Loading...
HomeMy WebLinkAboutApplication-PermitI Garfield County Building & Planning Department 108 8th Street, Suite #401 Glenwood Springs, Co. 81601 Office:970·945·8212 Fax: 970·384-3470 Inspection Line: 970·384-5003 Building Permit No. LL]_D":L_ __ ~~ Parcel No: 2139-163-00-014 Locality: 2.5 miles north/northeast of CR 211 Job Address: 2700 Clear Q~~k Rd. DeBeque Use of Building: control building __ ~ ____ _ Owner: Chevron U.S.A. Inc ---- Contractor: Fees: Plan Check: 145.11 Septic: -------~--~ Bldg Permit: $ 223.25 Other Fees: -~---.. ------~ .. ~-·----~--···-~-.,,-~~ Total Fees: $ 368.36 ---~----~--- Clerk: ~ti~~ Date: __ L~\-C2:L-I I 2 GARFIELD COUNTY BUILDING PERMIT APPLICATION I 08 81n Street. Suit.e 40 I, GJenwood Springs, Co 8160 I Phone: 970-945-8212 I Fax: 970-3&4-3470! Inspection Line: 970-384-5003 W\\ \V,1!:'lfl\eld-<..'Ollf1 !V .i.'lll\l Parcel No: (this information is available at the as:>cssors officc970·945·9l34) 2139-163-00-014 Job Address: (if an address has not been a~signed. please provide Cr. H\\'Y or Street Name & City} or and legal description 2700 Clear Creek Road, p .0. De Beoue. CO 81630-CPF located 2.5 miles north-northeast of end of CR 21 ·1 ·about 19.5 north-nort!le<:lst of De Beaue Box 296, C'J""cC Lot No: Block No: Subd.l Exemption: \\)\\e "''l\ ~ \Q'\ NA 4 Owner: (property owner) Mailing Address: 11111 s Wilcrest Drive Pll: All Ph: Chevron U.S.A Inc. 1·1ous\on, TX 77099 (281) 561-4991 (970) 257-6042 5 Contractor: Mailing Address:2181 45 1//. Road Ph: Alt Ph: Elkhorn Construction, Inc.~ De Beque. CO 81630 (970) 283-1009 (970) 625-4180 6 Architect I Engineer: Rodney Burrm.vs Mailing Address: 12!~67 W. Cedar Drive, Ph: A It Ph: ZAP Enor & Const Services. Inc. Suite 210, Lakewood. CO 80228 (720) 529-4430 (971) 533-6665 7 Sq. Ft. of Building: Sq. Ft. or Acres of Lot: Height: No. of Floors: 320 112 (8 It X 40 II) 140c600 sq. f! (CPF primary pad) 9.5 ft Sin91e story 8 Use of Building: Control building for Central Production Fac!!Jty operations, including compressors, pumps, meters. monitoring, and emergency systems 9 Describe Work: Foundation installation. p!ace·ment of modular unit. and uhiity hookups 10 Class of Work: t? New :J Alteration o Addition II Garage: Septic: ro ~;o p(:rmith~<l witt1 CPI' -NA c Attached c Detached ;l(; JSDS rostroC;!n l)kig oCommunitv 12 DrityA'ay Pcnnit: Owners valuation of Work: s 408c500 NOTICE Authority, This nppliCliHon for a Building Permit must be signed by the-Owner of the property, described abtwc. or an authorized agent. If the SiJ,'11aturc below is no: that of the Ov;ncr. a separate lc:tcr of authority. 5igncd by the Owner, must be provided with this Applicalion. Legal Ac~ess. ,-\ Building Penni! cannot be iswcd wi:hout proof t)flcgal and adC"qUBIC ac(C$S to the propcrty for purposes of inspections by the Building Dcpm1mcnt. Other Permits. Mulciplc scparotc JX!nnits may be required: (l) State Electrical Permit. (2) County ISDS Pcnnit, (3) anothl'r pcnnit required for usc on the property idcntifiOO 1lbo1·c. e.g_. Sta:c l'lr County 11ighwayi Road Access l)f a State Wastewater Discharge Permit. Void l'ermlt. A Buih.ling Pcnnit becomes null and \'oid if thc work authe<rizc<l is not commenced within ISO days of the date of issuan~c and if work is suspended or abandoned for a period of 180 days after comrn~nccmcm CERTIFICATION (hereby certify that I have read this Application and that the infonnation contained above is true and correct. I und~rstund that the Building l)cpartmcnt accepts the Application, along with the pinos and sr~cifieations and other data submiucd by me or on my b.:half (submittal~). based upon my certification as to accuracy. Assuming complctcncs~ of the submi!!als and appro1•al of this Applklllion, a Building Pcmlit wi!! be issued granting pcm1ission to me, as Owner, to construct th: sttucturc(s) and fncilities detailed on the submittals reviewed by the Building Department. fn CQJ1sideralion of the issuance of\hc Building Petmit, I agree th:nl and my agents will comply with provision~ Of any federal, ~tc ur loeallaw rcgula~ing the work and the Garfield County Building Code, lSDS rcgula:ions and app!icnblc l:md U$C rcgulntions(County Rcgulation(s)), 1 aeknowkdgc that the Building Permit may be suspended or ro\'oked. upon notice from the County, if the location, consln!ction or usc of the structurc(s) and radlity(ies), described above, arc not in compliance with County Rcj,'1Jlation(s} or any other applicable law. I hereby grant permission to the Building Department to enter the property, described above, to inspe~;t tl1e work. I further acknowledge that the issuance Qf the Building Permit dOC$ not prevent the Buildlng Official from: {1) requiring the correction of errors in th~ submittal~, if any, disco\·crcd alierAssuancc: or (2) stopping construction or usc ofthL· strucmrc(s) nr facility(ics) lhuch is in violation of Co::nty Regulation($) or any other <lpplicable Jaw. ) Rcvkw of this Application. including subrninuls. and inspections (lfthe work by the B11ilding Depai11!1CJII do Ml constitute an acccptancL' of rcspon~ibitity or liability by the Coumy of errors. omissions or discrepancies. As the Owner. I acknowkdgc th:~t ri:spnnsibility for compliance with federaL state ahd local law~ and County Regulations ri:st with me and my authoriz..:d agents. including witi1out limitation my architect d<:~igncr, cnginL~t and/ or builder. '.:\ I HEREBY ACK!'o!OWLEDGE THAT l HAVE READ A :'liD UI"DERSTAND THE NOTtct: & CE~JIFICATIO:"' ABOVE.: (' ~-"· c· ... v c' ;;!~ c:h ,. ; J rii -,-A/--~ -~" ~-<'-~--c• ··-. /, [ . c ,(' L( .. -c·---L"'"--·-c wi:L <1 " ·---"-"-·---·-·----------------~~--· OWNE S SIGNATURE --D IE ,r E!lmorn Cons!ru .... tlon, Inc Will H'S!all foundal1011 and p!c1ce un1! i' URS Washinnton Oi,Jision assembl1~d permit application rcon1nd: Sally Cuffin. URS WaslliriJJoro Oivisiori. 7800 E Union rwe S\lltf:: H)O Dei'V(1f. CO tl0/.'31 Oflicc; 303-843-221\1 CeH 303526-651•'1 STAFF USE ONLI Special Conditions: J[ .c: ?:R.Oif X. '3~. ~~ Adjusted Valuation: Plan Check Fcc: Permit Fcc: 121(p/ ,(tl) t~.~' ( ~~.~£ '- i\'hmu home Fee: 1\-Jisc Fees: ~ iC( ~ ~ ~ ISDS Fee: Total Fees: Fees Paid: Balance Due: ,........ BP NO & Issue Date: ISDS No & Issued Date: . ·wAi------%~:~~ -···-lTfts~+TI .. ·····-~r\tl0l-~"5t:l· T\Jb Lf--· TY"L;Tiff ____ .. , - Setbacks: OCC Group: Const Type:· I Zoning: The following items are required by Garfield County for a final Inspection: 1) A fmal Electrical Inspection from the Colorado State Electrical Inspector. 2) Permanent address assigned by Garfield County Building Department and posted at the structure and where readily visible from access road. 3) A finished roof; a lockable building; completed exterior siding; exterior doors and windows installed; a complete kitchen with cabinets, sink with hot & cold running water, non-absorbent kitchen floor covering, counter tops and finished walls, ready for stove and refrigerator; all necessary plumbing. 4) All bathrooms must be complete, with washbowl, tub or shower, toilet, hot and cold running water, non-absorbent floors, walls finished, and privacy door. 5) Steps over three (3) risers, outside or inside must .be must have handrails. Balconies and decks over 30" high must be constructed to all IBC and IRC requirements including guardrails. " 6) Outside grading completed so that water slopes away from the building; 7) Exceptions to the outside steps, decks, grading may be made upon the demonstration of extenuating circumstances., i.e. weather. Under such circumstances A Certificate of Occupancy may be issued conditionally. 8) A final inspection sign off by the Garfield County Road & Bridge Department for driveway installation, where applicable; as well as any final sign off by the Fire District, and/or State Agencies where applicable. A CERTIFICATE OF OCCUPANCY (C.O.) WILL NOT BE ISSUED UNTIL ALL THE ABOVE ITEMS HAVE BEEN COMPLETED. A C.O. MAY TAKE UP TO 5 BUSINESS DAYS TO BE PROCESSED AND ISSUED. OWNER CANNOT OCCUPY OR USE DWELLING UNTIL A C.O. IS ISSUED. OCCUPANCY OR USE OF DWELLING WITHOUT A C.O. WILL BE CONSIDERED AN ILLEGAL OCCUPANCY AND MAY BE GROUNDS FOR VACATING PREMISES UNTIL ABOVE CONDITIONS ARE MET. I understand and agree to abide by the above conditions for occupancy, use and the issuance of a C.O. for the building identified in the Building Permit. GARFIELD COUNTY BUILDING AND PLANNING 970-945-8212 MINIMUM APPLICATION REQUIREMENTS FOR CONSTRUCTION OF COMMERCIAL OR MULTI-FAMILY RESIDENTIAL BUILDINGS Including NEW CONSTRUCTION ADDITIONS ALTERATIONS And MOVED BUILDINGS In order to understand the scope of the work intended under a permit application and expedite the issuance of a permit it is important that complete information be provided. When reviewing a plan and it's discovered that required information has not been provided by tbe applicant, this will result in the delay of the permit issuance and in proceeding with building construction. The owner or contractor shall be required to provide this information before the plan review can proceed. Other plans that are in line for review may be given attention before the new information may be reviewed after it has been provided to the Building Department. Please review this document to determine if you have enough information to design your project and provide adequate information to facilitate a plan review. Also, please consider using a design professional for assistance in your design and a construction professional for construction of your project. Any project with more than ten (10) occupants requires the plans to be sealed by a Colorado Registered Design Professional. To provide for a more understandable plan and in order to determine compliance with the building, plumbing and mechanical codes, applicants are requested to review the following checklist prior to and during design. Plans to be included for a Building Permit must be on draft paper at least 18"x 24"" and drawn to scale. 1 Plans must include a floor plan, a concrete footing and foundation plan, elevations all sides with decks, balcony steps, hand rails and guard rails, windows and doors, including the finish grade and original grade line. A section showing in detail, from the bottom of the footing to the top of the roof, including re-bar, anchor bolts, pressure treated plates, floor joists, wall studs and spacing, insulation, sheeting, house-rap, (which is required), siding or any approved building material. Engineered foundations may be required. Check with the Building Department. A window schedule. A door schedule. A floor framing plan, a roofing framing plan, roof must be designed to withstand a 40 pound per square foot up to 7,000 feet in elevation, a 90 M.P.H. windspeed, wind exposure B or C, and a 36 inch frost depth. All sheets need to be identified by number and indexed. All of the above requirements must be met or your plans will be returned. All plans submitted must be incompliance with the 2003 IBC, IPC, IMC and IFGC. Applicants are required to indicate appropriately and to submit completed checklist at time of application for a permit: 1. Is a site plan included that identifies the location of the proposed structure, additions or other buildings, setback easements, and utility easements showing distances to the property lines from each comer ofthe proposed structure prepared by a licensed surveyor and has the surveyors signature and professional stamp on the drawing? Slopes of 30% or more on properties must be show on site plan. (NOTE: Section 106.2) Any site plan for the placement of any portion of a structure within 50 ft. of a property line and not within a previously surveyed building envelope on a subdivision final plat shall be prepared by a licensed surveyor and have the surveyors signature and professional stamp on the drawing. Any structure to be built within a building envelope of a lot shown on a recorded subdivision plat, shall include a copy of the building envelope as it is shown on the final plat with the proposed structure located within the envelope. Yes x 2. Does the site plan when applicable include the location of the I.S.D.S. (Individual Sewage Disposal System) and distances to the property lines, wells (on subject property and adjacent properties), streams or water courses? This information must be certified by a licensed surveyor with their signature and professional stamp on the design. Yes No x Not necessary for this project ISDS will be permitted ':'ith ---permanent restroom bu1ldmg 3. Does the site plan indicate the location and direction of the State, County or private road accessing the property? Yes x 4. Is the I.S.D.S. (Individual Sewage Disposal System) designed, stamped and signed by a Colorado Registered Engineer? 2 Yes. __ _ No __ Not necessary for this project X ISDS will be permitted with permanent restroom building 5. Are the plans submitted for application review construction drawings and not drawings that are stamped or marked identifying them as "Not for construction, for permit issuance only", "Approval drawings only", "For permit issuance only" or similar language? Yes x No__ Not necessary for this project. __ _ 6. Do the plans include a foundation plan indicating the size, location and spacing of all reinforcing steel in accordance with the uniform building code or per stamped engineered design? Yes x No Not necessary for this project __ 7. If the building is a pre-engineered structure, is there a stamped, signed engineered foundation plan for this building? Yes_x_ No__ Not necessary for this project __ 8. Do the plans indicate the location and size of ventilation openings for under floor crawl spaces and the clearances required between wood and earth? Yes__ No__ Not necessary forproject_x_ 9. Do the plans indicate the size and location of the ventilation openings for the attic, roof joist spaces and soffits? Yes__ No__ Not necessary for this project_X_ 10. Do the plans include design loads as required under the IBC or IRC for roof snowloads, (a minimum of 40 pounds per square foot in Garfield County)? Yes_x_ No__ Not necessary for this project __ 11. Do the plans include design loads as required for floor loads under the IBC or IRC? Yes_x_ No__ Not necessary for this project __ 12. Does the plan include a building section drawing indicating foundation, wall, floor, and roof construction? Y es_x_ No__ Not necessary for this project __ 13. Is the wind speed and exposure design included in the plan? Yes_x_ No__ Not necessary for this project __ 14. Does the building section drawing include size and spacing of floor joists, wall studs, ceiling joists, roof rafters or joists or trusses? Yes_x_ No__ Not necessary for this project __ 15. Does the building section drawing or other detail include the method of positive connection of all columns and beams? Yes X No__ Not necessary for this project __ 3 16. Does the elevation plan indicate the height of the building or proposed addition from the undisturbed grade to the midpoint between the ridge and eave of a gable or shed roof or the top of a flat roof? (Check applicable zone district for building height maximum) Yes_x_ No__ Not necessary for this project __ 17. Does the plan include any stove or zero clearance fireplace planned for installation including make and model and Colorado Phase II certifications or Phase II EPA certification? Yes No Not necessary for this project_x_ 18. Does the plan include a masonry fireplace including a fireplace section indicating design to comply with the IBC or IRC? Yes__ No__ Not necessary for this project_X_ 19. Does the plan include a window schedule or other verification that egress/rescue windows from sleeping rooms and/or basements comply with the requirements of the IBCoriRC? 