDIX "3"
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Z
2
OE --
L11
0
w
WLU U—I
cc
SHELTER SIZE SCHEDULE
b
a
b
b
b
i
a.
a.
2
b
b
z
A
b
L
wA
A
A
A
z
ti
P,
0
Li
Li
Li
Li
Li
W
Ii
W
Id
0
r
Id
0
n
kI
0
ed
Id
0
Id
W
0
N
Id
0
Id
0
0
Id
Id
W
Id
W
Ii
W
Id
W
Id
W
1
444
of
rtgzi
i041, X0to o'JOM
75 votookt31.4 111
*WO
E3
;
b
b
b
b
b
b
b
b
A d
b
b
7n
b
b
z
b
b
b
b
b
b
b
b
/it
b
b
b
b
P4
n
b
a
b
b
b
S
1
"s
0
0
0
bi
0
53
0
bt
1
bi
a
1
bt
X
3
GF
0
0
0
0
0
0
0
0
0
yS�
8
ti
S
u8
.0
b
b
b
b
a.
Aid
a.
b
b
b
A
0
A
T
1
Zi
Zi
1
63
1
0.1. LYS ZLOONeINA
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
ar
I _,.,iI = 11 I
1 11 II I
L_JL—___Jl____J
I 11 U 1
rrr----�r----�
I 11 11 1
I JL___L_-_-J
1 II II 1
== ==ter ===_4
I 11 11 I
! 11 ,..II
L.JL—^^JJJLC.__—'I
I
r�f IIr____11rI____1I
I 11 II I
IL_LJJLL _-.-=-JJ1I1LL-___-_J
I 11
1 II 11 I
1.J1.....—„,.. jL____J
I II 11 I
L.JL—_==JL==.=
1 11 11 I
1--1L____,____ .,
kVig
11
i4
Oz
li 1
Zi
L9949 Fto II 'Y1ectd
1S 0Ar 3N 11!
`331'Mll o
IE3
L.L zvs Lt00Newn
A2.0
r
00
4
0'
s
t
u
i
4
Qo
I
6
4
0
8
00
IN
u
C
b
0
0
0
0
0
0
U
C
0
P
O
0
0
8
0
Lr
C
0
0
go
t
z
4
J
a
z
0
a
zz
00
0
re
0
0
a
J
N
PERIMETER BEAM
;:
it 40
1111
▪ 1;:z• id!
1
ig ;47
g
tgzi
L%1 .ti ri r
41
4
c
0l
Da
r
0 0
k
0
n
A
u
S.
u.
as
L
la
0
c
a
c
a
s
io
O
0
1 N
X
U
C
o
t
a4
1
0
0
0
coc
c
c
0
0
0
c'
c
0
r
P
o
0
00
C0
0
�o
3
t
$•
O
0
a
a
Op
0
O
O1 MIM 8k 33,,,m3MiYp
L0$L0 'P011 'mad
u uowoo.' 3N LLL
3
g
N
Sse
L -L CYS L LOONUNII
A3.O
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
- 2
L i1:
1a j
1 4€ s a
u)
1-- d, •I MI II Iii 1 ,,
jfl
Y I ill!' !I8 j htl ,v1 b .1: v 85
,, ; I; 14i 4r li ij kii ;11 Pi
a l s $ 1 1 Ila/ € l• , =a
CoLij I l Ep m i a pi II
I fii 11 pi
z q s ! b ' .s
•r 2 g i ;r1 1141 hi .ei lq S., ill 1 i
GI
it"' 111
l il ! y
i Liiitiiit ijj1 4;1114
: ill
L3 ijoirs II ti •i i wi ie w d o� o igq 1 i - i ii b iiii Oh 1 i I I ot ,_
i, a 3i. ks -§ ii • As . t 0 , , s er 'i ri re
PI
1
Zg
it
t
OY
cry
1cz:11
j
z
30010 P1PW0 'Wood
'15 INNANM 3N 111
1
1
Z.
Jo
N
b
8
b
Q
10
b
S7
s
N
i
i
L
MON31
A3.1
0
0
0
D
c
r
Y
0
.
s
0
0
0
u
0
00
2
°
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
w
2
ohe
ihD. aW
ir
fi
.:S1 all
r - -
Ir--1r---rr --I
.C1 I INS -74-4-
✓
-I-F-
I II II
▪ JL---JL--J..J
1 II II 1
L -JL ---J LJ
✓ -J
-ir-
r
----1-&-,
n
I
Nes
1 11 11
L-JL---JL---J
r -1r ----1
I I 11
L-.JLC.`.,.-.JL-
r -1---1r-i�r
I -111
4_ J
J
1
of Vr---- rr— e—i
c g II II I
I.Z.JL..•i.:.`JL.- J
r e .y 117 I i I I 0 1
31
L_ �.-_JLC itJ
�♦--� - 1r-� w"11
i II hIX II IDI
1 L - JL JL-T.J
r-Zr---rr--
I II I I 1
• L -JL -- JL -J
N r—lr----1 _ _1
I I1 II 1
-1;1E-4-I-L-JL---JL---J
wgo II II I'
-$ii� L -JL ---JL„^„^... JI
1 11 114 II
L -JLC --JL JI
y
/c0
530Md8 9Vt103 ♦ :/ct-.t
NIVI N
O
i
ot
j
z
Z
L04 i9 66.+N1 1604,0
IS +NlYP 36 111
'DN'MI113';133 )AfV13
M3
t-1 *VS LIOONMNf1
J
Z
a
J
UJ
0
u
cel
A4.0
1n
I
C�L{g1
m
Cr
1LP
I
IS
irr►L
Y1��y}
_" 0
11
r
1AAw�A*A
•
1
A
!p
.1•Ri1
I
t
t-1 *VS LIOONMNf1
J
Z
a
J
UJ
0
u
cel
A4.0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
w
?t,
3'
S
w
'—r?