20. 21. 22. 23. 24. 25. Yes No Not necessary for this project_x_ Does the plan include a window schedule or other verification that windows provide natural light and ventilation for all habitable rooms? Yes__ No__ Not necessary for this project_x_ Do the plans indicate the location of glazing subject to human impact such as glass doors, glazing immediately adjacent to such doors; glazing adjacent to any surface normally used as a walking surface; sliding glass doors; fixed glass panels; shower doors and tub enclosures and specifY safety glazing for these areas? Yes__ No__ Not necessary for this project_x_ Do the plans include a complete design for all mechanical systems planned for installation in this building? Yes x No Not necessary for this project. __ _ Have all areas in the building been accurately identified for the intended use? (Occupancy as identified in the IBC Chapter 3) Yes_X_ No__ Not necessary for this project. __ _ Does the plan indicate the quantity, form, use and storage of any hazardous materials that may be in use in this building? Yes_x_ No__ Not necessary for this project __ Is the location of all natural and liquid petroleum gas furnaces, boilers and water heaters indicated on the plan? Yes__ No __ Not necessary for this project_x_ 4 This project will utilize electric resistive heaters. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. Do the plans indicate the location and dimension of restroom facilities and if more than four employees and both sexes are employed, facilities for both sexes? Yes__ No__ Not necessary for this gr~~et X Restrooms located at separate facility w! mg Do the plans indicate that restrooms and access to the building are handicapped accessible? Yes No Not necessary for this ~r~sst x uri rng Restrooms located at separate facility Have two (2) complete sets of construction drawings been submitted with the application? Yes x No Have you designed or had this plan designed while considering building and other construction code requirements? Yes_x_ No__ Not necessary for this project __ Does the plan accurately indicate what you intend to construct and what will receive a final inspection by the Garfield County Building Department? Yes_x_ No __ Do your plans comply with all zoning rules and regulations in the County related to your zone district? For comer lots see supplemental section 5.05.03 in the Garfield County Zoning Resolution for setbacks. Yes x No __ _ Do you understand that approval for design and/or construction changes are required prior to the implementation of these changes? Yes x No ---- Do you understand that the Building Department will collect a "Plan Review" fee from you at the time of application and that you will be required to pay the "Permit" fee as well as any "Septic System" or "Road Impact" fees required, at the time you pick up your building permit? Yes_x_ No __ Are you aware that you are required to call for all inspections required under the IBC including approval on a final inspection prior to receiving a Certificate of Occupancy and occupancy of the building? Yes X No ---- Are you aware that the Permit Application must be signed by the Owner or a written authority be given for an Agent and that the party responsible for the project must comply with the Uniform Codes? Yes_x_ No __ 5 36. Are you aware that you must call in for an inspection by 3:30 the business day before the requested inspection in order to receive it the following business day? Inspections will be made between 7:30a.m. and 3:30p.m. Monday through Friday. Inspections are to be called in to 384-5003. 3 7. Are you aware that requesting inspections on work that is not ready or not accessible will result in a $50.00 re-inspection fee? Yes x No ___ _ 38. Are you aware that prior to issuance of a building permit you are required to show proof of a driveway access permit or obtain a statement from the Garfield County Road & Bridge Department stating one is not necessary? You can contact the Road & Bridge Department at 625-860 I. Yes x No ___ _ 39. Do you understand that you will be required to hire a State of Colorado Licensed Electrician and Plumber to perform installations and hookups? The license number will be required at time of inspection. Yes x No ___ _ 40. Are you aware, that on the front of the building permit application you will need to fill in the Parcel/ Schedule Number for the lot you are applying for this permit on prior to submittal of the building permit application? Your attention in this is appreciated. Yes x No ___ _ 41. Do you know that the local fire district may require you to submit plans for their review of fire safety issues? Yes x No (Please check with the building department about this requirement) 42. Do you understand that if you are planning on doing any excavating or grading to the property prior to issuance of a building permit that you will be required to obtain a grading permit? Yes x 43. Did an Architect seal the plans for your commercial project? State Law requires any commercial project with occupancy of more than 10 persons as per Section 1004 of the IBC to prepare the plans and specifications for the project. Yes No Not Necessary for this project __ x __ _ I hereby acknowledge that I have read, understand, and answered these questions to the best of my ability. ---------------~7J::6til~-:-:::7:--]::::?!i;;::e--~--------·----··-·----------;-:z7/sZi.c~~v---·-------- l . 6 From: To: CC: Subject: Date: Attachments: Jake Mall Cuffin, Sally; RE: Driveway permit exemption Thursday, November 06, 2008 1:25:38 PM Sally: you are exempt from the driveway access permit requirement for this project. Jake -----Original Message----- From: Cuffin, Sally <Sally.Cuffin@wgint.com> Sent: Thursday, November 06, 2008 12:48 PM To: jmall@garfield-county.com <jmall@garfield-county.com> Subject: Driveway permit exemption Jake, I just realized that I never got an official driveway exemption email from you for buildings at Chevron's Central Production Facility. The facility is located about 2.5 miles north of the end of CR 211 (near the confluence ofT om Creek and Clear Creek). Let me know if you have questions. Thanks! Sally Cuffin (303) 843-2219 (303) 526-6514 (cell) August 29, 2007 Mr. Fred Jarman, Director Garfield County Building & Planning Department 108 81h Street, Suite 401 Glenwood Sptings, CO 81601 Re: Authorization io. Represent Chevron - James S. Talbot Senior Counsel Sally Cuffin, Washington Group Intetllational Inc. Dear Mr. Bean: Law Department Noith America Exploration and Production Company 11111 S. Wilcrest #N2006 Houston, Texas 77099-4397 Tel 281-561-3536 Fax 281-561-3515 jta!bot@chevron.com Chevron U.S.A. Incc (Chevron) has retained the services of Sally Cttffin of the Washington Group Intemational Inc.. Ms. Cuffin will represent Chevron in facility permitting for our Piceance Project in Garfield County, a role in which she will prepare and submit Special Use Permit Applications, ISDS, building, grading, pipeli11e, road crossing and other routine construction related applications and information on behalf of Chevron. Ms. Cuffin is also authorized to participate in .discussions before appointed and elected boards regarding the various applications, however at such meetings, her authority to legally bind Chevron is limited to the tenus set forth in the Pem1it Applications or other written documents filed on our behalf. Sincerely, cc: Nicole Johnson Timothy Barrett Sally Cuffin N 11204 o. --------------------Assessor's Parcel No. 2139-163-00-014 Date ___ 1_16_12_0_09 __ BUBLDBNG !PERMIT CARD Job Address -----=2.:...70.:...0:....::.C::...:Ie..::a.:...r ..::C.:...re:..:e:..:.k:..:R...:.d:..:._D.:...e.:...B=-e.:...q::..:u.:...e...:.__ _________________________ _ Owner ________ C_h_ev_r_o_n_U_S_A __________ Address 11111 S. Wilcrest Dr. HOU Phone# 281-561-4991 Contractor Elkhom Const. Address 2181 451/2 Rd. D'beque Phone # 970-283-1009 Setbacks: Front Rear _____ RH LH Zoning 970-6254180 control building Soils Test-------------- Footing -------------------Foundation ___________ _ Grout _______________ ___ Underground Plumbing ______ _ Rough Plumbing ---------Framing ____________ _ Insulation--------------- Roofing-------------------- Drywall ------------------- Gas Piping---------------- INSPECTIONS NOTES Weatherproofing ______________ _ Mechanical _______________ _ Electrical Rough (State) --::...-...,.,--,-r------- EiectricAI Final (State) "::4 ... 8',.... {() ~ Final A -/1 ~I'd /Checklist Coml?l~~d?_...,i,_';;;;[Vl!.J ... Certificate Occupancy # -(:,(j.f:T/2'-Lf_,_<+~'-2_,'-------- Date 2 -/1,/U Septic System # --------------- Date -------------------Final _______________ _ Other _________________ __ (continue on back) UIL GARFIIEW COUNTY, COLORADO INSPECTION Will NOT BE MADE UNILESS THIS CAR:D !S POSTED ON THE JOB Date Issued _ ___,l,_·_lf:j)_Of-fi-_________ Permit No. -~l ... l~W"f·'--"-------- AGREEMENT In consideration of the issuance of the permit, the applicant hereby agrees to comply with all laws and regulations related to the zoning, location; construction and erection of the proposed structured for which this permit is granted, and further agrees that if the above said regulations are not fully complied with in the zoning, location, erection and construction of the above described structure, the permit may the·n be revoked by notice from the County Building department and IMMEDIATELY BECOME NULL AND VOID. Use__D.ntrb\ buildinai----~--------- Address or Legal Description _21&:l_().fQ.t:_~l'1:l~\'-~~~~·-!JCJ:::X::«4Mf::._ ____ _ Owner ~euym __________ Contractor £1~0'-------- Building PermitType -C,.oMM__(K'~"------------------------ This Card Must Be Posted So It Is Plainly Visible From The Street Until Final Inspection INSPECTION RECORD Footing Driveway Foundation I Grouting Insulation Underground Plumbing Drywall Rough Plumbing Electric final (by Slate Inspector) {Prior to Final) 7 -'3-10 ~ Rough Mechanical Septic Final Gas Piping FINAL -z--11~ ( 0 /)1JI( Electric Rough (by State Inspector) (You Must Call For Final Inspection) (Prior to Framing) Notes Framing (to Include Roof in place &Windows & Doors installed & Firestopping in place) THIS PERMIT IS NOT TRANSFERABLE For Inspection Call970-384-5003 Office 970·945-8212 108 8th Street, Suite 401 Glenwood Springs, Colorado 81601 DO NOT DESTROY THIS CARD ~::eR_ov_E_D _ _._l•_,\1._·_,.~"'---ll----B ,-;:: YJ m:an ~Ah(J"h PROTECTPE~MITJJM~~ (DO NOT LAMINATE) CHEVRON PRODUCTION FACILITY IJCEANCE BASIN DEVELOPMENT GARFIELD COUNTY, COLORADO CONTROL BUILDING AT EAST COMPRESSION STATION-BLDG. ZZZ-4001 (PRE-FABRICATED BUILDING CONSTRUCTED BY POINTS POWER) ~---------:39'-91"'-----------j E)BUILDING ELEVATIONS NTS GARFIELD COUNTY I'"Y\IPROJECl ~ASSOCI! Mr. Todd Anderson Engineer Colorado Division of Housing 1313 Sherman Street Denver, CO RE: Chevron Piceance Basin Project, Point Eight Power Building review for pre-manufactured non-residential Buildings Mr. Anderson: At the request of Chevron and Project Associates, Inc., ZAP Engineering and Construction Services Inc., has supervised and reviewed the engineering drawings and calculations for the Control Building listed above. The building is constructed from an ocean-going shipping container designed and rated according to ISO specifications. These specifications require the structure to withstand stresses from 5 to 7 fully-loaded containers high without failure or significant deformation. Attached in the calculations are computer analyses that verifY that the building can withstand IBC-mandated loading with large factors of safety. The building will be installed in Garfield County in a 40 psf snow load area, and the calculations were based on 40 psfsnow loads concurrent with 90 mph wind loads (far exceeding IBC load cases.) We also attached seismic calculations that show loading from snow and wind far exceeds seismic requirements in this area. Please do not hesitate to contact us or the building manufacturer if you need any additional information for your review. Sincerely, Rodney D. Burrows, PE ZAP Engineering & Construction Services, Inc 12567 W Cedar Drive, Suite 210 Lakewood, CO 80228 720-529-4430 EXP DATE 07-31-10 12567 W. CEDAR DRIVE SUITE 210 LAKEWOOD, CO 80228 OFFICE (720) 529-4430 Inspection Report COLORADO STATE ELECTRICAL BOARD INSPECTION REPORT I CORRECTION NOTICE Date Received: 08-FEB-1 0 Permit Number: 679981 Contractor/HomeOwner: SPECIALIZED AUTOMATION SERVICES LLC Address: Type of Inspection: Action: 25-4, 2700 CLEAR CREEK RD Complete Final Accepted Comments or Corrections: 1) battery covers 2) close rated enclosure 3) 408.4 Circuit Directory Every circuit to be identified as to its clear, evident, and specific purpose or use includes spares 4) Installer on site making corrections Inspectors Name: Cyrus T uchscher Phone Number: 970-625-5085 Date: OB-FEB-1 0 COLORADO STATE ELECTRICAL BOARD DEPARTMENT OF REGULATORY AGENCIES 1580 Logan St. Suite 550 Denver, Colorado 80203-1941 Phone: (303) 894-2985 https:/lwww.dora.state.co.us/pls/real!Ep_ Web_Inspection_GUI.Process_Page Pagel of l 2/9/20!0 CHEVRON, U.S.A. PICEANCE FACILITY STRUCTURAL REPORT FOR A MCC BUILDING CONSTRUCTED FROM A MODIFIED 40' STEEL DRY FREIGHT HIGH CUBE ISO CONTAINER Prepared by: PAl Engineers and Consultants Chevron U.S.A. Piceance Facility PAl Job Number: 2033.201 STRUCTURAL REPORT FOR A 40' MCC BUILDING CHEVRON U.S.A.-PICEANCE FACILITY Title STRUCTURAL REPORT FOR A MCC BUILDING CONSTRUCTED FROM A MODIFIED 40' STEEL DRY FREIGHT HIGH CUBE ISO CONTAINER TABLE OF CONTENTS June2008 Rev: l Pa e EXECUTIVE SUMMARY ................................................................................................................................ 3 ANALYSIS DATA AND ASSUMPTIONS .......................................................................................................... 4 CONTAINER DEAD AND LIVE LOADING ..................................................................................................... 4 LOAD DIAGRAMS: ....................................................................................................................................... 5 LOAD SUMMARY .......................................................................................................................................... 6 SACS BASIC LOAD CASES .......................................................................................................................... 7 LOAD COMBINATIONS ................................................................................................................................. 7 COMPUTER MODEL AND ANALYSIS RESULTS ........................................................................................... 8 CONCLUSION ................................................................................................................................................ 8 ILLUSTRATIONS ................................................................................................................................. 9-17 DRAWING LIST PROVIDED BY CHEVRON ................................................................................................. 18 SACS FILE LIST ...................................................................................................................................... 18 2 Chevron U.S.A. Piceance Facility PAl Job Number: 2033.201 Executive Summary STRUCTURAL REPORT FOR A 40' MCC BUILDING June2008 Rev: l Chevron U.S.A. commissioned Project Associates, Inc. (PAl) to structurally analyze a steel container originally used as a Dry Freight ISO Cargo Container. The container will be modified to serve as a MCC building in the State of Colorado at the Piceance Facility. The steel frame is made of un-conventional sections, primarily formed from steel plate. The container is framed with four steel corner posts formed from steel plate. The roof and walls are made of corrugated steel plate. The floor is framed with a channel type cross section formed from steel plate. It is covered with I 1/8" thick marine plywood. The planned modification consists of reframing the ends of the container for two doors (one at each end) and a window Air Conditioning unit. The container with the planned modifications was analyzed in accordance with the International Building Code (IBC), the Chevron Midcontinent SBU design criteria, the American Institute of Steel Construction (AISC) 91h Edition and the American Welding Society (AWS Dl.l) Structural Welding Code, latest edition. The design requirements of the ISO Cargo Containers are quite rigorous. The containers are designed to withstand the extreme roll, pitch and heave forces that occur on cargo ships while being stacked on deck. In addition, they are designed to transport cargo by truck and rail. They must be capable of being lifted by the corners while fully loaded. Our vertical load for the MCC building is approximately one half of the design load of the ISO Cargo Container. As a result of our structural analysis, we conclude that the modified Cargo Container to be located at the Piceance facility with the proposed modifications can withstand the operational loading with no additional reinforcements to the structure. Structur nalysis by: Luis E. Sevilla Civil Structural Engineer Date 3 Checked by: Edward C. Moore, Jr. Senior Staff Structural Engineer Date Chevron U.S.A. Piceance Facility PAl Job Number: 2033.201 STRUCTURAL REPORT FOR A 40' MCC BUILDING Analysis Data and Assumptions Dry Freight ISO Cargo Container Configuration June2008 Rev: l The container structure has 4 vertical posts (one at each corner). These posts or columns are built-up sections from steel plate (see illustrations section). The steel framing is covered by corrugated steel on the walls and roof. The floor framing consists of steel channel formed from steel plate. The channels are spaced approximately 12 inches apart. The floor decking consists of 1 1/8" marine grade plywood fastened to the channel with steel screws. The primary dimensions of the building are listed below. Length Height Width 40' -0" 9'-6" 8'-0" Container Dead and Live Loading The container dead loads were estimated by including the weight of structural frame in air and the weight of wood deck on the floor. All dead loads were generated from the structural drawings and used in the container in-place analysis. A live load of 20,000 lbs was evenly distributed on the existing floor to account for equipment. A load of 40 PSF was applied to the roof to account for snow for a total of 12,600 lbs. In addition, a load of 1,415 lbs. was added for loads not included in the model. The area load diagrams reflect the applied loads. The empty weight of the container is 8,305 lbs. The grand total of all vertical loads is 42,320 lbs. The unmodified building was originally designed to withstand an interior load of 58,730 lbs. This is greater than the actual load on the interior of the modified building of21,410 lbs. The unmodified building can withstand 183.53 PSF versus 102.5 PSF actually load on the modified building (62.5 PSF on the interior and 40 PSF snow load on the roof). 4 Chevron U.S.A. Piceance Facility PAl Job Number: 2033.201 Load diagrams: SNOW EQUIPMENT AND LIVE LOAD DEAD LOAD (NON CODED) STRUCTURAL REPORT FOR A 40' MCC BUILDING ROOF FLOOR FLOOR 5 June2008 Rev: 1 Chevron U.S.A. Piceance Facility PAI Job Number: 2033.201 Load Summary STRUCTURAL REPORT FOR A 40' MCC BUILDING ESTIMATED WEIGHT ON ROOF SNOW LOAD( 40.0 PSF ) TOTAL WEIGHT ON ROOF DECK KIPS 12.6 12.6 ESTIMATED WEIGHT ON FLOOR DECK & ASSUMED LIVE LOAD KIPS LIVE LOAD (62.5 PSF) 20.0 DEAD LOAD (5 PSF) 1.415 TOTAL WEIGHT ON FLOOR DECK 21.41 K CONTAINER ESTIMATED WEIGHT OF STEEL TOTAL STEEL I KIPS GRAND TOTAL ALL ITEMS-42,320 lbs (APPROX.) 42.32 6 June2008 Rev: 1 STRUCTURAL REPORT FOR A 40' MCC BUILDING Chevron U.S.A. Piceance Facility PAl Job Number: 2033.201 SACS Basic Load Cases LOAD DESCRIPTION CASE I Dead Loads (coded steel) 2 Floor Dead Load (I 1/8" marine Plywood) 3 Equipment on Floor ( 62.5 PSF) 4 Snow on Roof 5 Wind @ 0 Degree (90 MPH) Sacs Model Global Coordinates "X" Horizontal Direction 6 Wind@ 90 Degree (90 MPH) Sacs Model Global Coordinates "Y" Horizontal Direction Load Combinations LOAD DESCRIPTION Stress Modifier CASE 7 110%(1) N/A 8 I 00%(7)+ I 00%(2)+ I 00%(3) N/A 9 100%(8)+100%(4) ---------GRAVITY LOAD+ SNOW N/A 10 I 00%(8)+ 100%(5)----------GRA VITY LOAD +WIND 1.333 ll I 00%(8)+ I 00%(6)----------GRA VITY LOAD +WIND 1.333 12 100%(8)+100%(4)+100%(5)---GRA VITY LD +SNOW+ WIND 1.333 13 100%(8)+ 100%( 4 )+I 00%( 6)---GRA VITY LD +SNOW+ WIND 1.3 33 June2008 Rev: 1 LOAD 7.55 Kips 1.41 Kips 20 Kips 12.6 Kips 1.97 Kips 10.10 Kips LOAD 8.305 Kips 29.403 Kips 42.000 Kips 29.400 Kips 29.400 Kips 42.000 Kips 42.000 Kips Note: The member detail report of the computer output is self explanatory. The maximum "unity check is the final result for that particular load case. We have conservatively assumed that gravity, snow and wind act at the same time. This assumption exceeds the IBC criteria. 7 Chevron U.S.A. Piceance Facility PAl Job Number: 2033.201 STRUCTURAL REPORT FOR A 40' MCC BUILDING Computer Model and Analysis Results June2008 Rev: 1 The computer structural model was generated with the "Structure Analysis Computer System" (SACS) program. It incorporates the member sizes and properties of the container. The SACS model was developed from the drawings and specs of the CIMC container and the Point 8 Power modification drawings. The model reflects the steel and the loads shown on the drawings and in this report. Most of the members in the building showed stresses well below the allowable values. A few members showed high stresses. The computer analysis was based on Allowable Stress Design (ASD). The results of the analysis showed high stresses on the floor members. These stresses do not occur due to the way the floor members are framed to the corrugated steel or flooring material. This is a matter of modeling rather than the actual loading of the members. Our computer model conservatively neglects the strength added by the 1 1/8" marine plywood floor. This is common practice in order to reduce modeling and computing time. However, we know from experience that the floor decking adds considerable strength. For example, the longitudinal bottom side member "12 -1 T" with group label CHB is typical of the members that show up as overstressed in the analysis results. (see the illustration section and the member detail report). The unity check of this member is shown as "2.43", mainly over stressed in bending in both axes. The floor deck is made of I 1/8" thick plywood. This deck is stiff enough to provide continuous support for the small forces in the weak axes of the member, preventing "Mz" (moment on the weak axes) from actually happening. In addition, the corrugated wall plate has significant out-of-plane stiffness to share the load with the members that frame into it. The moment "My" in the member is greatly reduced because the corrugated plate is continually welded to the member. In order to achieve this effect in the model, we would have to describe the plate in many little pieces. This is a laborious and unnecessary modeling method. Just as with hand calculations, we must still use engineering judgment when performing computer structural calculations. Conclusion The design requirements of the ISO Cargo Containers are quite rigorous. The containers are designed to withstand the extreme roll, pitch and heave forces that occur on cargo ships while being stacked on deck. In addition, they are designed to transport cargo by truck and rail. They must be capable of being lifted by the corners while fully loaded. Our vertical load for the MCC building is approximately one half of the design load of the ISO Cargo Container. As a result of our structural analysis, we conclude that the Cargo Container to be located at the Piceance facility with the proposed modifications can withstand the operational loading with no additional reinforcements to the existing structure. 8 Chevron U.S.A. Piceance Facility PAl Job Number: 2033.201 STRUCTURAL REPORT FOR A 40' MCC BUILDING ILLUSTRATIONS 9 June2008 Rev: 1 Chevron U.S.A. Piceance Facility STRUCTURAL REPORT FOR A 40' MCC BUILDING PAl Job Number: 2033.201 REAR END MEMBER LABEL "CHB" (TYP) @BOTTOM ROOF PLATE "PLD" FRONT END RIGHT ELEVATION PLATE "PLE" MCC BUILDING ISOMETRIC FLOOR FRAME TUNNEL PLATE "PLT" MCC BUILDING ISOMETRIC (RIGHT ELEVATION PLATE NOT SHOWN FOR CLARITY) 10 June2008 Rev: 1 Chevron U.S.A. Piceance Facility PAl Job Number: 2033.201 STRUCTURAL REPORT FOR A 40' MCC BUILDING ROOF PLATE LEFT SIDE RIGHT SIDE MCC BUILDING PLAN VIEW (LOOKING DOWN-BOTTOM FRAME IS SEEING THRU THE ROOF PLATE) 11 June 2008 Rev: 1 Chevron U.S.A. Piceance Facility PAl Job Number: 2033.201 FRONT DOOR OPENING STRUCTURAL REPORT FOR A 40' MCC BUILDING ROOF PLATE "PLD" FLOOR FRAMING TUNNEL PLATE "PLT" FRONT END VIEW LOOKING TOWARDSTHEREAREND 12 FRONT PLATE "PLG" June2008 Rev: l FRONT END COLUMN "CL2" (TYP)OFTWO Chevron U.S.A. Piceance Facility STRUCTURAL REPORT FOR A 40' MCC BUIWING PAl Job Number: 2033.201 REAR HEADER LABEL "TSR" REAR PLATE "PLH" (TYP) \_ REAR DOOR SILL LABEL "CSR" REAR END VIEW LOOKING TOWARDSTHEFRONTEND 13 FRONT PLATE "PLG" (BEYOND) DOOR OPENING June 2008 Rev: l COLUMN@ REAR END LABEL "CLl" TYP.OFTWO STRUCTURAL REPORT FOR A 40' MCC BUILDING Chevron U.S.A. Piceance Facility PAl Job Number: 2033.201 ROOF PLATE "PLD" BEETWEN ENDS PARTIAL ISOMETRIC AT TOP FRONT END OF MCC BUILDING 14 June2008 Rev: 1 @TOP FRONT END ROOF PLATE "PLA" TOP MEMBER@ BOTH SIDES, LABEL"TST" Chevron U.S.A. Piceance Facility STRUCTURAL REPORT FOR A 40' MCC BUILDING PAl Joh Number: 2033.201 ROOF PLATE "PLC" AT REAR END ROOF PLATE "PLD" PARTIAL ISOMETRIC AT REAR END OF MCC BUILDING 15 June2008 Rev: 1 Chevron U.S.A. Piceance Facility STRUCTURAL REPORT FOR A 40' MCC BUILDING PAl Job Number: 21133,2111 bUTRIGGER (TYP OF7 AT EACH SIDE). TOTAL OF 14. LABEL "C2" TUNNEL BOW LABEL "C3" TYP. OF !2 TUNNEL PLATE "CHB" TYP. @ BOTH SIDES PARTIAL ISO LOOKING UP AT FRONT END 16 June 21108 Rev: 1 STRUCTURAL REPORT FOR A 40' MCC BUILDING Chevron U.S.A. Piceance Facility PAl Job Number: 2033.201 "CS" "C5" "CP 1" @ CENTERLINE "CHB" (TYP)@ BOTH SIDES "C6" "TSB" ISOLATED FLOOR PLAN VIEW WITH MEMBER GROUP LABELS 17 June2008 Rev: 1 TUNNEL PLATE "C2" @ E/SIDE; "C3"@ CENTER Chevron U.S.A. Piceance Facility STRUCTURAL REPORT FOR A 40' MCC BUILDING PAl Job Number: 2033.201 ....... . . '.' .... . . . . ' . . . . . . . . . . . . . ........ . . . . . . . . . . . . . . . . ' . . . . . . ' ...... ' .. ' . . . . . . . . . . . . . . . .... . ·.·.·.·.·.·.· ... ·.·.·.·.·.·. . . ' . . . . ....... ' ........... . . . . . . . . . . ' . . . . . MARINE PLYWOOD 1 1/8" THICK (TYP) MCC BUILDING FLOOR DECK PLAN VIEW MEMBER 12-1T GROUP LABEL "CHB" TYPICAL APPARENT OVERSTRESS WITH UNITY CHECK OF 2.43 J MCC BUILDING FLOOR PLAN VIEW 18 June2008 Rev: 1 TUNNEL PLATE Chevron U.S.A. Piceance Facility PAl Job Number: 2033.201 STRUCTURAL REPORT FOR A 40' MCC BUILDING DRAWING AND SACS FILE LIST 19 June 2008 Rev: 1 Chevron U.S.A. Piceance Facility PAl Job Number: 2033.201 STRUCTURAL REPORT FOR A 40' MCC BUILDING Drawing List Provided by Chevron DRAWING NO. TITLE June2008 Rev: 1 SBI 99-GA GENERAL ARRANGEMENT----------------------------------------------0 084A42G 1B BASE ASSEMBLY-----------------------------------------------------------0 084A45GIE REAR END ASSEMBLY----------------------------------------------------0 084A45G IF FRONT END ASSEMBLY---------------------------------------------------0 084A45G I G 40'X8'X9' 6" GENERAL ARRANGEMENT----------------------------0 084A45GIM MARKING ARRANGEMENT----------------------------------------------0 084A42GIR ROOF ASSEMBLY-----------------------------------------------------------0 084A45G IS SIDEWALL ASSEMBLY---------------------------------------------------0 Sacs File List 1-Sac inp. containerOO 3 -----------------------------------------------------------------------Input F i I e 2-Saclst.container003 ----------------------------------------------------------------------Output File 3-PSVDB.container003 ------------------------------------------------------------------Postvue File 20 .) GLOBALCOMPUTER PLOTS . ) '--. ISOMETRIC z ) Q >-1 " " Q ~ ~ ~ ~ ~ >-1 " X ' z _j ' r ·w ~ 0 0 ~ ,_ PARTIAL ROOF PLAN/PLATE GROUP X X~ PLC p c X p c Xi-PLC X p c X p c XI-PLC p c X p c X PLC X p c X p c X -PLC p c X PLD ·PC xr-PLC p c X p c XI-PLC p c X p c Xi-PLC p c X p Xi-t':: PLC p c 9 p c XI-t-PLC X ~ y .- PLA ~ PLA L r-- PLA L r-- PLA I L ~ PLA L ~ PLA L ~ PLA PLD PLD ;-----.; PLA L PLA L ;-----.; PLA PLA PLA PLA y '·-._.. FLOOR PLAN VIEW 3 A C 13 14 15 16 17 18 19 lA 1B 1C lD lE lF lG lH li EJI lK lL 1M lN 10 lP lQ lR lS lU lW 21 22 23 24 29 2A ZB 2C4 > X. X N3 2' 192!< '2I. ~~~ X FE X Gg Ft Fl Fl Fl F( Ff F' F1 Fl "' Fl FJ F' F: G< Gl GJ G1 G< G' Gl G" Gl Gl Gl Gl G< AY 2U SQ ~~ f=®NT 4Y ~ I l}Jl 2T EK IFH X 9 B D -"-_! _':'_ -"-_I_ -~ K L M N 0 p Q R s "E ;u v .!' ~ _I_ _z 1 1 12 " 1\ 1X 1Y 11 20 25 26 27 82 A y \ > ' *" !_,t-1-' • \ ~ I _:_ A \ 1 _Ll . I \ '-l '\-~ _l j ~I -~ ~"'---LJ J 14 \ .1 y E D \ 1 j_ _1 ~ \ I j I it \ ~ _\ ! ~ ' \ J k .._ \ I \, ) \ I ~ \ j_ ... I I l', ~ I 1.\ I ,\j ~ j_ _\ f-. 1 _:___\ 1 I ~ J \ """ j_ I I j I j I \ if \ \ X X X X ~ '~ fARTIAL FLOOR PLAN/PLATE GROUP ~· ~ ;'/s'1 HJ..tVNE ~woo:o -'\....."'-- X / -1----.\._ -·-------y ----r----·--k:-...