—
1
1
�L
t.
NI
-,
i
--3
N
N
~
I----_14
N
N
N
IP[
}
i
•A'
b4
N
N
N
V
s
}
1 lit
1 `
N
e
d
V
el
j
q
i
M
'H
/h
i
34015
+
'� `�
—191
._.J4
NII
(t1
0111
III
I lffl
111N Ii
+III
y 11
H.-
II 1
II
11 YY
h
I��
li
11444
II f
II yNy
' /
-�i rol
SPACES
gII
01‘
II
�
II`
NII
II�
III
XVII
I
mll
II-
LIKE
Il t
411IN4
II
II A
kII � r
p� II Iy
FN
II
II
it
I1,NI"`
I�j
I
ix
.t
=rids 11fl03 CO .1
/0
�-
w0
S KY
R
p
4- i :i al
N
N
&
'
-0+
14111-
T
b�
t _cia_ _ _ EL _ _ 111. __
Llik _ A
S30YdS 11103 (6)
L-.0
SIDE WALL PANEL
8
1
l� g
fr
Iz
Z1
L0919 fps 'Dl+Oid
'IS+4YP 3N 111
r
0
e.
•
S—
.
t
sue
4
6�
S
c
0
c
e
•
0
"OM WIN SFL JHH] irt3
0 .1
E3
1-1 LYS L100NWNfl
ROOF PANEL
0
'll
8
A5.0
1
0
c
0
0
ro
0
0
0
v
0
0
c
0
0
•o
0
0
c
0p
L
0
0
v
0
Y
� N
-
1
y
{
S
Y
Li
o
p
eV
HinII
1--
r
E3
Il.
—yhi�i_'
it
:1111
,1,!
u
(II
N
11
II
SII
pi•
YNII 0g
N
I
a
1II
) II
NII
}
i
k
g
aj
§
'°
N
B
,I�
-
do
no..
0
.=/�I I
II hN
PY
II A
II
Iii
nh
IliII
�I
II
II II
II
Ilk
�I
�lil
n"1511
'H
/h
i
34015
+
'� `�
—191
._.J4
NII
(t1
0111
III
I lffl
111N Ii
+III
y 11
H.-
II 1
II
11 YY
h
I��
li
11444
II f
II yNy
' /
jJ.%�1S
gII
01‘
II
�
II`
NII
II�
III
XVII
I
mll
II-
LIKE
Il t
411IN4
II
II A
kII � r
p� II Iy
FN
II
II
it
I1,NI"`
I�j
I
ix
.t
=rids 11fl03 CO .1
0 .1
E3
1-1 LYS L100NWNfl
ROOF PANEL
0
'll
8
A5.0
1
0
c
0
0
ro
0
0
0
v
0
0
c
0
0
•o
0
0
c
0p
L
0
0
v
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3d0'6 '>t'11Y .1
0
N
f--
g
€w
Mg
313I 306NI
1N$I3H 1f31131-5
E
gigiqwe
_
11
kb IP IP
g- K ..
z
0
/_/� 0
V -I
W n
co
CO
CO
p WW
CC
N
p; Iw;;;
O�am~p
.;.40,4 iiJ( N
gi 20W
z
4
W z
wo
! Iri orP
W
lot , ,,
zco
J
W
hrw- °" N
o I
iiiii : j 1
k41444E1 1 A
Z091i MoNlid *Woad
uog-N4Pr 3N 111
0
t 1
\
l
— \ \ t:
. \
f
TM
1rnII-ti
�3'
11mr2
i*
R1t7�
-
MI
OW..._
_ _____
:?,45t
lin
m.
313I 306NI
1N$I3H 1f31131-5
E
gigiqwe
_
11
kb IP IP
g- K ..
z
0
/_/� 0
V -I
W n
co
CO
CO
p WW
CC
N
p; Iw;;;
O�am~p
.;.40,4 iiJ( N
gi 20W
z
4
W z
wo
! Iri orP
W
lot , ,,
zco
J
W
hrw- °" N
o I
iiiii : j 1
k41444E1 1 A
Z091i MoNlid *Woad
uog-N4Pr 3N 111
0
t 1
'M'MR 8tl3'i EIN21)llV
M3
33 1-1 OVS Z100NMYf1
lig _ !