--· -~ ---r--,__ ~ - i---·-----~ '--- PLT I~ T T PLT ~~~ PLT PLT '/1L~ PLT PLT ~p T ~LT w' ·~ PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT PLT ~ T T PLT lJ:~ PLT PLT ,~j( PLT PLT ~ T ~LT reLo :~ PLT PLT PLT '· ----"'· -I'------!------f---"'-· ..__ - I~ ----------) 1-----------------f- L~\:_ X 1-~ I t: MRR..IAI t pt..y 11t>oj;) ""' :PETA tL 1 '---'. RIGH'l· ,_,LEVATION JOINT No. 5 DQDO H2 H3 H4 HS H6 H7 H8 H9 X X X X X X X 9 B D E F G H I J K L M N 0 p Q R s 6 z EA EC HH HI HJ HK 'EE U v w X y z 10 11 12 1T HL 1V 1X 1Y CB>9 HM RC HN PN Po.:;(%:81& 1Z 20 25 26 27 X X X X X 2 6 F1 00 GT F3 OP 82 RIG'~."~LEVATION MEMBER GROUP. TSll'ST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TS1TS'lr~ .... >-1 "' .... >-1 "' .... X ,_, "' .... NX ,_, " ij: .... >-1 " .... H "' .... X >-1 " .... ~ z LABEL=GROUP RIGH"~-...,.;...EVATION PLATE GROUP. X [ l I X :I I I ix I I [ X PLE PLE PLE PLE PLE I X X X I X I X X 6 ~~ '~ ~E H '~ ~ ~' lE H H ,1 z X LEFT~LEVATION MEMBER GROUP TS'lrST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TST TSTTST~ .-< X ,., u x. X .-< r ,., u X X X .-< I ,., ~I: u X M H ~~ u if; z LABEL=GROUP FRONT EL. WITH PLATE GROUP X I X PLG X PLG X X ) PLG X PLG X PLG X XX PLG X X PLG PLG PLG X PLG X PLG X PLG I X PLG X X PLG X PLG X ' PLG X XX REAR EL. WITH PLATF: GROUP --"'-----' X X PLH PLH PLH PLH PLH i PLH PLH PLH ) PLH I PLH PLH PLH .· PLH PLH PLH PLH X REAR END 6 QK QD QV N:OC QJ QB QZFF QA QI Q9 QH QS QG Q7 QF Q6 QE QEG QY 5 v v v as" ~s" >IS" B:S.t'BS.t ~s" as""' .HSJ, trS.t as" as" ~s" ~s" ~s" as" ~s" as" asJ>l .HSJ. tiS "' FI TS3 "' FJ H 8 .-< H '" u "' 8 ox OT .-< X >-1 l) '" "' H '" .-< "' H 8 l) MY N6 NO GS GR X X X '" .-< "' >-1 8 0 OW OS .-< '" X >-1 "' u H '" .-< "' H H u ) FK N4 FL GN GO X X X '" .-< "' H H u OV OR .-< '" X >-1 "' u " '" .-< "' >-1 H u MZ NS Nl GQ GP X X X '" .-< "' >-1 H l) ou lx OQ .-< '" >-1 "' l) H j FE '" .-< "' H " u 3 N3 GE FH 1 " X X 6 ~so BSO ~s:o ~so ~s:o z ) y _jx LABEL=GROUP REAR END 6 QK QD QV N:t/C QJ QB QZFF QA QI Q9 QH QB QG Q7 QF Q6 QE QE'G QY 5 FI FJ ~~fl OX OT X MY N6 NO GS GR X X X OW OS X ) FK N4 X X FL GN GO X OV OR X MZ NS Nl GQ GP X X X OU OQ X 3 N3 FE GE FH 1 X X z ) y ) ) SACS INFORMATION ON CORRUGATED PLATES '! J j £ \fJ ' ' reo. 1~. LVVD o:voKM cgrneerrg vynamrcs I~O.VLIO r. I u ) ) SACS IV This example defmes parameters for members 301-309 and 307-309 which are chord members of an X-brace and members 303-309, 305-310 and 310-309 which make up the two brace elements framing into the chord. The members local Y -axes lie in the plane of the brace. For members 301-309 and 307-309, a K-factor of 0.9 and a buckling length of 8. 71 is to be used for load cases where the member is in compression and the other pair of members framing into the chord, 303-309 and 310-309, are in tension. For members 303- 309, 305-310 and 310-309, a K-factor of 0.9 and a buckling length of8.55 is to be used for load cases where the member is in compression and members 301-309 and 307-309 are in tension. For other load cases, the K-factor and buckling length specified in the model ftle are to be used. 1 2 3 4 56 7 8 1234567890123456789012345678901234567890123456?890123456789012345678901234567890 MEMBER 301 309 A MEMB2 KY 310 309 303 309 0.9 8.71 MEMBER 307 309 A MEMB2 XY. 310 309 303 309 0.9 8.71 MEMBER 303 309 A MEMB2 XY 301 309 307 309 0.9 8.55 MEMBER 305 310 A MEMB2 XY 301 309 307 309 0.9 8.55 MEMBER 310 309 A MEMB2 XY 301 309 307 309 0.9 8.55 2.6.2 Plate Elements The SACS system contains both triangular and quadrilateral orthotropic flat plate elements. The element is a true 6-degree of freedom linear strain element. The orthotropic nature of the flat plate element allows for the modeling of the following plate types: Isotropic, Membrane, Shear, Stiffened·& Corrugated. The appendices contain a detailed discussion of each plate element type. 2. 6. 2. 1 Isotropic Plates For isotropic plate elements, the plate name, connecting joints, thickness and material properties may be specified on the appropriate Plate Description line. A plate group is not required. If a plate group is specified, the material properties and thickness are obtained from the plate group unless overridden on the PLATE line. The following defines plates AAAA and AAAB. The properties of plate AAAA are defmed directly on the PLATE line while plate AAAB obtains properties from group POL 1 2 3 4 5 6 7 8 12345678901234567890123456789012345678901234567890123456789012345679901234567890 PLATE AAAA 601 614 625 627 0.5 PLATE AAAB 614 615 627 626P01 2-20 0 0 29.0 0,25 36.0 490. Release 6: Revision 0 ) ) SACS IV 2.6.2.2 Membrane and Shear Plates A PLATE line containing the plate name, connecting joints and plate property group name is used to defme the plate. The plate type, thickness and material properties are stipulated on the appropriate PGRUP line. Any plate material properties input on the PLATE line override those specified for the plate group. 2.6.2.3 Stiffened Plates A PLATE line containing the plate name, connecting joints and plate property group name is used to define a stiffened plate. The plate !ype, material properties, stiffener section labels, stiffener direction, location (top, bottom or both) and spacing are specified on the appropriate PGRUP input line. Multiple PGRUP lines having the same group label can be used to describe plates with more than two sets of stiffeners. Plate material properties input on the PLATE line override those specified for the plate group. Plate stiffener cross sections may be any shape definable by the SECTION line. Special stiffener cross sections not available on the SECTION line may be defmed using the PSTIF line. Sections not found in the section library file must be defmed in the model using PSTIF lines. An outline of PSTIF geometty is shown in the diagram following. The following sample shows plate AAAA defmed by group PO!. Group PO 1 is a stiffened plate group with Wl2X26 running along the local X axis at 100.0 spacing. Wl2X26 is a section defmed in the section library file. 1 2 3 4 5 6 7 8 1234567890123456789012345678901234567990123456?896123456789012345678901234567890 PGRUP POl 1.0000 2039.0 0.2502532.0 W12X26 lOO.OOXB 7.849 PLATE PLATE AAAA 601 614 625 627P01 0 2-21 Release 6: Revision 0 ) ) IBM 1<--s -..j CHL 2.6.2.4 CorrugatedF'tates SACS IV BOX Corrugated plates are special plates with a combination of both in-plane and out-of-plane stiffuess. Corrugated plates are given directly on the PSTIF Line by specifYing four parameters A, B, C, and D as shown in the following figure. The following input defmes a corrugated plate 'AAAB' with corrugations rurming in the local X direction. The thickness of the plate is 0.25 and the spacing Cis 12. The A and B dimensions are 3 and 3, respectively. With the stiffener spacing unspecified on the PGRUP line, the stiffener spacing defaults to the C dimension 12. A specification of 'T' or 'B' for top or bottom stiffeners is unnecessary. 2-22 Release 6: Revision 0 ) ) SACS IV 1 2 3 4 56 7 8 12345678901234567890123456789012345678901234567890123456789012345678901234567890 PS'UF PSTIF CRG CORROl 3.0 3.0 12.0 0.25 PGRUP PGRUl? POl 29.0 36.0 CORROl X 490.0 PLATE PLATE MAB 614 615 627 6261?01 0 Note: A von Mises check versus an allowable of 0. 6Fy is used to check the corrugated plate. Buckling is not included in the plate model or code check. If buckling can occur, the plate thickness may require adjustment to limit the plate capacity. The normal limitations apply such as aspect ratio and grid density as with any FE model. Since the corrugated plate has significant out-of-plane stiffness, adjacent members are assumed to share the load with the corrugated plate. 2.6.2.5 Plate Local Coordinate System Like beam elements, each plate element has an associated local coordinate system which loads and stresses may be defined with respect to. The plate local X-axis is defined at the plate center line from the first connecting joint specified to the second connecting joint. The local XY plane is defined by the first three joints with local Y- axis perpendicular to the local X -axis toward the third joint. The right-hand rule is used to defme the local Z-axis. For example, plate 'AAAB' connected to {L I YL I /tt I / 4th(626) 3rd(627) Lrd:Z lst(614) 2nd(615) joints 614, 615, 627 and 626 has a local X axis from joint 614 to joint 615. The local Y axis is perpendicular to the local X axis in the direction of joint 627. 1 2 3 4 56 7 8 12345678901234567890123456789012345678901234567890123456789012345678901234567890 ·~ PLATE AAAB 614 615 627 626P01 0 2.6.2.6 Plate Offsets Plate offsets may be used when the plate's center plane is not located at the plane formed by the connecting joints or when one of the edges does not correspond to a line between the joints to which it is connected. Plate offsets can also be used to generate the transition between the flat plates and beam elements. See the Commenla!y for a detailed discussion. When an offset is stipulated, the program creates a rigid link between the plate corner and the connecting joint. The offsets describe the length of the rigid link and may be described in local or global rectangular coordinates. The coordinate system used is specified on the PLATE line. Local Z offsets may be specified directly on the PGRUP line in col=s 36-41. For 2-23 Release 6: Revision 0 ) ) SACS IV stiffened plates, the automatic offset option, which calculates the offset such that the center plane of the plate itself lies in the joint plane, may be selected by enteriug 'Z' in column 10. Any local Z offsets specified are added to the calculated offsets. The following defmes plate groups POl and P02 contaiuiug a local Z offset of 10. Group P02 is a stiffened plate and also has the neutral axis offset option on so that the offset is measured from the plate center instead of the neutral axis. 1 2 3 4 56 7 8 12345678901234567890123456789012345678901234567890123456789012345678901234567890 PGRUP POl 1.0000 2039.0 0.2502532.0 10.0 PGRUP P02Zl.OOOO 2039.0 0.2502532.0 10.0 ~2X26 lOO.OOXB 7.849 7.849 Offsets defming the location of the plate edges are designated on the two PLATE OFFSETS lines innnediately following the PLATE input line. The first offset line contains the offsets for the first two joints, and the second contains the offsets for the third and fourth (optional) joint(s). The coordinate system that the offsets are defmed with respect to is _designated in column 43 on the PLATE line. Enter' l' for global coordinates or '2' for local coordinates. The following defmes plate AAAB with global X offset of l 0. 0 specified at each joint. 1 2 3 4 56 7 8 12345678901234567890123456789012345678901234567890123456789012345678901234567890 PLATE AAAB 614 615 627 626P01 PLATE OFFSETS PLATE OFFSETS 10.0 10.0 2.6.2.7 Skipping from Output Reports· 1 10.0 10.0 A plate may be eliminated from output reports by inputting 'SK' in columns 31-32 on the PLATE line. If 'SE' is designated for element detail reports on the OPTIONS line, enter 'RP' in columns 31-32 to have the stress and unity check results reported for the particular plate. 2. 6. 2. 8 Plate Modeling Considerations Unlike beam elements, flat plate elements are not closed form solutions. Therefore, there are limitations to the geometry and mesh size that are necessary to generate accurate stresses and deflections. The following suggestions are made for the use of flat plates in the SACS system: 1. The aspect ratio (width versus height) for plate elements subjected to out-of- plane bending should be limited to 6 to 1 for three node plates and 3 to 1 for four node plates. If the primary plate load is in the plane of the plate then the aspect ratio can be increased to 10 to l for three node plates and 5 to l for four node plates. 2. Interior angles within a plate should not exceed 180 degrees. 3. Four node plates are limited to 3 degrees of out-of-plane tolerance between the 2-24 Release 6: Revision 0 ) ) SACS IV four nodes such that the angle between the 'normals' to any triangular portions of the four node plate cannot exceed this value. 4. For detailed stresses, a mesh size of four nodes by four nodes will accurately represent a flat plate for both stiffness and stress calculations. A coarser mesh spacing will result in relatively accurate stiffness representation but stress calculations may not represent local stress variations within the plate. 5. Because four node plates are represented internally by 4 three node plates, a 4 node plate is inherently more accurate than a 3 node plate. 6. Plate stresses for traditional "beam-strip theory" plates are ouly reported at the geometric center of the plate. Plate stresses for DKT plates are reported at the corner joints and the geometric center. Plate stresses reported at the geometric center of plates are theoretically more accurate than those at corner joints. 2.6.3 Shell Elements The SACS program contains 6 node triaogular, and 8 or 9 node rectangular isopararnetric 4x4 Mesh !nlewation 7 Point Integration 13 Point ful:egratlon shell elements. Shell elements can have constant thickness or thickness may be specified at each node. Rigid 1iok offsets can be modeled at each node to allow for connection eccentricities. Material properties including modulus of elasticity, Poisson's ratio, yield stress, coefficient of thermal expansion and density are specified either on the SHLGRP line or on the SHELL line itself. Shell thickness, if constant, may be specified either on the SHLGRP line or on the SHELL line. For shells with varying thickness, the thickness at each node is specified on the SHELL TIDCK line immediately following the SHELL line defming the element 2. 6.3.1 Shelf Local Coordinate System For triaogular shell elements, the local X-axis is defmed from node one through node three. The local Y -axis is perpendicular to the local X -axis and lies in the plane formed by nodes one, three and five. The right-hand rule is used to determine the local Z-axis. The local X -axis for a rectangular shell is defined by nodes one and three. The local Y -axis is perpendicular to the local X-axis and lies in the plane formed by nodes one, three and 2-25 Release 6: Revision 0 ) ) BASIC DESIGN LOADS AND LOAD COMBINATIONS LDOPT OPNF+Z64.2 490.0 0.00 PICEANCE FACILITIES MCC BUILDING IN-PLACE PROJECT ASSOCIATES JOB NO.= 2033.201 GENERATED BY: LUIS E. SEVILLA O.OOGLOBEN ANALYSIS FEBRUARY 26, 2008 ****************************************************************************** • * FILE:"SACINP.CONTAINER003" * * * * **************************************~****~***~****************************** *THIS IS AN INPLACE ANALYSIS OF AN EXISTING CONTAINER MADE OF UN-CONVENTIONAL* *STEEL SHAPES. tHE CONTAINER WILL BE MODIFIED TO BE UTILIZED AS MCC BUILDING.* *THE MCC BUILING WILL LOCATED ON THE STATE OF COLORADO AND-WILL BE EXPOSED TO* *90 MPH. WIND AND OR TO SNOW. * *THE BASIC LOADS WILL BE COMBINED TO REPRESENT THE MOST CRITICAL LOADING * *CONDITION IN THE SERVICE AREA. * * • ****************************************************************************** * • • * * * * * * * * LOAD CONDITION DESCRIPTION: * * * * * {1) * {2) * (3) * ( 4) * (5) * (6) * (7) • BASIC LOADS 1) CODED DEAD LOAD (STRUCTURE STEEL) 2) FLOOR DEAD LOAD (1 1/8" THICK MARINE PLYWOOD) 3) EQUIPMENT (ASSUMED 20,000 LBS. EVENLY DISTRIBUTED ON FLOOR) 4)' SNOW ON ROOF (ASSUMED AT 40 PSF) 5) WIND LOAD AT 0 DEG. (ASSUMED AT 90 MPH) 6) WIND LOAD AT 90 DEG. (ASSUMED AT 90 MPH) * * * * * * * * * * * LOAD COMBINATIONS ALLOWABLE STRESS MODIFIER * * 7 110% (1) 8 100%(7)+100%(2)+100%(3) 9 100%{8)+100%-(4)-------------(GRAVITY LOAD+ SNOW) 10 100% (8) +100% (5) ------·-------(GRAV.ITY LOAD + WIND) 11 100%(8)+100%(6)-------------(GRAVITY LOAD+ WIND) 12 100%(8)+100%(4)+100%(5)-----(GRAVITY LOAD+ SNOW+ WIND) 13 100%(8)+100%(4)+100%(6)-----{GRAVITY LOAD+ SNOW+ WIND) N/A N/A N/A 1.333 1.333 1.333 1. 333 * * * * * * * * **************~*************************************************************** ) ) SACS POST PROCESSOR COMMENTS ) SACS Release 5.2 Engineers and Consultants ID~2804D2DO PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08:52:15 PST PAGE *** SACS POST PROCESSOR COMMENTS *** ** THE USER SHOULD TAKE NOTE OF THE FOLLOWING COMMENTS REGARDING THE SACS POST PROCESSOR OUTPUT ** BEAMS (1) INTERNAL LOADS FOR MEMBERS ARE PRESENTED IN THE CLASSICAL ENGINEERING SIGN CONVENTION AS DESCRIBED BY TIMOSHENKO (2) IF THE AXIAL LOAD ON A MEMBER EXCEEDS THE AISC ALLOWABLE BUCKLING LOAD,THEN THE AXIAL UNITY CHECK VALUE FOR THE MEMBER IS SET EQUAL TO 100 TO INDICATE THAT THE MEMBER HAS BUCKLED {3) THE MAXIMUM COMBINED UNITY CHECK CAN BE THE MAXIMUM SHEAR UNITY CHECK IF IT IS GREATER THAN THE MAXIMUM UNITY CHECK DUE TO BENDING AND AXIAL LOAD {4} THE FOLLOWING ABBREVIATIONS ARE USED TO DESCRIBE THE CRITICAL UNITY CHECK CONDITIONS: TN+BN BEND C<.15 C>.15A C>.15B SHEAR L.BEND HOOP EULER HYDRO -TENSION PLUS BENDING -BENDING ONLY (COMP. ALLOWABLES) -COMPRESSION WITH AXIAL LOAD RATIO <.15 (AISC H1-3} -COMPRESSION/BENDING INTERACTION WITH CM'S AND AXIAL LOAD AMPLIFICATION {AISC Hl-1} -COMPRESSION/BENDING INTERACTION WITHOUT CM'S AND WITHOUT AXIAL LOAD AMPLIFICATION {AISC Hl-2) -EXCEEDS SHEAR ALLOWABLE -CONES: LOCAL BENDING AT CONE -CYL. INTERFACE -CONES: HOOP COMPRESSION OR TENSION -EULER BUCKLING -HYDROSTATIC COLLAPSE (5) THE FOLLOWING ABBREVIATIONS ARE USED TO DESCRIBE THE CRITICAL UNITY CHECK CONDITIONS FOR CONCRETE: PLATES COLBUC -COLUMN BUCKLING CM+BN -COMPRESSION WITH BENDING IN COLUMN ELEMENT TN+BN -TENSION WITH BENDING IN COLUMN ELEMENT SHEAR -SHEAR TORS -TORSION BENO-Y -PURE BENDING IN BEAM ELEMENT ABOUT LOCAL Y AXIS REINF -REINFORCEMENT RATIO {1) MEMBRANE STRESSES ARE GIVEN AT THE NEUTRAL AXIS OF THE PLATE IN THE LOCAL COORDINATE SYSTEM OF THE PLATE . ALSO THE PRINCIPAL MEMBRANE STRESS AND MAXIMUM SHEAR STRESS ARE GIVEN (2} THE DIRECT STRESSES RESULTING FROM OUT OF PLANE BENDING ARE GIVEN AT THE UPPER SURFACE OF THE PLATE {POSITIVE LOCAL Z DIRECTION) IN THE LOCAL COORDINATE SYSTEM OF THE PLATE . ALSO THE PRINCIPAL BENDING STRESS AND MAXIMUM SHEAR STRESS ARE GIVEN (3) THE MAXIMUM PRINCIPAL STRESS AND MAXIMUM SHEAR STRESS FOR THE COMBINED MEMBRANE AND BENDING STRESS ARE GIVEN . THE UNITY CHECK VALUE IS BASED ON THESE STRESSES 3 ) ) VON MISES STRESS ON PLATES COMPUTER PLOTS PLAN VIEW AT Z = 0.000 (FLOOR) MAX 10.8242 KSI PLATE=A025 LC= 11 VON MISES STRESS: FOR ALL LCS • 8.0 • 6.0 • 5.0 • 4.0 • 3. 0 II 2.0 b. X 0 X X X X X X X X X X X X 0 X X),(;:« X X X X X X X¥ X ¥X X X X X X X X X£:.. X X X X X----¥· k X· X· X-X X X X-X X X X--X--X· 'X -X--X 0 ·1E--K * X X X-·t--~·· X X ,;:,. X X X X X X X X X -)( X X -x X X X * X %: X: X· X X X X 1< X X ·x X X X X X X X X X ll PLAN VIEW AT Y = 0.000 {RIGHT EL.) MAX 4.23800 KSI PLATE,.A615 LC= 13 VON MISES STRESS: FOR ALL LCS • 8.0 • 6.0 • 5.0 • 4.0 • 3.0 I 2.0 X X X X X X X X XX X X X XXXXX4XX ROOF PLAN VIEW MAX 6.69982 KSI PLATE=A924 LC= 13 VON MISES STRESS: FOR ALL LCS • 8. 0 • 6.0 • 5.0 • 4. 0 • 3.0 I 2.0 FRONT END EL. MAX 2.70300 PLATE=A639 LC= ' J VON MISES STRESS: • 8.0 • 6.R X • 5.0 • 4. 0 • 3.0 • 2.0 X X ) X X X ) KSI 11 FOR ALL LCS X XX X XX X X X X X X X X X X X X X X X REAR END ELEVATION MAX 1.68143 KSI PLATE,.,.A844 LC,., 12 VON MISES STRESS: fOR ALL LCS • 8.0 • 6.0 • 5. 6 X X X XX X X XX X X X X X X X X X X XX X X • 4.0 X X • 3.0 I 2 0 X X X X X X X X X ) X X X X ) ) ( ) MEMBER UNITY RATIO AND MEMBER JUSTIFICATION ) ( ) MEMBER UNITY RATIO AND MEMBER JUSTIFICATIONS The results of the analysis showed high stresses on members with group labels TST; TSR; CHB; CS; C6; and Cl. These stresses do not occur due to the way the floor members are framed to the corrugated steel or flooring material. This is a matter of modeling rather than the actual loading of the members. Neglect overstress on these members. We conclude that the Cargo Container with the proposed modifications for MCC service is structurally sound and does not requires additional reinforcement. ( ) 0 0 0 () H )~ 0 "' H g X I I 11: ' ) 0 0 0 0 <X >OJ< 111 n~" AXXXX. I -- li;; ~ u 0 '---' PARTIAL ROOF PLAN VIEW y MIN VALUE=l. 000 6 XL K X 1-l-- D X v X !:-;!-- X c X J Xi- B X ~ X X A X I X 1- 9 X H X 1- 8 X G X 1-l-- 7 X F XI- 6 X E X !-!-- R a y xi- 1 3 X DR DP QU EO E9 QT DZ E8 QS DY E7 QR DX E6 QQ DW ES QP DV E4 QO DU E3 QN DT E2 QM DS El QL I Inll6 ,no I4 IS I6 I7 I I H2 M" _ll.!l __ll5_ UC MAX COMB LC LIST ~ 1-ll . 6'! . 6'. . :t. ~3 X IFE >E Fl Fl F< i 1~: ·"' ·"" i.m 0 y -----------------------------~~-··-~~-~··.,-~. ,:h ,16 .'i .t.: . :J-i ~ ~ Fl F( Fl Fl Fe ~ ~ ~ ~ I. a .n .Ill< m . .,, MIN VALUE=l. 000 19 lA lB lC lD lE lF lG lH li E:A lK lL. 1M lN lftti~±l~d-t.~~~~§ lW 21_ S~ . 35 .. ~8. 2 9 . 2", . ilJ,p iC4 A y Fl F• Fl F: Fl Fl Gl G: G: • G: G• Gl , G< G' G< J K L M N 0 " .ll! ·"" s 'E :u v " X _G G. Gl G< : Yl .St2 ll . o.s .• a . 31 lV 2" '-"-" UC MAX COMB 0 "' '~E ~~I ~ -~ .2~ 25 26 LC LIST 2 5 ~ 4 4 2 u Q ~ y ~ T E K -------------------~-~----~---·-~·· PAR~L FLOOR PLAN VIEW MIN VALUE=1.000 3 A c 13 14 15 16 17 18 19 lA lB 1C lD lE 6 .11 1. 09 1.06 1. 20 1. 39 1. 26 1.10 1.39 N X "' '" . '" F X G FM FN FO FP FQ FR FS X FT FU FV FW FX FY F z ---- 0 "' N 0 '" '" F I X 1 .05 •. 09 ~.04 ~.23 ~.40 ~.36 k.OS H t· 74 .T K T. M N 0 6 y UC MAX COMB LC LIST ."--" PARTIAL FLOOR PLAN VIEW MIN VALUE=l.OOO lC 10 lE lF lG lH li lEH lK lL 1M lN 10 lP lQ lR X 1.66 1. 23 1. 08 FX FY FZ GO Gl G2 G3 G4 GS G6 G7 G8 G9 GA GB GC "' 0 r< M " " r/-.12 ,J..04 < "~~ ., w -"-v ,1. 92 1 n ,\· 09 y b< UC MAX COMB LC LIST PAR~L FLOOR PLAN VIEW MIN VALUE=l.OOO 10 1P 1Q 1R 1S 1U 1W 21 22 23 1. 66 1. 23 1. 08 2. 46 1. 53 X 1. 64 1. 35 2V 39 2&; F2N 3I 20 3 2P 3R 50 I~ 54 1/s~ 58 SA vtc\ SE 4Z 51 53 55 57 59 58 50 G9 GA GB GC GD 2X 38 3B 3E 3H 31 3N 3Q 48 4A 4C 4E 4G 4I 4K 4M 47 49 48 40 4F 4H 4J 4L 2W lA 2ll>A 1\~ 3G 2F 1\M) 3P m 0 .-< y ... 92 10 h09 122. <3 f737 lV 1X J¥64 :lczl2 y 24 1. 2·0 0 "' .-< 2I 3X SG /r SF SH 33 3W 40 4Q 4N 4P 2H lA ~ .-< .-< 2\).14 29 2A 2B 1.10 2q;j0 JX J 2<R3 K6 K 2S sf~ "'"y SM 50 SJ SL SN 3Z 42 36 4$ 4U 4W 4R JR JS 4T 4V 2"1 Jt\ I;'NV 24:<1. K3 K 2L ?S 2C 27 UC MAX COMB 2C 4 g.os sx SW sv su ST ss SR l.;!W X AY 2U SQ SP EL 2Y 4Y 2T EK 2 LC LIST SACS Release 5.2 Engineers and Consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-PEB..,2008 TIME 08:52:15 PST PAGE 404 SACS-IV SYSTEM MEMBER DETAIL REPORT DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR ·SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CHIT. COMB. CASE END FX MY MZ FY FZ .MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK 6-DR. TST 7 0.00 -0.5 -0.8 0.0 0.0 0.1 0.0 -0.46 .-1. OS -0.04 -1.55 0.19 C<.lS 0.07 8 -1.3 -1.0 -0.1 0.1 0.1 ~0.2 -1.25 -1.29' -0.07 -2.61 0.36 C<.lS 0.12 9 -3.8 -12.7 9.0 -1.4 0.7 14.8 -3.55 -16.80 . 11.97 -32.32 15.00 C>.15B 1.38 10 -1.4 -1.1 -0.3 0.1 0.1 -0.2 -1.34 -1.40 -0.40 -3.14 0.33 C<.15 0.10 11 -1~3 -0.4 -1.3 0.3 0.1 . -1.6 -1.27 -0.50 -1.72 -3.49 1. 85 C<.l5 0.11 12 -3.9 -12.8 8.8 -1.4 0.7 14 .• 9 -3.64 -16.90 11.63 -32.18 14.99 C<.l5 1. 03 13 -3.8 -12.1 7.8 -1.2 0.7 1.3.4 -3.57 -16.01 10.31 -29.89 13.46 C<.15 0.96 7 0.27 -0.5 -0.5 0.1 0.0 0.1. 0.0 -0.46 -0.68 0.09 -1.23 0.18 C<.lS 0.05 8 -1.3 -0.7 0.2 0.1 0.1 -0.2 -1.25 ·-o. 86 o.·23 -2.34 0.36 C<.15 0.10 9 -3.8 -10.3 4.4 -1.4 0.7 1.4.8 -3.55 -13.70 5.83 -23.09 15.00 SHEAR l. 04 10 -1.4 -0.7 0.0 0.1 0.1 -0.2 -1.34 -0.96 o.oo -2.30 o-.33 C<.15 0.08 11 -1.3 -0.1 -0.4 0.3 0.1 -1.6 -1.27 -0.17 -0.52 -1.96 1.85 SH~ 0.10 12 -3.9 -10.4 4 .2· -1.4 0.7 14.9 -3.64 -13.80 5.60 -23.04 14.99 SHEAR 0.78 13 -3.8 -9.8 3.8 -1.2 _0.'7 13.4 -3.57 -13.01 5.09 -21.67 13.45 SHEAR 0.70 7 0.55 -0.5 -0.2 0.2 0.0 0.1 0.0 -0.46 -0.32 0.23 -1.00 0.18 C<.15 0.04 8 -1.3 -0.3 0.4 0.1 0.1 -0.2 -1.25 -0.43 0.52 -2.21 0.35 C<.15 0.10 9 -3.8 -8.0 -0.2 -1.4 0.7 14.8 -3.55 -10.60 -0.30 -14.46 15.00 SHEAR 1.04 10 -1.4 -0.4 0.3 0.1 0.1 -0.2 -1.34 -0.53 o.-39 -2.26 0.33 C<.15 o.oe .. 11 -1.3 0.1 0.5 0.3 0.1 -1.6 -1..27 0.15 0.69 -2.11 1.85 SHEAR 0.10 12 -3.9 -8.1 -0.3 -1.4' 0.? 14.9 -3.64 -10.70 -0.43 -14.77 14.99 SHEAR 0.78 13 -3.8 -7.6 -0.1 -1.2 0.7-13.4 -3.57 -10.02 -0.14 -13.73 13.45 SHEAR 0.70 BZ-7 TST 7 0.00 -0.2 -0.3 0.1 o.o -0.1 -0.1 -0.16 -0.43 0.07 -0.66 0.26 C<.15 0.03 8 -0.7 -0.5 0.2 0.1 -0.1 -0.3 -0.65 -0.70 0.26 -1.62 0.47 C<.15 0.07 9 -o.s -5.3 -0.2 1.3 -0.4 10.9 -o.so -6-.98 -0.31 -7.79 11.56 SHEAR 0.80 10 -0.6 -0.4 -0.1 o.o -0.1 -0.4 -0.55 -0.49 -0.09 -1.13 0.57 C<.15 o .. 04 11 0.1 0.6 -1.5 -1.0 -0.1. -5.4 0.07 0.81. -1..97 2.85 6.29 SHEAR 0.33 12 -0.-4 -5.1 -o.5 1.3 -0.4 10.8 -0.40 -6.76 -0~67 -7.83 11.36 SHEAR 0.59 13 0.2 -4.1 -1.9 0.2 -0.4 5.9 0.22 -5.46 -2.55 8.23 5.64 SHEAR 0.29 ? 0.10 -0.2 -0.4 0.1 o.o -0.1 -0.1 -0.16 -0.55 0.09 -0.79 0.26 C<.15 0.03 8 -0.7 -0.6 0.3 0.1 -0.1 -0.3 -0.65 -0.85 0.42 -1.93 0.47 C<.15 0.08 9 -0.5 -5.8 1.3 1.3 -0.4 10.9 -0.50 -7.62 1.77 -9.89 11.56 SHEAR 0.80 10 -0.6 -0.5 0.0 o.o -0.1 -0.4 -0.55 ·-0 .• 67 -0.04 -1.25 0.57 C<.15 0.04 11 0.1 0.5 -2.6 -1.0 -0.1 -5.4 0.07 0.68 -3.51 4.26 6.29 SHEAR 0.33 12 -0.4 -5.6 1.0 1.3 -0.4 10.8 -0.40 -7.43 1.31 -9.14 11.36 SHEAR 0.59 13 0.2 -4.6 -1.6 0.2 -0.4 5.9 0.22 --6.08 -2.16 8.46 5.64 SHEAR 0.29 7 0.20 -0.2 -0.5 0.1 0.0 -0.1 -0.1 -0.16 -0.67 0•10 -0.93 0.26 C<.lS 0.04 8. -0.7 -0.8 0.4 0.1 -0.1 -0.3 -0.65 -1.01 0.58 -2.24 0.47 C<.15 0.10 9 -0.5 -6.2 2.9 1.3 -0.4 1.0.9 -0.50 -8.26 3.85 -12.62 11.56 SHEAR 0.80 10 -0.6 -0.6 0.0 0.0 -0.1. -0.4 -0.55 -0.84 0.02 -1.41 0.57 C<.15 0.05 11 0.1 0.4 -3.8 -1.0 -0.1 -5.4 0.07 0.56 -5.05 5.67 6.29 SHEAR 0.33 12 -0.4 -6.1 2.5 1.3 -0.4 10.8 -0.40 -8.10 3.30 -11.80 11.36 SHEAR 0.59 13 0.2 -5.1 -1.3 0.2 -0.4 5.9 0.22 -6.70 -1.77 8.69 5.64 SHEAR 0.29 SACS Release 5.2 Engineers and Consultants ID=-28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08:52:15 PST PAGE 403 SACS-IV SYSTEM MEMBER DETAIL REPORT DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION ·AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ F'l FZ. MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK QZ· QB TSR 7 o.oo 0.0 0.3 o.o 0.0 0.0 -0.1 0.01 0.07 0.01 0.08 0.02 TN+BN 0.00 8 0.0 0.5 -0.1 0.0 -0.1 "0.3 0.01 0.11 -0.03· 0.16 0.09 TN+BN 0.01 9 -0.1 0.0 ·0.2 0.1 0.1. -0.2 -0.02 o.oo -0.05 -0.08 0.08 SHEAR 0.01 10 0.0 -0.4 1.4 -0.1. o.o 1.2 0.01 ·-0.09 0.33 0.43 0.23 TN+BN 0.01 11 -1.3 -14.4 -2.3 0.2 1.0 . . -1.6 -0.44 -3.00 -0.53 -3.97 0.83 C<.15 0.14 12 -0.1 -1.0 1.3 0.0 . 0.2 1.4 -0.03 -0.20 0.31 -0.54 0.29 C<.lS 0.02 13 -1.4 -14.9 -2.3 0.3 1.2 -1.4 -0.47 "3.12 -0.55 -4.14 0.89 C<.15 0.14 7 0.20 0.0 0.3 0.0 o.o 0.0 ··0.1 0.01 0.06 o.oo 0.07 0.02 TN+BN 0.00 8 o.o 0.4 -0.2 ·a .o -0.1 -0.3 0.01 o.oa -0.04 0.13 0.09 SHEAR 0.01 9 -0.1 0.1 -0.1 0.1 0.1 -0.2 -0.02 0.03 -0.01 -0.07 0.08 SHEAR 0.01 10 0.0 -0.3 1.2 -0.1 o.o 1.2 0.01 -0.07 0.29 0.37 0.23 TN+BN 0.01 11 -1.3 -11.9 -1.7 0.2 1.0 -1.6 '-0.44 -2.48 -0._39 -3.31 0.83 C<.15 0.12 12 -0.1 -0.6 1.3 0.0 Oo2 1.4 -0.03 -0.12 0.31 -0.46 0.29 C<.15 0.02 13 -1.4 -12.1 ·1.6 0.3 1.2 -1.4 -0.47 -2.53 . ~0.37 -3.37 0.88 C<.15 0.12 7 0.40 0.0 0.2 o.o o.o o.o .--0.1 0.0.1 0.05 o.oo 0.06 0.03 TN+BN o.oo 8 o.o 0.2 -0.2 o.o -0.1 -0.3 0.01 0.05 -0.04 0.10 0.09 SHEAR 0.01 9 -0.1 0.3 0.1 0.1 0.1 -0.2 -0.02 0.06 0.02 -0.10 0.08 SHEAR 0.01 10 0.0 -0.3 1.0 -0.1 o.o 1.2 0.01 -0.06 0.25 0.31 0.23 SHEAR 0.01 11 -1.3 -9.4 -1.1 0.2 1.0 ·1.6 -0.44 .-1.96 .-0.25 -2.65 0.83 C<.15 0.09 12 -0.1 -0.2 1.3 0.0 0.2 1.4 -0.03 -0.05 0.31 -0.39 0.29 SHEAR 0.01 13 -1.4 -9.3 -0.8 0.3 1.2 -1.4 -0.47 -1.95 -0.19 -2.61 0.88 C<.15 0.09 5-OQ TST 7 0.00 -0.5 -0.8 0.1 0.0 0.1 0.0 -0.43 -1.05 0.12 -1.61 0.18 C<.15 0. 07 8 -1.3 -1.0 0.2 -0.1 0.1 0.2 -1.19 -1.33 0.26 -2.78 0.34 C<.15 0-.12 9 -3.7 -12.7 -8.8 1.4 0.7 -14.9 -3.47 . -16.81 -11.68 -31.96 14.98 C>.15B 1.36 10 -1.3 -1.1 0.3 -0.1 0.1 0.2 -1.-25 ·1.42 0.45 -3.12 0.32 C<.lS 0.10 11 -1.6 0.2 l.-4 -0.4 0.1 4.5 -1.47 0.21 1.81 -3.49 4.43 SHEAR 0.23 12 -3.8 -12.8 -8.7 1.4 0.7 -1.4.9 -3.54 -1.6.69 -1.1.49 -31.92 14.97 C<.15 1. 02 13 -4.0 -11.5 -7.6 1.1 0.7 -10.6 -3.75 -15.26 ·10.13 -29.15 10.86 C<.15 0.93 7 0.27 -0.5 -0.5 o.o 0.0 0.1 0.0 -0.43 -0.69 -0.04 -1.16 0.18 C<.15 0.05 8 -1.3 -0.7 -0.1 -0.1 0.1 0.2 '-1.19 -0.91 -0.09 -2.19 0.33 C<.15 0.10 9 -3.7 -10.4 -4.3 1.4 0.7 -14.9 -3.47 -13.72 -5.64 -22.83 14:98 SHEAR 1. 04 10 -1.3 -0.7 0.0 -0.1 o.1 0.2 -1.25 -0.98 0.05 -2.28 0.32 C<.lS 0.08 11 -1.6 0.5 0.2 -0.4 0.1 4.5 -1.4'7 0.64 0.20 -2.31 4.43 SHEAR 0.23 12 -3.8 -10.4 -4.2 1.4 0.7. -14.9 -3.54 -13.80 -5.50 -22.84 14.97 SHEAR 0.78 13 -4.0 -9.2 -4.0 1.1 0.7 -10.6 -3.75 -12.17 . -5.34 -21.27 10.86 C<.lS 0.69 7 0.55 -0.5 -0.2 -0.1 O.Q 0.1 o.o -0.43 -0.33 -0.20 -0.96 0.17 C<.lS 0.04 8 -1.3 -0.4 -0.3 -0.1 0.1 0.2 . -1.19 -0.48 -0.45 -2.12 0.33 C<.15 0.10 9 -3.7 "8.0 0.3 1.4 0.7 -14.9 -3.47 ·10.64 0.40 -14.51 14.98 SHEAR 1. 04 10 -1.3 -0.4 -0.3 -.0.1 0.1 0.2 -1.25 -0.56 -0.36 -2.17 0.32 C<.15 0.07 11 -1.6 0.8 -1.1 -0.4 0.1 4.5 -1.47 1.07 :-1.40 -3.94 4.42 SHEAR 0.23 12 -3.8 -8.1 0.4 1.4 0.7 -14.9 -3.54 -10.71 0.49 -14.74 14.97 SHEAR 0.78 13 -4.0 -6.9 -0.4 1.1 0.7 -10.6 -3.75 -9.09 -0.55 -13.40 10.86 SHEAR 0.57 SAcs· Release 5.2 Engineers and Consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08:5.2:15 PST PAGE 306. SACS-IV SYSTEM MEMBER DETAIL REPORT DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR .TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK 1-9 CHB 7 0.00 0.1 1.0 0.0 0.0 -0.1 o.o 0.06 0 .41. -0.18 -0.53 0.20 BEND 0.03 8 0.8 18.3 0.0 0.0 -1.1 0.0 0.50 . 7.52 0.26 8.28 2.42 TN+BN 0.38 9 0.7 17.5 -0.3 o.o ~1.1 0.0 0.40 "7.17 2.55 10.12 2.72 TN+BN 0.47 10 0.9 18.0 -0.2 o.o -1.1 o.o 0.55 7.41 1.5_8 9.54 2.62 TN+BN 0.33 11 0.6 20.8 -5.1 0.4 -1.1 0.0 0.35 8.53 48.32 57.20 8.56 TN+BN 1. 99 12 0.7 17.2 -0.4 0.0 -1.1 o.o 0.46 7.05 3.-87 11.38 2.92 TN+BN 0.40 13 0.4 19.9 -5.4 0.4 -1.1 o,o 0.26 8.17 50.61 59.04 8.87 TN+BN 2.05 7 0.67 0.1 0.3 o.o o.o -0.1 o.o 0.06 0.11 -0.10 0.17 0.20 SHEAR 0.01 8 0.8 9.7 0.0 0.0 -1.1 0.0 0.50 -3.97 -0.13 4.47 2.41 TN+BN 0.21 9 0.7 8.9 -0.1 0.0 -1.1 0.0 0.40 3.65 0.72 4.77 2.71 TN+BN 0.22 10 0.9 9.4 0.-0 0.0 -1.1 o.o 0.55 3.87 0.16 4.59 2.61 TN+BN 0.16 11 0.6 11.7 -2.0 0.4 -1.1 0.0 0.35 4.79 18.43 23.58 8.37 TN+BN 0.82 12 0.7 8.7 -0.1 0.0 -1.1 0.0 0.46 3.55 1.01 5.02 2.91 TN+BN 0.17 13 0.4 10.9 -2.0 0.4 -1.1 0.0 0.26 4.47 19.28 24.01 8·. 