Vim�WTer
1!
0
D
0
0
0
Y
U
0
O
0
A6.0
8
0
0
b
00
0
a
a
CP
0
\
l
— \ \ t:
. \
f
TM
.0-.1
b
f
E
'M'MR 8tl3'i EIN21)llV
M3
33 1-1 OVS Z100NMYf1
lig _ !
Vim�WTer
1!
0
D
0
0
0
Y
U
0
O
0
A6.0
8
0
0
b
00
0
a
a
CP
0
11.
3Q
0
Gz
y0
:i
ZO
00
Ua
w O
CD F-
O
z
0
1-
W
z
az
00
O
v
`a
3
Z
00
y
410
N
•
0
c
O=
Cff
i1
Q'
'am Mn sa a»rrn
709&t r.41911 'Wald
�s S Sj$r r< 1111
—I- O
a�
Z Z
w0-
0 I
z LL
00�
H CC
W O
rA M
1.4 ['9S C10ON9Nn
4,
0
0
0
u
u
1.
°
0
0
0
•
0
1n
r
c
t
o°
•
0
ar
e
0
c
0
s°
a
0
A7.0
r.
cn
Sccw
d w
It
VI
i
a
Ou s
0c
El w
E tO
i X
w
re
'g i= o 5
6 e
c z u�i
v.
OI` ox
o �'0
a
Z07[4 �! l�d
'7$�JYr 3HII 1 i 1
4.
0
0
4
b
0�
.1
v
L
4
C D
S
•
C
a
b
L
0
E3
RD 1.1 ONS L I00IwNf1
A8.O
0
C
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
t
8
0
•
Eii I§
lik
1'1
0
0
13
l -t 615 LI00N71Nf1
A9.0
0
g
0
0
tl0o
c1
0
0
e
1
L
0
0ve
0
0
v
s°p
0
4
v
0
0
4
0
PIC
O
'
l
4
�
r
0
a
lo
a
0
00.6 ■s.Jyn "doom
IS 6MT 7N 111
‘`mr1135°
i.1 016 t 10060Md
h"' I t
1
e;111:11:i
111
ill I . III 11116s� E 1-1111i �Ijjii 1s
€ 1ti�
1s
1 t 11 -22
Ii
6 6 VP
Ela ++ hh $'i 116
111111
B. F
1 I lit 1 IA 14 lig Ili ig;t
N
� IfS fl a
a 1 i''1
IL
r
-il
E_ ?' a fish €
iei ` za
Ill i till I li
11gi i €
�# S:_ i !Ile
-i g an! 1 �a� a it
ill i �� a e�Ili ilas ii jts I loll � ii
d 1 I s i ill
it !Iiiiv
il 1 �� _ l`illi t
VvC`ES1 i .3b bkiEnII3L ■slif
if2222Ei; filliill
ii il-. ti1M h 111111 i ;I l frill
it ii it 441 4:111 ; d 1. pis
il Li ; ill f:es Iii ! di! it 'AI
h 1 � H
N " h .4:i,
A10.0
0
0
0
0
L
0
V
C
0~
0
0
Q
00
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
U
0
5
N
.r.
41.
44
.411
Rim
1
N
0
1
(1((1(19 t'a
J., ci i J�i
n
n
0
v
A
1
EQUIPMENT UST
DESCRIPTION
1
V
tg
1
1
0
0
0
v
1
A
O
Z
0
0
Q
0
z
0
0
l
1/11
tgoo
I 4000
i 441;1
Inigdd
ai ri i rS
BO
.6
,®
ELEVATION A
sv
Z
.94
ZOOM *4 I 'aY"d
1S .'Hr 74,1 it
'ON 'MII 8733N�np )ul►"'10
Y
0
0
w
0�
L
s
0
d
0
E3
t -t t3S L10ON1Nf1
ELEVATION D
LL
4
E1.0
0
8f
c
0
0
0
c
20
pimp
122 .0
41
i; g.
11 115
Ioaw 11
WI!
° E ni �
4
No :! i191 §!
ifgg ih ;ii Al
a I W. ;g1 Yti
Mph wgg find ir
4 ri e Acs
M
oi
G
44401
11
O1
20914 hill 'q+ Id
04.40e 314 111
r
00
0'
S
U
0
6
a
nICM•1111LEENEIN3 *MD
L=L Z3S ZL00NaNn
;14:;;11
o 8 E 8 g n
- 5gg i
•s
WON 8-fs
-f�
°d 1d1
$1 iv.$if,
t I RN, qgg:
o 3 w�
g id !Igo i; 41 41
*,,
id ilw 1; it 4 ro v.! 101 iv g 1 0151-z aaRA
!1.
gilt.§ !NI MIA 112ac � .11E3AL ry 50 �� i u Li n� 11 iga ; leg "�
W 0.W ! al / W Lk WA Z N Y igi k i yyy��g...rrr��� 5I t !IN K
er ri v r ri r n Pi r O e n o d tg e
t
E2.0
0
0
0
0
t
L
0
0
0
0
0
0
Z
0
L
Lf
Y
0
o
0