67 TN+BN 0.83 7 1.35 0.1 -0.4 o.o 0.0 -·o.1 o.o 0.06 -0.18 -0.02 0.24 0.19 SHEAR 0.01 8 0.8 1.1 0.1 o.o -1.1 0.0 0.50 0.44 -0.52 0.94 2.40 SHEAR 0.17 9 0.7 0.4 0.1 0.0 -1.1 o.o 0.40 0.15 -1.11 -0.86 2.70 SHEAR 0.19 10 0.9 0.8 0.1 o.o -1.1 0.0 0.55 0.35 -1.25 -1.05 2.61 SHEAR 0.14 11 0.6 2.6 1.1 0.4 -1.1 0.0 0.35 1..07 -10.54 -11.26 8.17 SHEAR 0.43 12 0.7 0.1 0.2 o.o -1.1 0.0 0.46 0.06 -1.85 -1.45 2.91 SHEAR 0.15 13 0.4 1.9 1.2 0.4 -1.1. o.o 0.26 0.78 -11.14 -11.66 8.48 SHEAR 0.44 3-A CHB 7 0.00 0.1 -0.9 0.0 0.0 0.1 o.o 0.04 -0.39 -0.11 -0.46 0.20 BEND 0.02 8 0.7 -18.4 -0.1 0.0 1.1 o.o 0.43 -7.57 _0.55 8.55 2.50 TN+BN 0.40 9 o.s -17.5 -0.3 0.0 1.1 0.0 0.31 -7.1.7 2.95 10.43 2.79 TN+BN 0.48 10 0.8 -18.1 -0.3 0.0 1.1 0.0 0.48 -7.43 2.38 10.29 2.74 TN+BN 0.36 1I LO -17.0 5.7 -0.4 LO o.o 0.61 -6.97 -53.80 -60.16 9.32 BEND 2.11 12 0.6 -17.1 -0.5 0.0 1.1 o.o 0.37 -7.03 4.78 12.18 3. 03 TN+BN 0.42 13 0.8 -16.0 5.4 -0.4 1.0 0.0 0.49 -6.57 -51.40 -57.48 9.01 BEND 2.01 7 0.67 0.1 -0.2 0.0 0.0 0.1 0.0 0.04 -0.09 -0.08 -0.14 0.19 SHEAR 0.01 6 0.7 -9.8 o.o 0.0 1.1 o.o 0.43 -4.01 -0.07 4.44 2.49 TN+BN 0.21 9 0.5 -8.9 -0.1 o.o 1.1 o.o 0.31 -3.65 0.89 4.85 2.78 TN+BN 0.22 10 0.8 -9.5 -0.1 0.0 1.1 0.0 0.48 .-3.89 0.52 4.90 2.73 TN+BN 0.17 1I LO -8.7 2.2 -0.4 I.O o.o 0.61 "3.55 -20.83 -23.77 9.12 BEND 0.85 12 0.6 -8.6 -0.2 o.o 1.1 0.0 0.37 -3.53 1.48 5.37 3.02 TN+BN 0.19 13 0.8 -7.8 2.1 -0.4 1.0 o.o 0.49 -3.19 -19.88 -22.57 8.82 BEND 0. 80 7 1.34 0.1 0.5 o.o o.o 0.1 o.o 0.04 0.19 -0.06 0.23 0.18 SHEAR-0.01 6 0.7 -1.2 0.1 0.0 1.1 o.o 0.43 -0.47 -0.68 0.90 2.48 SHEAR 0.17 9 o.s -0.4 0.1 0.0 1.1 o.o 0.31 -0.15 -1.18 -1.01 2.77 SHEAR 0.19 10 0.8 -0.9 0.1 0.0 1.1 0.0 0.48 -0.36 -1.33 -1.21 2.72 SHEAR 0.14 1I I.O -0.3 -1.2 -0.4 I.O 0.0 0.61--0.14 11.23 11.98 8.92 SHEAR 0.46 12 0.6 -0.1 0.2 o.o 1.1 0.0 0.3? -0.04 -1.83 -1.50 3.01 SHEAR 0.16 13 0.8 0.4 -1.1 -0.4 r.o 0.0 0.49 o.18 10.73 11.41 8.62 SHEAR 0.45 SACS Release 5.2 Engineers and Consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08,52,15 PST PAGE 307 SACS-IV SYSTEM MEMBER DETAIL REPORT DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS. IN-KIP KSI KSI KSI KSI KSI CHECK 9-B CHB 7 o.oo 0.1 -0.4 o.o 0.0 -0.1 o.o 0.06 -0.18 -0.12 0.24 0.14 BEND 0.01 8 0.8 1.1 0.1 0.0 -0.8 0.0 o.so 0.43 -1.12 -1. OS 1.66 SHEAR 0.12 9 0.7 0.4 0.2 0.0 -0.8 0.0 0.41 0.15 -1.47 -1.21 1. 70 SHEAR 0.12 10 0.9 0.8 0.1 0.0 -0.6 0.0 0.55 . 0.35 -1.17 -0.96 1. 65 SHEAR 0.09 11 0.4 2.7 -3.2 0.5 -0.8 0.0 0.25 1.11 ·29.94 31.30 9.02 TN+BN 1.09 12 0.7 0.1 0.2 0.0 -0.8 0.0 0.46 0.06 -1.52 -1.12 1.69 SHEAR 0.09 13 0.2 2.0 -3.1 0.5 . -0.8 0.0 0.15 0.62 29.59 30.56 8.95 TN+BN 1.06 7 0.49 0.1 -0.8 0.0 o.o '-0.1. 0.0 0.06 -0.33 -0.05 0.40 0.14 TN+BN 0.02 8 0.8 -3.6 o.o 0.0 -0.8 o.o 0.50 -1.46 -0.47 1.96 1.66 SHEAR 0.12 9 0.7 -4.2 0.1 o.o -0.8 0.0 0.41 -1.72 -0.62 2.13 1. 70 SHEAR 0.12 10 0.9 -3.7 0.1 o.o -o.8 0.0 o.ss -1.54 -0.53 2.09 1.65 SHEAR 0.09 11 0.4 -2.3 -0.4 0.5 -0.8 o.o 0.25 -0.93 3.88 5.06 8.88 SHEAR 0.46 12 0.7 -4.4 0.1 0.0 -0.8 0.0 0.46 -1.80 -0.68 2.26 1.69 SHEAR 0.09 13 0.2 -2.9 -0.4 0.5 -o.8 o.o 0.15 -1.20 3.72 5.07 8.81 SHEAR 0.46 7 0.98 0.1 -1.2 0.0 0.0 -0.1 9.0 0.06 -0.48 0.02 0.56 0.13 TN+BN 0.03 8 0.8 -8.1 0.0 0.0 -0.8 o.-o 0.50 -3.34 0.19 4.04 l. 65 TN+BN 0.19 9 0.7 -8.7 0.0 o.o -0.8 o.o 0.41 -3.58 0.23 4.22 1.69 TN+BN 0.20 10 0.9 -8.3 0.0 0.0 -0.8 0.0 0.55 -3.41 0.11 4.08 1.64 TN+BN 0.14 11 0.4 -7.2 2.3 0.5 -0.8 o.o 0.25 -2.97 .:.21.70 -24.42 8.73 BEND 0.86 12 0.7 -8.9 0.0 0.0 -0.8 o.o 0.46 -3.65 0.15 4.26 1.68 TN+BN 0.15 13 0.2 -7.8 2.3 0.5 -0.8 0.0 0.15 -3.21 -21.66 -24.72 8.66 BEND 0.86 A-C CHB 7 0.00 0.1 0.5 0.0 o .. o 0.1 o •. o· 0.04 0;19 -0.09 -0.25 0.13 BEND 0.01 8 0.7 -1.1 0.1 0.0 o.8 o.o 0.43 -0.47 -1.15 -1.19 1.66 SHEAR 0.12 9 0.5 -0.4 0.1 o.o 0.8 0.0 0.31 -0.14 -1.40 -1.23 1.68 SHEAR 0.12 10 0.8 -0.9 0.1 0.0 0.8 o.o 0.48 C0.36 -1.18 -1.05 1.65 SHEAR 0.09 11 1.2 -0.2 3.3 -0.5 0.7 o.o 0.73 -0.10 -30.94 -30.32 8.98 BEND 1. 08 12 0.6 -0.1 0.2 0.0 0.8 0.0 0.37 -0.04 -1.42 -1.09 1.67 SHEAR 0.09 13 1.0 0.6 3.3 -0.5 0.7 0.0 0.61 0.23 -31.19 -30.81 9.00 BEND 1. 09 7 0.49 0.1 0.8 0.0 0.0 0.1 o.o 0.04 0.35 -0.05 0.39 0.13 BEND 0.02 8 0.7 3.5 0.1 o.o o.8 o.o 0.43 1.42 -0.52 1. 86 1.65 SHEAR 0.11 9 0.5 4.2 0.1 o.o o.8 0.0 0.31 l. 72 -0.63 2.04 1. 68 SHEAR 0.12 10 0.8 3.7 0.1 o.o 0.8 0.0 0.48 1.52 -0.56 2.01 1.64 SHEAR 0.09 11 1.2 4.1 0 .. 5 -0.5 0.7 o.o 0.73 1.69 -4.43 -5.39 8.83 SHEAR 0.46 12 0.6 4.4 0.1 0.0 0.8 0.0 0.37 1.82 -0.66 2.19 1.67 SHEAR 0.09 13 1.0 4.8 0.5 -0.5 0.7 0.0 0.61 .1.99 -4.54 -5.92 8.86 SHEAR 0.46 7 0.98 0.1 1.2 0.0 0.0 0.1 0.0 0.04 0.49 -0.01 0.53 0.12 TN+BN 0.02 8 0.7 8.1 0.0 0.0 0.8 0.0 0.43 3.31 0.12 3.86 1.65 TN+BN 0.18 9 o.s-8.7 o.o o.o 0.8 o.o 0 .. 31 3.59 0.15 4.05 1.67 TN+BN 0.19 10 0.8 8.3 0.0 0.0 0.8 0.0 0.48 3.40 0.06 3.95 1.64 TN+BN 0.14 11 1.2 8.5 -2.3 -0.5 0.7 o.o 0.73 3.47 21.60 25.79 8.69 TN+BN 0.90 12 0.6 9.0 0.0 0.0 0.8 o.o 0.37 3.-67 0.10 4.14 1.66 TN+BN 0.14 13 1.0 9.1 -2.3 -0.5 0.7 o.o 0.61 3.74 21.63 25.98 8.71 TN+BN 0.90 SAcs-Release 5.2 Engineers and Consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08•52•15 PST PAGE 308 SACS-IV SYSTEM MEMBER DETAIL REPORT DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK B-D CHB 7 0.00 0.1 -1.2 0.0 0.0 o-.o 0.0 .0.06 -0.48 0.03 0.58 o.oa TN+BN 0.03 8 0.8 -8.1 0.0 o.o -0.5 o.o 0.50 -3.34 0.23 4.08 0.96 TN+BN 0.19 9 0.7 -8.7 0.0 o.o -0.5 0.0 0.41 ~3.58 0.24 4.23 0.95 TN+BN 0.20 10 0.9 -8.3 0.0 0.0 -0.5 0.0 0.55 -3.41 0.30 4.26 0.98 TN+BN 0.15 11 0.2 -7.1 -2.5 0.4 -0.6 . 0.0 0.13 -2.92 23.41 26.46 7.94 TN+BN 0.92 12 0.7 -8.9 0.0 0.0 -o.5 0.0 0.46 -3.65 0.31 4.42 0.96 TN+BN 0.15 13 0.0 -7.7 -2.5 0.4 -o.5 0.0 0.03 -3.16 23.42 26.61 7.93 TN+BN 0.92 7 0.49 0.1 -1:.4 0.0 0.0 0.0 o.o 0.06 -0.57 0.01 0.65 0.07 TN+BN 0.03 8 0.8 -11.0 0.0 0.0 -0.5 0.0 0.50 -4.53 0.09 5.12 0. 96 TN+BN 0.24 9 0.7 -11.6 0.0 0.0 -o.5 0.0 0.41 -4.74 0.10 5.25 0.94 TN+BN 0.24 10 0.9 -11.2 o.o 0.0 -0.5 0.0 0.55 -4.59 0~09 5.23 0.97 TN+BN 0.18 11 0.2 -10.4 0.1 0.4 -0.6 o.o 0.13 -4.26 -0.65 -4.78 7.80 SHEAR 0.41 12 0.7 -11.7 o.o o.o -0.5 o.o 0.46 -4.81 0.09 5.35 0.95 TN+BN 0.19 13 0.0 -10.9 0.1 0.4 -o.5 0.0 . 0.03 -4.48 -0.64 -5.09 7.78 SHEAR 0.41 7 0.98 0.1 -1.6 o.o 0.0 0 .• 0 o.o 0.06 -0.66 -0.01 0.?2 0.07 TN+BN 0.03 8 0.8 -13.9 o.o o.o -0.5 0.0 -o.so ·-5.70 -0.04 6.21 0.95 TN+BN 0.29 9 0.7 -14.4 0.0 o.o -0.5 0.0 0.41 -5.90 -0.04 6.30 0.93 TN+BN 0.29 10 0.9 -14.0 o.o o.o -0.5 o.o o.ss -5.76 -0.13 6.31 0.9? TN+BN 0.22 11 0.2 -13.6 2.6 0.4 -o.s 0.0 0.13 -5.59 -24.22 -29.69 ?.65 BEND 1.04 12 0.7 -14.5 0.0 0.0 -o.5 0.0 0.46 :-5.95 -0.12 6.41 0.95 TN+BN 0.22 13 o.o -14.1 2.6 0.4 -0.5 0.0 0.03 -5.78 "24.22 -29.97 7.64 BEND 1.04 c-13 CHB 7 0 .oo 0.1 1.2 0.0 0.0 o.o 0.0 0.04 0.49 0.06 0.59 0.09 'I'N+BN 0. 03 8 0.7 8.1 0.0 0.0 0.5 0.0 0.43 3.31 0.29 4.03 0.98 TN+BN 0.19 9 0.5 8.7 0.0 o.o 0.5 o.o 0.31 3.59 0.33 4.23 0.97 TN+BN 0.20 10 0.8 8.3 0.0 o.o 0.5 o.o 0.48 3 ._40 0.37 4.25 1. 00 TN+BN 0.15 11 1.4 8.6 2.4 -0.4 0.4 0.0 0.84 3.51 -22.69 -25.36 7.61 BEND 0.91 12 0.6 9.0 0.0 0.0 0.5 0.0 0.36 3.67 0.41 4.44 0.99 TN+BN 0.15 13 1.2 9.2 2.4 -0.4 0.4 o.o -0.72 3.78 -22.64 -25.71 ?.58 BEND 0.92 7 0.49 0.1 1.4 0.0 0.0 0 .• 0 0.0 0.04 ·0.58 0.01 0.63 0.08 TN+BN 0. 03 8 0.7 11.0 0.0 0.0 0.5 0.0 0.43 4.50 0.09 5.02 0.98 TN+BN 0.23 9 0.5 11.6 o.o o.o 0.5 o.o 0.31 4.75 0.10 5.16 0.97 TN+BN 0.24 10 0.8 11.2 o.o 0.0 0.5 0.0 0.48 4.58 0.09 5.15 0.99 TN+BN 0.18 11 1.4 11.2 -0.1 -0.4 0.4 0.0 0.84 .4.59 0.83 6.26 ?.46 SHEAR 0.39 12 0.6 11.8 0.0 0.0 0.5 0.0 0.36 .4.83 0.10 5.29 0.98 TN+BN 0.18 13 1.2 11.8 -0.1 -0.4 0.4 0.0 0.72 4.84 0.84 6.40 7.43 SHEAR 0.39 7 0.98 0.1 1.6 0.0 o.o 0.0 0.0 0.04 0.67 -0.04 0.70 0.08 BEND 0.03 8 0.7 13.8 0.0 o.o 0.5 0.0 0.43 5.68 -o.u 6.12 0.97 TN+BN 0.28 9 0.5 14.4 0.0 0.0 0.5 o.o 0.31 5.90 -0.13 6.22 0.96 TN+BN 0.29 10 0.8 14.0 o.o 0.0 0.5 0.0 0.48 5.75 -0.19 6.24 0.99 TN+BN 0.22 11 1.4 13.8 -2.5 -0.4 0.4 0.0 0.84 5.66 23.86 30.36 7.31 TN+BN 1.05 12 0.6 14.6 0.0 0.0 0.5 0.0 0.36 5.97 -0.21 6.34 0.97 TN+BN 0.22 13 1.2 14.3 -2.5 -0.4 0.4 o.o 0.72 s.ae 23.85 30.45 7.29 TN+BN 1. 06 ~cs Release 5.2 Engineers and Consultants· ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08:52:15 "PST PAGE 322 SACS-IV SYSTEM MEMBER DETAIL REPORT DIST MAX MEMBER GRP LOAll FROM FORCE MOMENT MOMENT· SHEAR SHEAR TORSION· AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX sTREss y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK 13-14 CHB 7 0.00 0.1 1.6 0.0 o.o 0.0 0.0 0.04 0.67 0.04 0.75 0.04 TN+BN 0. 03 8 0.7 13.8 0.0 o.o 0.2 0.0 0.43 5.68 0.18 6.30 0.47 TN+BN 0.29 9 0.5 14.4 0.0 0.0 0.2 0.0 0.31 5.90 0.20 6.42 0.45 TN+BN 0.30 10 0.8 14.0 0.0 o.o 0.2 o.o 0.48 5.75 0.27 6.50 0.48 TN+BN 0.23 11 1.5 13.9 2.1 -0.4 0.2 0.0 0.95 ·s.?o -19.76 -24.51 7.26 BEND 0.88 12 0.6 14.6 0.0 0.0 0.2 0.0 0.36 5.97 0.29 6.63 0.47 TN+BN 0.23 13 1.3 14.4 2.1 -0.4. 0.1 o.o 0.83 .5.92 -19.74 -24.83 7.24 BEND 0.89 7 0.49 0.1 1.7 0.0 o.o o.o 0.0 0.04 0.70 -0.01. 0.73 0.03 TN+BN 0. 03 8 0.7 15.0 0.0 o.o 0.2 . 0.0 0.43. 6.17 -0.12 6.60 0.46 TN+BN 0.31 9 0.5 15.5 0.0 o.o 0.2 0.0 0.31 6.36 -0.13 6.68 0.45 TN+BN 0.31 10 ().8 15.2 0.0 o.o 0.2 o.o 0.48 6.23 -0.12 6.71 0.48 TN+BN _0.23 11 1.5 14.8 -0.4 -0.4 0.2 o.o 0.95 6.08 3.93 10.96 7.11 TN+BN 0.38 12 0.6 15.6 o.o o.o 0.2 . o·.o 0.36 6.42 -0.12 6.78 0.46 TN+BN 0.24 13 1.3 15.3 -0.4 -0.4 0.1 0.0 0.83 6.27 .3.93 11.04 7.09 TN+BN 0.38 7 0.98 0.1 1.7 0.0 0.0 . 0.0 0.0 0.04 0.72 .-o .o6 0.76 0.03 BEND 0.04 8 0.7 16.2 o.o 0.0 0.2 0.0 0.43 6.65 -0.43 7.08 0.45 TN+BN 0.33 9 0.5 16.6 0.0 0.0 0.2 o.o 0.31 6.81 -0.46 7.13 0.44 BEND 0.34 10 o.8 16.3 0.1 0.0 0.2 0.0 0.48 6.70 -:0.51 7.18 0.47 BEND 0.25 11 1.5 15.7 -2.9 -0.4 0.2 0.0 0.95 ~.45 27.14 34.54 6.97 TN+BN 1.20 12 0.6 16.7 0.1 0.0 0.2 o.o 0.36 6.86 :-0-53 7.23 0.46 BEND 0.26 13 1.3 16.1 -2.9 -0.4 0.1 o.o 0.83 6.62 27.11 34.56 6.95 TN+BN 1.20 14-15 CHB 7 0.00 0.1 1.7 o.o o.o 0.0 0.0 0.04 0.72 0.05 0.81 0.04 TN+BN 0.04 8 0.7 16.2 o.o 0.0 -0.1 0.0 0.43 6.65 0.15 7.23 0.28 TN+BN 0.33 9 0.5 16.6 o.o 0.0 -0.1 o.o 0.31 6.81 0.18 7.30 0.31 TN+BN 0.34 10 0.8 16.3 0.0 o.o -0.1 o.o 0.48 6.70 0.24 7.42 0.32 TN+BN 0.26 11 1.7 15.8 1.3 -0.4 -0.1 0.0 1.06 6.49 -1.1.96 -17.39 7.04 BEND 0.64 12 0.6 16.7 0.0 0.0 -0.1 o.o 0.36 6.86 0.27 7.49 0.35 TN+BN 0.26 13 1.5 16.2 1.3 -0.4 -0.1 0.0 0.94 6.66 -11.94 -17.66 7. 05 BEND 0.65 7 0.49 0.1 1.7 0.0 0.0 0.0 o.o -0.04 0.69 -0.01 0.72 0.05 TN+BN 0.03 8 0.7 15.7 0.0 o.o -0.1 o.o 0.43 6.43 0.01 6.87 0.29 TN+BN 0.32 9 0.5 16.0 o.o o.o -0.1 0.0 0.31 6.57 o.oo 6.89 0.32 TN+BN 0.32 10 0.8 15.8 o.o 0.0 -0.1 0.0 0.48 6.47 0.01 6.95 0.32 TN+BN 0.24 11 1.7 15.0 -1.1 -0.4 -0.1 o.o 1.06 6.16 10.81 18.03 6.90 TN+BN 0.63 12 0.6 16.1 0.0 0.0 --0.1 0.0 0.36 6.61 0.00 6.97 0.35 TN+BN 0.2tl 13 1.5 15.4 -1.1 -0.4 -0.1 0.0 0.94 6.30 10.81 18.05 6.91 TN+BN 0.63 7 0.98 0.1 1.6 0.0 0.0 0.0 o.o 0.04 0.65 -0.08 -0.69 0.05 BEND 0.03 8 0.7 15.1 o.o 0.0 -0.1 o.o 0.43 6.20 -0.13 6.63 0.30 TN+BN 0.31 9 0.5 15.4 0.0 0.0 -0.1 0.0 0.31 6.32 -0.17 6.63 0.32 TN+BN o;31 10 o.8 15.2 0.0 0.0 -0.1 0.0 0.48 6.23 -0.23 6.71 0.33 TN+BN 0.23 11 1.7 14.2 -3.5 -0.4 -0.1 0.0 1.06 5.83 33.10 39.99 6.76 TN+BN 1.39 12 0.6 15.5 0.0 o.o -0.1 0.0 0.36 6.35 -0.27 6.7~ 0.36 TN+BN 0.23 13 1.5 14.5 -3.5 -0.4 -0.2 0.0 0.94 5.94 33.06 39.94 6.77 TN+BN 1:39 SACS Release 5.2 Engineers and Consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS riATE 26-FEB-2008 ·TIME 08:52:15 PST PAGE 323 SACS-IV SYSTEM MEMBER DETAIL REPORT DIST MAX MEMBER GRP LOAIJ FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK 15-16 CHB 7 0.00 0.1 1.6 0.0 0.0 o.o 0.0 0.04 0.65 0.10 0.78 0.10 TN+BN 0.04 8 0.7 15.1 _-0.1 0.0 -0.4 0.0 0.43 6.20 0.79 7.42 0.99 TN+BN 0.34 9 0.5 15.4 -0.1 0.0 -0.4 0.0 0.31 .6.32 0.83 7.46 1.02 TN+BN 0.35 10 0.8 15.2 -0.1 o.o. -0.4 o.o 0.48 6.23 0.89 7.60 1.02 TN+BN 0.26 11 1.9 14.3 3.2 -0.4 -0.4 0.0 1.20 5.88 -30.25 -34.93 7.12 BEND 1.25 12 0.6 15.5 -0.1 o.o -0.4 . 0.0 0.36 6.35 0.93 7.64 1.06 TN+BN 0.27 13 1.7 14.6 3.2 -0.4 -0.4. 0.0 1.08 6.00 -30.20 -35.12 7.13 BEND 1. 26 7 0.49 0.1 1.3 o.o 0.0 o.o 0.0. 0.04 0.55 0.01 0.59 0.11 TN+BN 0.03 8 0.7 12.8 o.o o·.o -0.4 o;o 0.43 5.27 0.11 5.80 0.99 TN+BN 0.27 9 0.5 13.1 0.0 0.0 -0.4 o.o 0.31 5.36 0.10 5.77 1.03 TN+BN 0.27 10 0.8 12.9 0.0 o.o -0.4 o.o 0.48 5.29 0.11 5.88 1.03 TN+BN 0.20 11 1.9 11.8 0.9 -0.4 -0.4 0.0 1.20 4.84 -8.56 -12.21 6.99 BEND 0.47 12 0.6 13.1 0.0 0.0 -0.4 0.0 0.36 5.38 0.11 s.as 1.06 TN+BN 0.20 13 1.7 12.0 0.9 -0.4 -0.4 0.0 1.08 4.93 -8.57 -12.42 6. 99 BEND 0.47 7 0.98 0.1 1.1 o.o 0.0 0.0 0.0 0.04 0.44 -0.08 -0.48 0.11 BEND 0.02 8 0.7 1.0.6 0.1 0.0 "0.4 o.o 0.43 4.33 -0.58 4.76 1.00 BEND 0.23 9 0.5 10.7 0.1 0.0 -0.4 0.0 0.31 4.40 -0.63 -4.72 1.03 BEND 0.23 10 0.8 10.6 0.1 0.0 -0.4 o.o -0.48 4.34 -0.66 4.82 1.03 BEND 0.17 11 1.9 9.3 -1.3 -0.4 -o.-4 o.o 1.20 3.80 12.63 17.63 6.85 TN+BN 0.61 12 0.6 10.7 0.1 o.o -0.4 0.0 0.36 4.41 -0.72 -4.77 1.07 BEND 0.18 13 1.7 9.4 -1.3 -0.4 -0.4 0.0 1.08 . 3.86 12.58 17.52 6.85 TN+BN 0.61 16-17 CHB 7 0.00 0.1 1.1 0.0 o.o. ~0.1 -0.0 0.04 0.44 .0.08 0.55 0.15 TN+BN 0.03 8 0.7 10.6 o.o . 0 .'o -0.7 0.0 0.43 4.33 0.26 5.02 1.38 TN+BN 0.23 9 0.5 10.7 0.0 0.0 --0 .. 7 0.0 0.31 4.40 0.27 4.97 1.38 TN+BN 0~23 10 0.8 10 .. 6 o.o 0.0 -0.7 0.0 0.47 4.35 0.33 5.15 1.41 TN+BN 0.18 11 2.1 9.3 2.5 -0.4 -0.7 0.0 1.30 3.84 "24.02 -26.56 7.59 BEND 0.97 12 0.6 10.7 0.0 0.0 -0.7 0.0 0.35 4.41 0.34 5.11 1.41 TN+BN 0.18 13 1.9 9.5 2.5 -0.4 -0.7 o.o 1.18 3.90 -24.01 -26.73 7.63 .BEND 0.97 7 0.49 0.1 0.7 0.0 0.0 -0.1 0.0 0.04 0.28 -0.01 0.31 0.15 TN+BN 0.01 8 0.7 6.6 0.0 0.0 -0.7 0.0 0.43 2.70 -0.16 3.12 1.39 TN+BN 0.14 9 0.5 6.7 0.0 o.o -o. 7 .0.0 0.31 2.74 "0.06 3.04 1.39 TN+BN 0.14 10 0.8 6.6 o.o 0.0 -0.7 o.o 0.4-7 2.70 -0.16 3.17 1.42 TN+BN 0.11 11 2.1 5.1 0.2 -0.4 -0.7 0.0 1.30 2.10 -2.20 3.39 7.45 SHEAR 0.39 12 0.6 6.7 0.0 o.o -0. 7. 0.0 0.35 2.74 -0.06 3.09 1.41 TN+BN 0.11 13 1.9 5.2 0.2 -o-.4 -0.7 o.o 1.18 2.14 .-2.10 3.31 7.49 SHEAR 0.39 7 0.98 0.1 0.3 0.0 0.0 -0.1 0.0 0.04 0.11 -0.10 -0.17 0.16 SHEAR 0.01 8 0.7 2.6 0.1 o.o .oQ.7 o.o 0.43 1.06 -o.s8 1.48 1.39 SHEAR 0.10 9 0.5 2.6 0.0 0.0 -0.7 0.0 0.31 1.07 -o.-39 1.37 1.39 SHEAR 0.10 10 0.8 2.6 0.1 0.0 -0.7 o.o 0.47 1.05 -0.65 1.52 1.42 SHEAR 0.07 11 2.1 0.9 -2.0 -0.4 -0.7 0.0 1.30 0.35 19.14 20.79 7.32 TN+BN 0.72 12 0.6 2.6 0.0 0.0 -0.7 o.o 0.35 1.06 -0.46 1.42 1.42 SHEAR 0.07 13 1.9 0.9 -2.0 -0.4 -0.7 o.o 1.18 . 0.36 19.32 20.86 7.36 TN+BN 0.72 SACS Release 5.2 Engineers. and Consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACB ANALYSIS DATE 26-FEB-2006 TIME o8,s2,1S PST PAGE 324 SACS-IV SYSTEM MEMBER DETAIL REPORT DIST MAX MEMBER GRP LOAD· FROM FORCE MOMENT MOMENT SIIEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK 17-18 CHB 7 o.oo 0.1 0.3 0.0 0.0 -0.1 0.0 . 0.04 0.11 0.06 0.20 0.18 SHEAR 0.01 8 0.7 2.6 0.0 0.0 -1.0 0.0 0.42 1.06 0.36 1.86 1.83 SHEAR 0.13 9 0.5 2.6 -0.1 o.o -1.0 0.0 . 0.30 1.07 0.63 2.00 2.03 SHEAR 0.14 10 0.8 2.6 0.0 0.0 -1.0 o.o 0.47 1.05 0.46 1.98 1. 87 SHEAR 0.10 11 2.2 0.9 2.0 -0.4 -1.0 . 0.0 1.40 0.39 -19.34 -18.33 8.42 BEND 0.69 12 0.6 2.6 -0.1 o.o -1.0 o.o 0.35 . 1.06 o. 71 2.12 2.07 SHEAR 0.11 13 2.1 1.0 2.0 -0.4 -1.0 0.0 1..28 0.40 ·-19.09 -18.21 8.24 BEND 0.68 7 0.49 0.1 -0.3 0.0 0.0 -0.1 0.0 0.04. .-0.12 0.07 0.22 0.18 SHEAR 0.01 8 0.7 -3.1 0.0 0.0 -1.0 o.o . 0.42 -1.28 0.35 2.06 1.83 SHEAR 0.13 9 0.5 -3.2 0.0 0.0 -1.0 0.0 .0.30 -1.30 -0.05 1.60 2.03 .SHEAR 0.14 10 0.8 -3.2 o.o 0.0 -1.0' 0.0 0.47 -1.30 0.33 2.10 1.87 SHEAR 0.10 11 2.2 -5.0 -0.4 -0.4 -1.0 o.o 1.40 -2.-05 3.49 6.95 8.28 SHEAR 0.43 12 0.6 -3.2 0.0. 0.0 "1.0 0.0 0.35 -1.31 -0.07 1.66 2.07 SIIEAR 0.11 13 2.1 -5.0 -0.3 -0.4 -1.0 o.o . 1.28 -2-.07 3.09 6.44. 8.10 SHEAR 0.42 7 0.98 O.i. -o.8 0.0 o.o -0.1 0.0 0.04 -0.35 0.09 0.47 0.19 TN+BN 0.02 8 0.7 -8.6 0.0 o.o . -1.0 0.0 0.42 -3.63 0.32 4.38 1. 84 TN+BN 0.20 9 0.5 -8.9 0.1 0.0 -1.0 o.o 0.30 -3.67 -0.73 -4.09 2.04 BEND 0.20 10 0.8 -8.9 0.0 o.o -1.0 0.0 0.47 -3.66 0.20 4.32 1.88 TN+BN 0.15 11 2.2 -11.0 -2.7 -0.4 -1.0 0.0 1.40 -4.51 25.84 31.74 8.15 TN+BN 1.10 12 0.6 -9.0 0.1 0.0 -1.0 o.o 0.35 ~3.70 -0.85 -4.20 2. 08 BENO 0'.16 13 2.1 -11.1 -2.6 -0.4 . -1.0 0.0 1.28 ..:4.55 .24.79 30.61 7.97 TN+BN 1. 06 18-19 CH8 7 o.oo 0.1 -0.8 0.0 o.o -0.1 0.0 0.04 -o.:i5 o.:i3 0.61 0.38 TN+BN 0.03 8 0.7 -8.8 -0.1 0.0 -1.3 o.o 0.42 -3 .. 63 0.95 5.00 3.03 TN+BN 0.23 9 0.5 -8.9 -0.1 0.1 -1.3 0~0 0.30 -3.67 0.75 4.72 3.97 SHEAR 0.28 10 0.8 -8.9 -0.1 o.o -1.3 0.0 0.47 -3.65 0.97 5.10 3.01 TN+BN 0.18 11 2.4 -10.9 1.2 -0.4 -1.3 0.1 1."49. .-4.47 -11.11 -14.08 9.27 BEND 0.54 12 0.6 -9.0 -0.1 0.1 -1.3 . 0.0 0.35 "3.70 0.77 4.81 3.95 SHEAR 0.21 13 2.2 -11.0 1.2 -0.3 -1.3 0.0 1.37 -4.51 -11.31 -14.45 7. 52 BEND 0.55 7 0.49 0.1 -1.5 0.0 0.0 -0.1 0.0 0.04 -0.63 -0.21 -0.81 0.39 BEND 0.04 8 0.7 -16.3' 0.0 o.o -1.3 o.o 0.42 -6.68 0.06 7.16 3.04 TN+BN 0.33 9 0.5 -16.4 0.3 0.1 -1.3 0.0 0.30 -6.74 -2.77 -9.21 3.97 BEND 0.44 10 0.8 -16.4 o.o 0.0 -1.3 0.0 0.47 -6.71 0.19 7.37 3.01 TN+BN 0.26 11 2.4 -18.6 -0.9 -0.3 -1.3 0.1 1.49 -7.62 8.50 17.62 9.14 TN+BN 0.61 12 0.6 -16.5 0.3 0.1 -1·3 o.o 0.35 -6.77 -2.65 -9.08 3.95 BEND 0.33 13 2.2 -18.7 -0.6 -0.3 -1.3 o,o 1.37 -7.68 5.67 14.72 7.38 TN+BN 0.51 7 0.98 0.1 -2.3 0.1 o.o ·-0.1 o.o 0.04 -0.93 -0.64 -1.53 0.39 BEND 0.07 8 0.7 -23.7 0.1 0.0 -1.3 0.0 0.42 -9.73 -0.83 10.15 3.04 BEND 0.49 9 0.5 -23.9 0.7 0.1 -1.3. .0.0 0.30 C9.81 -6.29 -15.81 3.98 BEND 0.75 10 0.8 -23.8 0.1 0.0 -1.3 0.0 . 0;47 . -9.78 -0.60 10.25 3.02 BEND 0.36 11 2.4 -26.3 -2.9 -0.3 -1.3 0.1_ 1.:49 -10.79 27.62 39.90 9.01 TN+BN 1. 39 12 0.6 -24.0 0.6 .0.1 -1.3_ 0.0 0.35 -9.86 -6.06 -15.57 3.96 BEND 0.55 13 2.2 -26.5 -2.3 -0.3 -1.3 0.0 1.37 -10.87 22.16 34.39 7.25 TN+BN 1.19 ~ACS Release s. 2 Engineers and ConsUltants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-.F.EB-200.8 TIME 08:52:15 PST PAGE 333 SACS-IV SYSTEM MEMBER DETAIL-REPORT DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT . COMB. CASE . END FX MY MZ FY FZ MX. STRESS y z STRESS STRESS COND. UNITY FT KIPS. IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK 1P-1Q CHB 7 o.oo 0.2 -3.0 0.0 0.0 0.2 o;o 0.15 -1.22 ·-0.13 1.37 0.38 TN+BN 0.06 8 1.3 -25.4 o.o o.o 1.4 0.0 0.79 -10.42 -0.32 11.21 3.20 TN+BN 0.52 9 1.1 -23.9 -0.3 0.0 1.3 0.1 0.68 -9.81 3.03 1.3.52 4.46 TN+BN 0.63 10 1.2 -25.4 0.0 0.0 1.4 o.o 0.76 -10-41 -0.40 11.17 3.20 TN+BN 0.39 11 2.0 -26.3 -3.4 0.4 1.5 -0.1 1.25 -11.61 32.40 45.27 9.95 TN+BN 1.57 12 1.1 -23.9 -0.3 0.0 1.3 0.1 0.66 -9.80 2.95 13.40 4.45 TN+BN 0.47 13 1.8 -26.8 -3.8 0.4 1.4 o.o 1.14 -·lloOO 35.75 47.89 9.47 TN+BN 1. 66 7 0.49 0.2 -2.0 o.o. 0.0 0.2 o.o 0.15 -0.83 -0.01 0.98 0.38 TN+BN o.os 8 1.3 -17.2 0.0 o.o 1.4 0.0 0.79 -7.05 0.14 7.99 3.19 TN+BN 0.37 9 1.1 -16.1 o.o 0.0 1.3 0.1 0.66 -6.61 0.34 7.63 4.45 TN+BN 0.35 10 1.2 -17.2 o.o 0.0 1.4 o.o 0.76 -7.04 0.07 7.88 3.20 TN+BN 0.27 11 2.0 -19.6 -1.3 0.4 1.5 --o.l 1.25 -8.03 11.83 21.12 10.08 TN+BN 0.73 12 1.1 -16.1 o.o o.o 1.3 0.1 0.66 -6.60 -0.27 7.53 4.45 TN+BN 0.26 13 1.8 -18.5 -1.3 0.4 1.4 0.0 1.14 -7.59 12.03 20.76 9.60 TN+BN 0.72 7 0.98 0.2 -1.1 o.o 0.0 0.2 o.o 0.15 -0.44 0.10 0.69 0.37 TN+BN 0.03 8 1.3 -9.0 -0.1 0.0 1.4 o.o 0.79 -3.69 0.61 5.09 3.19 TN+BN 0.24 9 1.1 -8.3 0.2 o.o 1.3 0.1 .0.68 .-3.42 -2.35 -5.09 4.45 SHEAR 0.31 10 1.2 -9.0 -0.1 0.0 1.4 0.0 0.76 -3.68 0.55 5.00 3.19 TN+BN 0.17 11 2.0 -10.9 1.0 0.4 1.5 -0.1 1.25 -4.46 -9.22 -12.42 10.21 SHEAR 0.53 12 1.1 -8.3 0.3 o.o 1.3 0.1 0.66 -3 .• 41 -2.41 -5.16 4.44 SHEAR 0.23 13 1.8 -10.2 1.3 0.4 1.4 0.0 1.14 -4.19 -12.17 -15.22 9.74 BEND 0.57 1QC 1R CHB 7 0.00 0.2 -1.1 o.o o.o 0;1 0.0 0.15 -0.44 0.13 0.73 0.28 TN+BN 0.03 8 1.3 -9.0 -0.1 0.0· 1.1 o.o 0.79 -3.69 0.8.8 5.36 2.18 TN+BN 0.25 9 1.1 -8.3 0.3 0.0 1.0 0.0. 0.68 -3.42 -3.08 -5.81 2.51 BEND 0.30 10 1.2 -9.0 -0.1 o.o 1.1 . o.o 0.76 -3.68 1.00 5.45 2.21 TN+BN 0.19 11 1.8 -11.0 -3.1 0.4 1.2 0.0 1.15 -4.50 29.67 35.31 9.24 TN+BN 1.23 12 1.1 -8.3 0.3 0.0 . 1.0 0.0 0.66 -3.41. -2.95 -5.71 2.48 BEND 0.22 13 1.7 -10.3 -2.7 0.4 1.1 0.0 1.04 -4.22 25.71 30.97 8.45 TN+BN 1.08 7 0.49 0.2 -0.3 o-.o o.o 0.1 0.0 0.15 -0.12 0.06 0.32 0.27 SHEAR 0.02 8 1.3 -2.5 -0.1 o.o 1.1 o.o 0-79 -1.03 0.49 2.32 2.18 SHEAR 0.15 9 1.1 -2.2 0.1 0.0 ·1.0 0 .• 0 0.68 -0.92 -1.16 1.60 2.51 SHEAR 0.17 10 1.2 -2.5 -0.1 o.o 1.1 0.0 0.76 -1.03 0.50 2.29 2.21 SHEAR 0.12 11 1.8 -4.0 ,o.5 0.5 1.2 0.0 1.15 -1.62 4.64 7.41 9.38 SHEAR 0.49 12 1.1 -2.2 0.1 o.o 1.0 0.0 0.66 -0.91 -1.15 1.57 2.47 SHEAR 0.13 13 1.7 -3.7 -0.3 0.4 1.1 0.0 1.04 -1.51 2.98 5.53 8.58 SHEAR 0.45 7 0.98 0.2 0.5 o.o 0.0 0.1 0.0 0.15 0.21 "0.02 0.36 0.27 SHEAR 0.02 8 1.3 3.9 o.o o.o 1.1 o.o 0.79 1.62 0.10 2.51 2.17 SHEAR 0.15 9 1.1 3.8 -0.1 0.0 1.0 0.0 0.68 1.58 0.76 3.02 2.50 SHEAR 0.17 10 1.2 4.0 0.0 0.0 1.1 0.0 0.76 1.62 -0.01 2.39 2.20 SHEAR 0.11 11 1.8 3.0 2.2 0.5 1.2. 0.0 L15 1.24 -20.88 -20.97 9.51 BEND 0.77 12 1.1 3.9 -0.1 0.0 1.0 0.0 0.66 1.59 0.65 2.89 2.47 SHEAR 0 .. 13 13 1.7 2.9 2.1 0.4 1.1 o.o 1,04 .1.20 -20.23 -20.38 8.71 BEND o. 74 :ACS Release 5. 2 Engineers and consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE a-G-FEB-2ooa TIME 08:52:15 PST PAGE 334 SACS-IV SYSTEM MEMBER DETAIL _REPORT DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR. SHEAR TORSION AXIAL .BENDING STRES-S COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS . KIPS IN-KIP KSI KSI KSI KSI KSI CHECK 1R-18 CHB 7 0.00 0.2 0.5 0.0 o.o 0.1 o.o 0.15 0.21 0.00 0.36 0.21 TN+BN 0.02 8 1.3 3.9 0.0 0.0 0.8 0.0 ·0. 79 1.62 0.04 2.45 1.67 SHEAR 0.12 9 1.1 3.8 -0.1 0.0 0.7 o.o 0.69 1.58 0.61. 2.87 1.63 TN+BN 0.13 10 1.2 4.0 0.0 o.o 0.8 o.o 0.76 1.63 0.12 2.50 1. 68 SHEAR 0.09 11 1.7 2.9 -2·.2 0.4 0;9 0.0 1,04 1.20 20.58 22.82 8.10 TN+BN 0.79 12 1.1 3.9 -0.1 0.0 0.7 0.0 0.66 1.59 0.69 2.93 1.65 TN+BN 0.10 13 1.5 2.8 -2.2 0.4 0.8 0.0 0.93 1.16 .21.15 23.25 8.07 TN+BN 0. 81 7 0.49 0.2 1.2 0.0 0.0 0.1 0.0 0.15 0.47 -0.01 0.63 0.21. TN+BN 0.03 8 1.3 8.7 o.o 0.0 ·o.s o.o . 0.79 ·3.57 -0.35 4.36 1.67 TN+BN 0.20 9 1.1 8.2 o.o 0.0 0.7 o.o 0.69 "3 .38 -0.10 4.06 1.63 TN+BN 0.19 10 1.2 8.7 0.0 0.0 0.8 0.0 . 0.76 3.58 -0.32 4.34 1.68 TN+BN 0.15 11 1.7 8.2 0.2 0.4 0.9 . o.o 1.04 3.37 -2.19 -4.52 8.24 SHEAR 0.43 12 1.1 8.2 o.o 0.0 0.7 o.o 0.66 3.38 -0.07 4.04 1.64 TN+BN 0.14 13 1.5 7.7 0.2 0.4 o .• 8 o.o 0.93 3.17 -1.95 -4.18 8.21. SHEAR 0.43 7 0.98 0.2. 1.8 0.0 0.0 0.1 o.-o 0.15 0.73 -o·.o1 0.89 0.20 TN+BN 0.04 8 1.3 13.5 0.1 o.o 0.8 0.0 0.79 5.52 -0.73 6.31 1. 66 TN+BN 0.29 9 1.1 12.6 0.1 0.0 0.7 •' 0.0 0.69 5.17 .·~0.81 s.as 1.62 BEND 0.28 10 1.2 13.5 0.1 0.0 0.8 0.0 0.76 5.52 -0.75 6.29 1.67 TN+BN 0.22 11 1.7 1.3.5 2.7 0.4 0.9 0.0 _1.04 5.53 -25.45 -29.94 8.37 BEND 1. 08 12 1.1 12.6 0.1 0.0 0.7 o.o 0.66 .5.17 -0.84 5.83 1.64 BEND 0.21 13 1.5 12.6 2.7 0.4 0.8 o.o 0.93 ~.17 -25.53 -29.77 8.34 BEND 1.07 1S-1U CHB 7 0.00 0.2 1.8 0.0 0.0 0.1 o.o 0.15 0.74 -0.02 0.89 0.21 TN+BN 0.04 8 1.3 13.4 0.1 o.o 0.5 o.o 0.79 5.52 -0.71 6.31 1.06 TN+BN 0.29 9 1.1 12.6 0.1 0.0 0.4 0.0 0.69 5.16 -0.82 5.85 1.03 BEND 0.28 10 1.2 13.5 0.1 o.o 0.5 o.o 0.76 5.52 -0.54 6.28 0.98 TN+BN 0.22 11 1.5 13.4 -1.4 0.5 0.6 o.o 0.94 5.49 12.91 19.34 9.73 TN+BN 0.-67 12 1.1 12.6 0.1 o.o 0.4 0.0 0.66 -5.17 -0.65 5.83 0.95 TN+BN 0.20 13 1.3 12.5 -1.4 0.5 0.5 0.0 0.84 5.14 12.79 18.77 9.63 TN+BN 0.65 7 0.60 0.2 2.4 o.o 0.0 0.1 0.0 0.15 0.98 -0.07 1.13 0.20 TN+BN 0.05 8 1.3 16.9 o.o o.o 0.5 o.o 0.79 6.95 -0.35 7.74 1.05 TN+BN 0.36 9 1.1 15.6 o.o o.o 0.4 o.o 0.69 6.41 -0.28 7.09 1.02 TN+BN 0.33 10 1.2 16.9 0.1 0.0 Q.5 0.0 0.76 6.95 -0.51 7.71 0.98 TN+BN 0.27 11 1.5 17.5 2.6 0.6 0.6 .0.0 '0.94 7.16 -24.14 -30.36 9.89 BEND 1.09 12 1.1 15.6 o.o o.o 0.4 o.o 0.66 6.U -0.43 7.07 0.95 TN+BN 0.25 13 1.3 16.1 2.5 0.6 0.5 0.0 0.84 6.62 -24.06 -29.84 9.79 BEND 1.07 7 1.19 0.2 3.0 0.0 0.0 0.1 0.0 0.15 1.22 -0.12 1.37 0.19 TN+BN 0.06 8 1.3 20.4 0.0 0.0 0.5 o.o 0.79 . 8.37 0.00 9.17 1. OS TN+BN 0.42 9 1.1 18.6 0.0 o.o 0.4 0.0 0.69 7.64 0.27 8.59 1.01 TN+BN 0.40 10 1.2 20.4 0.1 0.0-. .0.5 0.0 0.76 8.37 -0.47 9.13 0.97 TN+BN 0.32 11 1.5-21.5 6.6 0.6 0.6 . 0.0 0.94 _8.82 -61.90 -69.78 10.06 BEND 2.46 12 1.1 18.6 o.o 0.0 . 0.4 0.0 . 0.66 7.64 -0~21 8.29 0.94 TN+BN 0.29 13 1.3 19.7 6.5 0.6 0.5 0.0 0.84 8.08 -61.63 -68.88 9.96 BEND 2.42 ;Acs Release 5.2 Engineers and Consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26~FEB-2008 TIME 08:52:15 PST PAGE 335 SACS-IV SYSTEM MEMBER DETAIL.REPORT DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX sTREss y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK 1T-lV CHB 7 0.00 0.2 -3.0 0.2 0.0 o.1 0.0 0.14 -1.23 -1.89 -2.98 0.57 BEND 0.14 a 1.2 -20.5 1.2 -0.1 0.6 0.0 0~78 ... 8.41 .:.tl.61 -19.25 3.62 BEND 0.93 9 1.0 -18.7 1.0 -0.1 -o.5 0.0 0.65 -7.67 -9.64 -16.66 ~.08 BEND 0.80 10 1.2 -20.5 "1.2 -0.1 0.6 o.o 0.75 -8.41 -10.95 -18.61 3.49 BEND 0.67 11 1.9 -23.0 6.2 -0.7 0.7 0.0 1.17 -9.46 -58.73 -67.01 13.02 BEND 2.37 12 1.0 -18.7 1.0 -OC1 o.s 0.0 0.62 -7.67. -8.98 -16.03 2.94 BEND 0.58 13 1.7 -21.2 6.0 -0.7 0.6 0.0 1.04 -8.72 -56.76 -64.43 12.47 BEND 2.27 7 0.54 0.2 -2.4 0.0 0.0 0.1 :o.o 0 .1.4 -LOO -0.43 -1.30 o.58 BEND 0.07 a 1.2 -16.8 0.3 -0.1 0.6 0.0 0.78 -6.90 -2.68 -8.81 3.63 BEND 0.44 9 1.0 -15.4 0.2 -0.1 0.5 0.0 0.65 -6.30 -2.21 -7.86 3.08 BEND 0.39 10 1.2 -16.8 0.3 -0.1 0.6 0.0 0.75 -6.91 -2.54 -8.69 3.49 BEND 0.33 11 1.9 -18.6 1.6 -0.7 0.7 0.0 1.17 -7.65 -14.77 -21.24 13.18 BEND 0.78 12 1.0 -15.4 0.2 -0.1 0.5 0.0 0.62 -6.31 -2.06 -7.75 2.95 BEND 0.29 13 1.7 -17.2 1.5 -0.7 0.6 0.0 1.04 -7.05 -14.29 -20.30 12.63 BEND 0.74 7 1.08 0.2 -1.9 -0.1 0.0 0.1 0.0 0.14 -0.76 1.02 1.92 0.58 TN+BN 0.09 8 1.2 -13.1 -0.7 -0.1-0.6 0.0 ·0.78 -5.39 6.25 12.41 3.63 TN+BN 0.57 9 1.0 -12.0 -0.6 -0.1 o.s o.o 0.65 -4.93 5.22 10.81 3.09 TN+BN 0.50 10 1.2 -13.1 -0.6 -0.1 0.6 o.o -0.75 --5.40 5.88 12.02 3.50 TN+BN 0.42 11 1.9 -14.2 -3.2 -0.7 0.7 0.0 1.17 -5.83 29.78 "36.78 13.34 TN+BN 1.28 12 1.0 -12.0 -0.5 -0-.1 0.5 o.o 0.62 -4.94 4.85 10.41 2.95 TN+BN 0.36 13 1.7 -13.1 -3.0 -0.7 0.6 0.0 1.04 -5.37 28.76 35.17 12.80 TN+BN 1. 22 1U-1W CHB 7 o.oo 0.3 3.0 0.2 0.0 -0.1 o.o 0.16 1.22 -1.94 -3.01 0.58 BEND 0.15 8 1.3 20.4 1.3 -0.1 -0.6 0.0 0.82 8.39 -1l. 95 -19.52 3.68 BEND 0.94 9 1.1 18.6 1.0 -0.1 ..-o.s o.o ·0.71 . 7.65 C9.90 -16.84 3 .-1.2 BEND 0.81. 10 1..3-20.4 1.2 .. "0.1 ~0.6 o.o 0.78 8.39 -11.55 -19.15 3.59 BEND 0.69 11 1.1 21..4 -3.5 OC4 -0.6 . 0.0 0.69 8.80 33_.26 42.75 7.63 TN+BN 1. 48 12 1.1 1.8.6 1.0 -0.1 -o.5 0.0 0.67 7.65 -9.50 -16.47 3. 03 BEND 0.60 13 0.9 1.9.6 -3.7 0.4 -0.5 0.0 0.58 8.06 35.31 43.95 7.88 TN+BN 1.53 7 0.54 0.3 2.4 o.o 0.0 -0.1 o.o 0.16 1.00 -0.45 -:1.29 o.58 BEND 0.07 8 1.3 1.6.8 0.3 -0.1 -0.6 0.0 0.82 6.89 -2.78 -8.85 3.68 BEND 0.45 9 1.1 15.3 0.2 -0.1 . -0.5 o.o 0.71 6.29 -2.28 -7.87 3.12 BEND 0.40 10 1.3 16.8 0.3 -0.1 -0.6 o,o 0.78 .6.89 .·-2. 70 -8.81. 3.60 BEND 0.33 11 1.1 17.7 -0.9 0.4 -0.6 0.0 0.69 7;26 8.77 16.72 7.79 TN+BN 0.58 12 1.1 15.3 0.2 -0.1 co.5 o.o .0.67 6.29 -2.21 -7.83 3.04 BEND 0.30 13 0.9 16.2 -1..0 0.4 -o.s o.o 0.58 ~.66 9.25 16.51 8.04 TN+BN 0.57 7 1.08 0.3 1.9 -0.1 0.0 -0.1 0.0 0.16 0.76 1.04 1..96 0.59 TN+BN 0.09 8 1.3 13.1 -0.7 -0.1 -0.6 0.0 0.82 5.38. . 6.39 12.59 3.69 TN+BN 0.58 9 1.1 12.0 -0.6 -0.1 -0.5 o.o 0.71 4.93 5.33 1.0.97 3.1.3 TN+BN 0.51. 10 1.3 1.3.1. -0.6 -0.1 -0.6 o.o 0.78 5.38 6.14 12.30 3.61. TN+BN 0.43 11 1.1 1.3.9 1.7 0.4 -0.6 0.0 0.69 5.71 -16.31 -21..32 7.95 BEND 0.76 12 1.1 12.0 -0.5 -Oc1 -0.5. 0.0 0.67 4.93 5.08 10.68 3.04 TN+BN 0.37 13 0.9 12.8 1.8 0.4 -0.5 o.o 0.58 5.25 -17.37 -22.04 8.20 BEND o.-79 )ACS Release 5.2 Engineers and Consultants ID=28040200 PICEANCE FACILITIES· MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08:52:15 PST PAGE 339 SACS-IV SYSTEM MEMBER DETAIL REPORT DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL . BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK 21-22 CHB 7 0.00 0.3 0.5 0.0 o.o -0.1 0.0 0.16 0.22 0.28 0.65 0.37 TN+BN 0.03 8 1.3 4.1 -0.2 o.o •0.8 0.0 0.83 1.69 1.84 4.36 2.54 TN+BN 0.20 9 1.2 3.7 -0.2 0.1 -0.7 0.0 ·o. 12 1.53 1.94 4.20 2.74 TN+BN 0.19 10 1.3 4.1 -0.2 o.o -0;8 0.0 0.80 1.69 2.05 4.53 2.61 TN+BN 0.16 ll 0.8 5.2 -1.9 0.3 c0.8 0.0 0.52 2.12 17.58 20.22 6.59 TN+BN 0.70 12 1.1 3.8 -0.2 0.1 -0.7 0.0 0.68 1.54 2.15 4.38 2.80 TN+BN 0.15 13 0.7 4.8 -1.9 0.3 -0.7 o.o 0.41 ·1.97 17.69 20.07 6.79 TN+BN 0.70 7 o.ss 0.3 -0.2 0.0 0.0 . -0.1 o.o 0.16 -0.09 ·-0 .• 16 0.25 0.38 SHEAR 0.03 8 1.3 -1.2 0.1 0.0.· -0.8 o.o 0.83 -0.47 ..,.Q.95 1.30 2.55 SHEAR 0.~8 9 1.2 -1.2 0.2 0.1 -0.7 0.0. 0.72 ~0.48 -2.33 -2.09 2.74 SHEAR 0.19 10 1.3 -1.1 0.1 0.0 -.o.a ·o.o 0.80 -0.47 -0.99 1.26 2.6~ SHEAR 0.14 ll 0.8 0.0 0.2 0.3 -0.8 o.o 0.52 0.01 -1.54 -1.03 6.75 SHEAR 0.35 12 1.1 -1.1 0.3 0.1 -0.7 0.0 0.68 -0.47 -2.37 -2.16 2.81 SHEAR 0.15 13 0.7 0.0 0.3 0.3 -0.7 o.o 0.41 0.01 -2.92 -2.53 6.95 SHEAR 0.36 7 1.10 0.3 -1.0 0.1 o.o -0.1 0.0 .0.16 -0.41 -0.60 •0.86 0.38 BEND o·. OS 8 1.3 -6.4 0.4 0.0 -0.8 o.o 0.83 -2.64 -3.73 -5.54 2.56 BEND 0.29 9 1.2 -6.1 0.7 0.1 .. -o. 7 o.o 0.72 -2.50 -6.61 -8.38 2.75 BEND 0.42 10 1.3 -6.4 0.4 o.o -o.8 o.o 0.80 -2.63 . •4.02 -5.86 2.62 BEND 0.23 11 0.8 -5.1 2.3 0.3 -0.8 0.0 0.52 -2.10 -21.27 -22.85 6.91 BEND 0.81 12 1.1 -6.1 0.7 0.1 -0.7 0.0 0.68 -2.49 -6.90 -8.71 2.81 BEND 0.33 13 0.7 -4.8 2.6 0.3 -0.7 0.0 0.41 ..:1.96 -24.1S -25.70 7.12 BEND 0.91 22-23 CHB 7 0.00 0.3 -1.0 0.1 0.0. -0.1 o;o 0.16 -0.41 -1.00 -1.25 0.71 BEND 0.07 8 1.4 -6.4 0.7 • -0.2 -1.1 0.0 .0.84 -2.64 -6.17 -7.97 4.55 BEND 0.41 9 1.2 -6.1 1.1 -0.3 -0.9 0.0 0.73 -2.49 -10.2~ -12.01 6.51 BEND 0.59 10 1.3 -6.4 0.6 -0.2 -1.1 0.·0 0.80 -2~63 -6.04 -7.86 4.56 BEND 0."30 ll 0.6 -5.2 -1.3 0.1 -1.0 o.o 0.35 -2.13 12.02 14.49 3.90 TN+BN 0.50 12 1.1 -6.1 1.1 -0.3 -0.9 0.0 0.69 -2.49 ·-10.12 -11.91 6.52 BEND 0.44 13 0.4 -4.8 -0.8 o.o -0.9 o.o 0.24 C1.99 7.93 10.16 2.43 TN+BN 0.35 7 0.55 0.3 -2.0 -0.1 o.o -0.2 o.o 0.16 -0.~1 0.61 1.58 0.71 TN+BN 0.07 8 1.4 -13.4 -0.3 -0.2 -1.1 0.0 0.84 -5.49 3.28 9.61 4.55 TN+BN 0.44 9 1.2 -12.3 -0.9 -0.3 -1.0 0.0 0.73 -5.06 8.35 14.14 6.51 TN+BN 0.65 10 1.3 -13.4 -0.4 -0.2 -1.1 o.o 0.80 -5.48 3.46 9.74 4.57 TN+BN 0.34 11 0.6 -12.0 -o.5 0.1 -1.0 o.o . 0.35 . ..;4.93 5.08 10.36 4.06 TN+BN o·.36 12 1.1 -12.3 -0.9 -0.3 -0.9 o.o 0.69 C5.05 .8.53 14.28 6.52 TN+BN 0.50 13 0.4 -11.0 -1.1 0.0 -0.9 o.o 0.24 -4.50 10.15 14.89 2.28 TN+BN 0.52 7 1.10 0.3 -3.0 -0.2 o.o -0.2 0.0 0.16 -1.22 2.21 3.59 0.72 TN+BN 0.17 8 1.4 -20.4 -1.3 -0.2 -1.1 . 0.0 0.84 -8.36 12.72 21.92 4.56 TN+BN 1. 01 9 1.2 -~8.6 -2.9 -0.3. •1.0 0.0 o. 73 C7.64 26.95 35.32 6.52 TN+BN 1.64 10 1.3 -20.3 -1.4 -0.2 -1.1. 0.0 0.80 -8.34 12.96 22.10 4.57 TN+BN 0.77 11 0.6 -18.9 0.3 o.:t c1.0 0.0 0.35 -7.74 "2.46 -9.84 4.22 BEND 0.35 12 1.1' -18.6 -2.9 -0.3 .-1.0 o.o 0.69 •7.63 '27.18 35.50 6.53 TN+BN 1.23 13 0.4 -17.1 -1.2 0.0 -0.9 0.0 0.24 -7.02 11.77 19.03 2.13 TN+BN 0.66 :Acs Release 5.2 Engineers and Consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08:52:15 PST PAGE 340 SACS-IV SYSTEM MEMBER DETAIL REPORT DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX St'RESS y z ·STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK 23-24 CHB 7 o.oo o.o -1.9 0.0 0.0 0.1 0.0 o.oo -0.77 ~0.41 -1.18 0.21 C<.15 o.os 8 -0.1 -13.1 0.1 0.0 0.7 o,o -O.OG -5.39 :-0.66 -6.11 1.56 C<.15 0.28 9 -0.1 -12.7 1.2 -0.1 0.7 0.0 -0.05 -5.-19 -11.68 -16.93 2.89 C<.15 0.78 10 -0.2 -12.9 0.1 0.0 0.7 0.0 -0.13 ..:5.31 -0.87 -6.31 1.55 C<.15 0.22 11 1.1 -16.6 -2.0 0.4 0.8 o.o 0.68 -6.a3 19.28 26.78 8.35 TN+BN 0. 93 12 -0.2 -12.4 1.3 -o .1 0.7 0.0 .:.o.12 -5.11 -11.89 -17.12 2.86 C<.15 0.60 13 1.1 -16.1 -0.9 0.3 0.7 o.o 0.69 -_6.63 . 8.25 15.57 6.66 TN+BN 0.54 7 0.55 o.o -1.2 0.0 o.o 0.1 0.0 o.oo -0 .. 49 -0.35 -0.85 0.21 C<.15 0.04 a -0.1 -8.6 0.2 o.o 0.7 0.0 -0.06 -3.54 -1.61 -5.21 1.56 C<.15 0.24 9 -0.1' -a.3 0.6 -0.1 0.7 o.o. -0.05 -3 ._40 -5.90 -9.35 2.88 C<.15 0.43 10 -0.2 -8.5 0.2 o~o 0.7. o.O -0.13 -3.48 -1.87 -5.48 1.55 C<.l5 0.19 11 1.1 -11.6 0.9 0.4 0.8 0.0 0.68 -4.78 -8.10 -12.20 8.50 BEND o.-45 12 -0.2 -8.2 0.7 -0.1 0.6 . 0.0 -0.12 -3.35 -6.16 -9.62 2.85 C<.15 0.33 13 1.1 -11.3 1.3 0.3 0.7 0.0 0.69 -4.64 -12.39 -16.34 6.81 BEND 0.59 7 1.10 o.o -0.6 0.0 0.0 0.1 o.o. o.oo -0.23 -0.29 -0.52 0.20 C<.15 0.02 a -0.1 -4.1 0.3 o.o 0.7 o.o -0.06 -1.69 -2.56 -4.31 1.55 C<.15 0.20 9 -0.1 -4 .. 0 0.0 -0.1 0.7 0.0 co.05 -1.62 -0.11 -1.78 2.87 SHEAR 0.20 10 -0.2 -4.1 0.3 0.0 0.7 0.0 -0.13 -1.67 -2.87 -4.67 1.54 C<.15 0.16 11 1.1 -6.7 3.a 0.5 0.8 0.0 ·o.68 -2.73 -36.09 -38.15 8.65 BEND 1.35 12 -0.2 -3.9 0.0 -0.1 0.6 <>.0 -0.12 -1.60 -0.42 -2.14 2.84 SHEAR 0.15 13 1.1 -6.5 3.6 0.3 0.7 0.0 0.69 -2.66 -33.64 -35.62 6.96 BEND 1.26 24-29 CHB 7 0.00 o.o -0.6 0.0 o.o 0.1 o.o o.oo -0.23 -0.17 -0.40 0.19 C<.15 0.02 8 -0.1 -4.1 0.1 0.0 0.4 0.0 -0.06 ·-1.. 70 --1.33 -3.09 1.24 C<.15 0.14 9 -0.1 -4.0 0.0 0.0. 0.4 0.0 -0.05 -1.63 -0.35 -2.03 1.06 C<.15 0.09 10 -0.2 -4.1 0.1 o.o 0.4 o.o -0.14 -.1.67 -0.86 -2.67 1.14 C<.15 0.09 11 0.6 -6.1 -3.2 0.3 -o.4 0.0 0.34 -2.49 30.66 33.50 6.54 TN+BN 1.16 12 -0.2 -3.9 0.0 o.o 0.4 o.o -0.12 -1.60 o-.12 -1.73 0.96 C<.15 0.06 13 0.6 -5.9 -3.3 0.4 0.5 0.0 0.36 -2.43 31.64 34.42 6.68 TN+BN 1.20 7 0.60 0.0 -0.1 0.0 0.0 0.1 o.o 0.00 -0.06 0.04 0.10 0.18 SHEAR 0.01 8 ·0.1 -1.4 0.0 o.o 0.4 o.~o -.0.06 -0.58 0.22 0.73 1.24 SHEAR 0.09 9 -0.1 -1.2 -0.1 0.0 0_ .. 4 o.o -0.05 -0.49 0.50 0.94 1.06 SHEAR 0.07 10 -0.2 -1.4 0.0 o.o . 0.4 0.0 -0.14 -0.58 0.32 0.76 1.13 SHEAR 0.06 11 0.6 -2.9 -0.7 0.4 0.4 0.0 0.34 -1..17 ·6.56 8.07 6.70 SHEAR 0.35 12 -0.2 -1.2 -0.1 0.0 0.4 0.0 -0.12 -0.49 0.60 0.97 0.95 SHEAR 0.05 13 0.6 -2.6 "0.7 0.4 0.4 o.o 0.36 -1.09 6.84 8.28 6.84 SHEAR 0.36 7 1.21 0.0 0.3 0.0 0.0 0.1 0.0 0.00 0.11 0.25 0.35 0.18 C<.;lS 0.02 8 -0.1 1.3 -0.2 0.0 0.4 0.0 -0.06 0.54. 1.76 2.23 1.23 C<.15 0.11 9 -0.1 1.6 -0.1 0.0 0.4 o.o -o.os 0.65 . 1.35 1. 94 1.05 C<.lS 0.09 10 -0.2 1.2 -0.2 0.0 0.4 ·. 0.0 -0.14 0.50 1.50 1.86 1.12 C<.l5 0.07 11 0.6 0.3 1.9 0.4 0.4 o.o 0.34 0.14 -1a.28 -18.07 6.87 BEND 0.64 12 -0.2 1.5 -0.1 0.0 0.4 o.o -0.12 0;60 1.09 1.57 0.94 C<.lS 0.06 13 0.6 0.6 2.0 0.4 0.4 o.o 0.36 0.24 -18.69 -18.58 7.01 BEND 0.66 ~cs Release-s. 2 Engineers and Consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08•52•15 PST PAGE 344 SACS-IV SYSTEM MEMBER-DETAIL REPORT DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION .AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY PT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK 2B-2C CHB 7 o.oo 0.0 1.3 o.o 0.0 0.0 0.0 -0.01 0.51 0.28 0.78 0.14 C<.l5 0.04 8 -0.1 6.7 -0.3 0.0 -0.1 0.0 -0.09 2.77. 2.74 5.42 1.24 C<.15 0.26 9 -0.1 7.3 -0.3 o.o o.o 0.0 -0.07 3.00 2.46 5.40 1. OS C<.l5 0.26 10 -0.3 6.3 -0.4 0.1 -0.1 o.o -0.1.7 2.59 3.44 5.86 1.46 C<.15 0.22 u -0.1 8.1 -3.0 0.4 0.0 0.0 -0.04 3.34 28.24 31.54 7.05 C<.l5 1.10 12 -0.2 6.9 -0.3 0.1 -0.1 0.0 -0.15 2.82 3.16 5.84 1.27 C<.15 0.21 13 0.0 8.7 -3.0 0.4. o.o 0.0· -0.02 3.58 27.96 31.52 6.93 C<.15 1.'10 7 0.60 o.o 1.3 o.o 0.0 0.0 0.0 -0.01. 0.54 -0.03 -0·.58 0.14 C<.15 0.03 8 -0.1 6.3 o.o 0.0 -0.1 0.0 -0.09 2.57 "0.21 -2.87 1.25 C<.15 0.13 9 -0.1 7.0 o.o 0.0 0.0 o·.o -0.07 2.88 -0.23 -3.18 1.06 C<.l5 0.15 10 -0.3 5.7 o.o 0.1 ·-o.l. o.o . -0.1.7 2.35 -0~33 -2.85 1.46 C<.15 0.10 11 -0.1 8.1 -0.1 0.4 o.o .0.0 -0.04· 3.34 0.73 4.03 7.23 SHEAR 0.38 12 -0.2 6.5 o.o 0·.1. -0.1 0.0 -0.15 2.66 -o;Js -3.16 1.28 C<.15 0.1.1. 13 o.o 8.9 -0.1 0.4 0.0 0.0 -0.02 3.65 0.11 4.34 7.11 SHEAR 0.3?' 7 1.21 0.0 1.3 o.o oco o.o o.o -0.01 0.55 -0.34 -0.90 0.1.3 C<.lS 0.04 8 -0.1 5.7 0,3 0.0 -0.1 o,o -0.09 2.36 -3.17 -5.62 1.25 C<.15 0.26 9 -0.1 6.7 0.3 0.0 0.0 o.o -0.07 2. 75 -2.92 -5.75 1. 06 C<.15 0.27 10 -0.3 5.1 0.4 0.1 -0.1 o.o -0.17 2.10 -4.11 -6.37 1.47 C<.l5 0.22 11 -0.1 8.1 2.9 0.4 0.0 0.0 -0.04 3.32 -·27.52 -30.88 7.41 C<.15 1.07 12 -0.2 6.1 0.4 0.1 .-0.1 o.o -o .1.s-2.49 -3.86 -6.50 1.28 C<.15 0.23 13 o.o 9.1 2.9 0.4 0.0 0.0 -0.02 3.71 -27.27 -31.01 7.28 C<.15 1. 08 2C-4 CHB 7 o.oo 0.0 1.3 o.o o.o 0.0 o.o -0.01. o-_.5s -0.34 -0.90 0.13 C<.15 0.04 8 -0.1 5.7 0.3 o.o -0.1 0.0 -0.09 2.36 ~3.17 -5.62 1. 25 C<.15 0.26 9 -0.1 6.7 0.3 0.0 o.o 0.0 -0.07 2.75 -2.92 -5.75 1.06 C<.15 0.27 10 -0.3 5.1 0.4 0.1 -0.1 0.0 -0.17 2.10 -4.1:1 -6.37 1.47 C<.lS 0.22 11 -0.1 8.1 2.9 0.4 0.0 o.o -0.04 3.32 -27.52 -30.88 7.41 C<.15 1.07 12 -0.2 6.1 0.4 0.1 co.1 o.o co.15 2.49 -3.86 -6.50 1.28 C<.15 0.23 13 0.0 9.1 2.9 0.4 o.o . 0.0 -0.02 3.71 -27.27 -31.01 7.28 C<.15 1.08 7 0.29 0.0 1.3 0.1 o.o 0.0 o.o -0.01 0.55 -0.49 -1.05 0.13 C<.15 0.05 8 -0.1 5.5 0.5 0.0 -0.1 0.0 -0.09 2.25 -4.61 -6.95 1.26 C<.15 0.32 9 -0-.1 6.5 0.4 0.0 o.o 0.0 -0.07 2.69 -4.24 -6.99 1. 07 C<.15 o. 32 10 -0.3 4.8 0.6 0.1 -0.1 0.0 -0.17 1..97 -5.94 -8.09 1.47 C<.15 0.28 11 -0.1. 8.1 4.4 0.4 o.o .. o.o -0.04 3.31 . -4L55 -44.89 7.50 C<.15 1.56 12 -0.2 5.9 0.6 0.1 -0.1 o.o -0.15 . 2.41 -5.57 -8.12 1.28 C<.l5 0.28 13 0.0 9.1 4.4 0.4 0.0 0.0 -0.02 3.74 -41.17 -44.93 7.36 C<.l5 1.56 7 0.59 0.0 1.3 0.1 o.o 0.0 0.0 -0.01 0.55 -0.64 -1.20 0.13 C<.15 0-.06 8 -0.1 5.2 0.6 0.0 -0.1 0.0 -0.09 2.1.4 -6.05 -8.28 1.26 C<.15 0.38 9 -0.1 6.4 0.6 0.0 0.0 0.0 -0.07 2.61 -5.55 -8.23 1. 07 C<.15 0.38 10 -0.3 4.5 0.8 0.1 -0.1 o.o -0.17 1.-. 84 .-7. 78 -9.80 1.48 C<.15 0.34 11 -0.1 8.0 5.9 0.4 0.0 0.0 -0.04 3.29 -55.75 -59.08 7.59 C<.15 2.05 12 -0.2 5.6 0.8 0.1 . --0.1 o.o -0.15 2.32 -7.28 -9.74 1.29 C<.15 0.34 13 0.0 9.2 5.8 0.4 0.0 0.0 -0.02 3.76 -55.24 -59.03 7.45 C<~lS 2.05 ACS Release 5.2 Engineers· and Consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08,52,15 PST PAGE 306 SACS-IV SYSTEM MEMBER DETAIL REPORT DIST MAX MEMBER GRP LOliD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z _STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK 1-9CHB 7 o.oo 0.1. 1.0 0.0 0.0 -O.l. 0.0 0.06 0041 -0.18 -0.53 0.20 BEND 0.03 B 0.8 18.3 0.0 0.0 c1;1 0.0 0.50 7.52 0.26 8.28 2.42 TN+BN 0.38 9 0.7 17.5 -0.3 0.0 C1.1. 0.0 0.40 7.17 2.55 1.0.12 2.72 TN+BN 0.47 10 0.9 18.0 -0.2 0.0 -1.1 O.o 0.55 7.41 1..58 9.54 2.62 TN+BN 0.33 ll 0.6 20.8 -5.1 0.4 -1.1 o.o 0.35 8.53 48•32 57.20 8.56 TN+BN 1. 99 12 0.7 17.2 -0.4 0.0 -1.1 o.o 0.46 7.05 3.87 11.38 2.92 TN+BN 0.40 13 0.4 19.9 -5.4 0.4 -1.1 0.0 0.26 8.17 50.61 59.04 8.87 TN+BN 2.05 7 0.67 0.1 0.3 o.o 0.0 -0.1 . 0.0 0.06 0.11 co.10 0.17 0.20 SHEAR 0.01 B 0.8 9.7 o.o 0~0 -1.1 0.0 0.50 · 3o97 -0.13 4.47 2.41 TN+BN 0.21 9 0.7 8.9 -0.1 0.0 -1.1 0.0 0.40 3.65 0.72 4.77 2.71 TN+BN 0.22 10 0.9 9.4 o.o 0.0 -1.1 o.o 0.55 3.87· 0.16 4.59 2.61 TN+BN 0.16 11 0.6 11.7 -2.0 0•4 -1.1 0.0 0.35 4.79 18.43 23.58 8.37 TN+BN 0.82 12 0.7 8.7 -0.1 0.0 -1.1 o.o 0.46 3.55 1.01 5.02 2.91 TN+BN 0.17 13 0.4 10.9 -2.0 0.4 -1.1 0.0 0.26 4.47 19.28 24.01 8.67 TN+BN 0.83 7 1.35 0.1 -0.4 o.a. 0.0 -0.1 0.0 0.06 -0.18 -0.02 0.24 0.19 SHEAR 0.01 8 0.8 1.1 0.1 0.0 -1.1 o.o. 0.50 0.44 -0.52 0.94 2.40 SHEAR 0.17 9 0.7 0.4 0.1 0.0 -1.1 0.0 0.40 0.15 -1.11 -0.86 2.70 SHEAR 0.19 10 0.9 0.8 0.1 o.o -1.1. 0.0 0.55 0.35 -1.25 -1.05 2.61 SHEAR 0.14 ll 0.6 2.6 1.1 0.4 -1.1 0.0 !).35 . 1·07 .;10.54 -11.26_ 8.17 SHEAR 0.43 12 0.7 0.1 0.2 0.0 -1.1. o.o 0.46 0.06 -1.85 .-1.45 2.91 SHEAR 0.15 13 0.4 1.9 1.2 0.4 -1.1 o.o o:26 0.78 -11.14 -11.66 a .48 SHEAR 0.44 1\CS Release 5.2 En9ineers and-Consultants ID=28040200 PICEANCE FACIL_ITIES MCC BUILDING IN-PLACE ANALYSIS DATE-26-FEB-2008 TIME 08;52:15 PST PAGE 309 SACS-IV SYSTEM MEMBER DETAIL REPORT DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SREAR SREAR TORSION . AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK D-E CHB 7 0.00 0.1 -1.6 0.0 o.o 0.0 0.0 0.06 -0.6.6 0.02 0.74 0.03 TN+BN 0.03 8 0.8 -13.9 0.0 o.o -0.2 o.o 0.50 -5.10 . 0.13 6.34 0.45 TN+BN 0.29 9 0.7 -14.4 0.0 0.0 -0.2· 0.0 0.41 -5.90 0.13 6.44 0.43 TN+BN 0.30 10 0.9 -1.4. 0 0.0 0.0 -o;2 0.0 0.55 -5.76 0.22 6.53 0.46 TN+BN 0.23 11 o.o -13.5 -2.2 0.4 -0.3 0.0 0.01 -5.55 20.43 25.99 7.68 TN+BN 0.90 12 0.7 -14.5 o.o 0.0 -0.2 o.o 0.45 -5.95 0.22 6.62 0.44 TN+BN 0.23 13 -0.1 -14.0 -2.2 0.4 -0.3 0.0 -0.09 -5.74 20.43 26.08 7.66 C<.15 0.91 7 0.49 0.1 -1.7 0.0 0.0 0.0 o.o· 0.06 -0.69 o.oo 0.75 0.03 TN+BN 0.03 8 0.8 -15.1 0.0 0.0 --0.2 o.o 0.50 -6.18 :-0.11 6.69 0.44 TN+BN 0.31 9 0.7 -15.5 o.o o.o -0.2 .· 0.0 0.41 -6.35 -0~11 6.76 0.42 TN+BN 0.31 10 0.9 -15.2 0.0 o.o .-0.2 o.o. 0.55 -6.23 -0.11 6.78 0.46 TN+BN 0.24 11 0.0 -15.0 0.4 0.4 -0,3 0.0 0.01 -6.18 -4.18 -10.35 7.53 SHEAR 0.39 12 0.7 -15.6 o.o o.o :..o.2 ·0.0 0.45 -6.40 -0.11 6.86 0.44 TN+BN 0.24 13 -0.1 -15.5 0.4 o·.4 -0.2 o.o -0.09 -6.35 -4.18 -10.62 7.52 SHEAR 0.39 7 0.98 0.1 -1.7 0.0 o.o 0.0 0.0 0.06 -0.71 -0.02 0.77 0.02 TN+BN 0.04 8 0.8 -16.2 0.0 0.0 -0.2 o .. o o.so -6.66 -0.35 _7.16 0.43 TN+BN 0.33 9 0.7 -16.6 0.0 0.0 -0.2 o.o 0.41 -6.80 -0.35 7.21 0.42 TN+BN 0.33 10 0.9 -16.3 0.0 o.o c0.2 0.0 0.55 -6.69 -0.43 7.25 0.45 TN+BN 0.25 11 0.0 -16.6 3.0 0.4. co.3 o.o 0.01 -6.80 -28.31 -35.10 7.38 BEND 1.22 12 0.7 -16.7 0.0 o.o -0.2 o.o 0.45 -6.84 -0.43 7.30 0.43 TN+BN 0.25 13 -0.1 -16.9 3.0 0.4 -0.2 o.o -0.09 -6.95 -28.31 -35.34 7.37 C<.15 1.23 E-F CHB 7 0.00 0.1 -1.7 0.0 0.0 o.o 0.0 0.06 -0.71 0.04 0.81 0.03 TN+BN 0.04 8 0.8 -16.2 o.o 0.0 0.1 o.o 0.50 -6.66. -0.12 7.28 0.27 TN+BN 0.34 9 0.7 -16.6 o.o o.o 0.1 0.0 0.40 -6.80 0.13 7.34 0.29 TN+BN 0.34 10 0.9 -16.3 0.0 0.0 0.1 0.0 0.55 -6.69 0.21 7.46 0.30 TN+BN 0.26 11 -0.2 -16.5 -1.3 0.4 0.0 0.0 -0.10 -6 •. 76 12.41 19.07 ?.04 C<.15 0.67 12 0.7 -16.7 o.o 0-.0 0.1. o.o 0.45 -6.84 0.22 7.52 0.32 TN+BN 0.26 13 -0.3 -16.8 -1.3 0.4 0.0 0.0 -0.19 -6.91 12.42 19.13 7.06 Cc;;.15 0.-68 7 0.49 0.1 -1.7 0.0 0.0 o.o . 0.0 0.06 -0.68 o.oo 0.74 0.04 TN+BN 0. 03 8 0.8 -15.7 0.0 0.0 0.1 o.o 0.50 -6.43 0.04 6.98 0.28 TN+BN 0. 32 9 0.7 -16.0 0.0 o.o. 0.1 0.0· 0.40 -6.56 o.os 7.01 0.30 TN+BN 0.32 10 0.9 -15.7 0.0 0.0 0.1 0.0 0.55 -6.46 0.04 7.05 0.31 TN+BN 0.24 11 -0.2 -16.3 '1.1 0.4 0.0 0.0 c0.10 -6.68 -10.80 -17.58 6.90 C<.15 0.61 12 0.7 -16.1 0.0 0.0 0 .• 1 o.o 0.45 -6.59 0.04 7.08 0.33 TN+BN 0.25 13 -0.3 -16.6 1.1 0.4 0.0 0.0 co.19 -6.81 -10.80 -17.80 6.92 C<.15 0.62 7 0.98 0.1 -1.6 0.0 0.0 o.o 0.0 0.06 -0.64 -0.03 0.70 0.04 TN+BN 0.03 8 0.8 -15.1 o.o 0.0 0.1 0.0 0.50 -6.20 -0.03 6.70 0.28 TN+BN 0.31 9 0.7 -15.4 o.o o.o 0.1 0.0 0.40 -6.30 -0.03 6.71 0.30 TN+BN o. 31 10 0.9 -15.2 0.0 0.0 0.1 0.0 0.55 -6.23 -0.14 6.77 0.31 TN+BN 0.24 11 -0.2 -16.1 3.5 0.4 0.0 0.0 -0.10 -6.60 "33 .• 53 -40.23 6.76 C<.15 1.40 12 0.7 -15.4 0.0 o.o 0.1 0.0. 0.45 -6.33 -0.14 6.78 0.33 TN+BN 0.24 13 -0.3 -16.3 3.5 0.4 o.o 0.0 -0.19 -6.71 -33.53 -40.43 6.78 C<.15 1.40 ~cs Release 5.2 Engineers and Consultants ID==28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 2G-FEB-2008 TIME 08:52:15 PS'f PAGE 310 SACS-IV SYSTEM MEMBER DETAIL REPORT DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORS.ION ·AXIAL· BENDING STRESS · COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK F-G CHB 7 0.00 0.1 -1.6 o.-o 0.0 0.0 o.-o 0.06 -0.64 0.06 0.76 0.09 TN+BN 0.04 8 0.8 . -15.1 -0.1 o.o ·o.4 0.0 o.so· -6.20 0.70 7.41 0.98 TN+BN 0.34 9 0.6 -15.4 -0.1 0.0 0.4 0.0 0.40 -6.31 0.71 7.42 1.00 TN+BN 0.34 10 0.9 -15.2 -0.1 O;O 0.4 . 0.0 0.55 -6.23 . 0.81 7.58 1.01 TN+BN 0.26 11 -0.4 -16.0 -3.4 0.4 0.3 0.0 -0.25 -6.55 32.15 38.45 7.44 C<.15 1.35 12 0.7 -15.4 -0.1 0.0 0.4 0.0 0.45 -6.33 0.81 7.59 1. 03 TN+BN 0.26 13 -0.6 -16.2 -3.4 0.4 0.3 0.0 -0.35 -6.65 32.16 38.46 7.46 C<.15 1.36 7 0.49 0.1 -1.3 0.0 o.o o.o 0.0 0.06 -0"4 o.oo 0.60 0.10 TN+BN 0.03 8 0.8 -12.8 0.0 0.0 0.4 o.o o.so -5.27 0.08. 5.85 0.98 TN+BN 0.27 9 0.6 -13.0 0.0 0.0 Oo4 0.0 0.40 -5.35 0.07 5.82 1. 00 TN+BN 0.27 10 0.9 -12.9 0.0 0.0 0.4 0.0 0.55 -5.28 0.09 5.92 1.01 TN+BN 0.21 11 -0.4 -14.0 -0.9 0.4 0,3 0.0 -0.25 -5.76 8.84 14.35 7.30 C<.15 O.S2 12 0.7 -13.1 0.0 o.o 0.4 0.0 0.45 -5.36 0.08 5.89 1.04 TN+BN 0.20 13 -0.6 -14.2 -0.9 0.4 0.3 .. o.o -0.35 -5.84 8.83 14.32 7.32 C<.15 0.52 7 0.98 0.1 -1.1 o.o. 0.0 o.o 0.0 0.06 -0.43 -0.06 o.so 0.10 TN+BN 0.02 8 0.8 -10.5 0.1 0.0 0.4 o.o 0;50 -4.32 co.54 4.82 0.99 BEND 0.22 9 0.6 -10.7 0.1 0.0 0.4 0.0 0.40 -4.38 -0.57 4.78 1.01 BEND 0.23 10 0.9 -10.6 0.1 o.o 0.4 o.o 0.55 -4.33 -0.62 4.88 1.02 BEND 0.17 11 -0.4 -12.1 1.5 0.4 0.3. 0.0 -0.25 -4.97 -13.98 -19.19 7.16 C<.l5 0.67 12 0.7 -10.7 0.1 0.0 o;4 0.0 0.45 -4.39 -0.66 4.84 1.04 BEND 0.18 13 -0.6 -12.2 1.5 0.4 0.3 o.o -0.35 -5.02 -14.02 ~19.39 7.18 C<.15 0.67 G-H CHB 7 o.oo 0.1 -1.1 0.0 o:o 0.1 o.o 0.06 -0.43 0.04 0.54 0.14 TN+BN 0.02 8 0.8 -10.5 o.o 0.0 0.7 0.0 0.50 -4.33 0.19 5.02 1.37 TN+BN 0.23 9 0.6 -10.7 0.0 0.0 0.7 0.0 0.40 -4.38 .0.18 4.96 1.36 TN+BN 0.23 10 0.9 '"'10.6 0.0 0.0 0.7 o.o 0.54 -4.33 0:27 5.15 1.40 TN+BN 0.18 11 -0.6 -12.0 -2.6 0.4· 0.6 o.o . -0.35 -4.93 24.82 29.40 7.85 C<.l-S 1. OS 12 0.7 -10.7 o.o 0.0 0.7 0.0 0.45. -4.39 0.25 5.09 1.38 TN+BN 0.18 13 -0.7 -12.2 -2.6 0.4 0.6 ·o.o ~0.45 -4.99 24.80 29.34 7 .83_ C<.1S 1. OS 7 0.49 0.1 -0.7 o.o 0.0 0.1 0.0 0.06 -0.2.7 -0.01 0.33 0.14 TN+BN 0.02 8 0.8 -6.5 0.0 0.0 0.7 o.o 0.50 -2.69 -0.16 3.18 1.37 TN+BN 0.1S 9 0.6 -6.6 0.0 0.0 0.7 0.0 0.40 ~2.72 -0.06 3.12 1.36 TN+BN 0.14 10 0.9 -6.5· o.o o.o ·0.7 o.o 0.54 -2.69 -0.16 3.23 1.40 TN+BN 0.11 11 -0.6 -8.4 -0.2 0.4 .0.6 0.0 -0.35 -3.44 1.46 4.54 7.71 SHEAR 0.40 12 0.7 -6.6 o.o 0.0 0.7 O;O 0.45 -2.72 "0.06 3.17 1.39 TN+BN 0.11 13 -0.7 -8.5 -0.2 0.4 0;6 0.0 -0.45 -3.47 ~.55 4.57 7.70 SHEAR 0.40 7 0.98 0.1 -0.3 0.0 0.0 O.l 0.0 0.06 -0.10 -0.07 0.17 0.15 SHEAR 0. 01 8 0.8 -2.5 0.1 0.0 0.7 0.0 0.50 -1.04 -0.51 1.54 1.38 SHEAR 0.10 9 0.6 -2.6 0.0 o.o 0.7 o.o 0.40 -1.05 -0.30 1.45 1.37 SHEAR 0.09 10 0.9 -2.S 0.1 0.0 0.7 0.0 0.54 -1.03 -0.58 1.57 1.41 SHEAR 0.07 11 -0.6 -4.7 2.3 0.4 0.6 0.0 -0.35 -1.93 -21.42 -23.71 7.58 C<.15 0.82 12 0.7 -2.5 o.o 0.0 0.7 o.o 0.45 -1.04 -0.3.7 1.49 1.39 SHEAR 0.07 13 -0.7 -4.7 2.2 0.4 0.6 o.o -0.45 -1.94 ·-21.21 -23.61 7.56 C<.15 0.82 SACS Release 5. 2 ~gineers and Consultarits ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08:52:15 PST PAGE 311 SACS-IV SYSTEM MEMBER DETAIL REPORT DIST MAX MEMBER GRP LOAD FROM FORCE J-IOMENT MOMENT SHEAR SHEAR· TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK H-I CHB 7 0.00 0.1 -0.3 '0.0 o.o 0.1 o.o. o·.o6 -0.10 0.03 0.20 0.18 SHEAR 0.01 8 0.8 -2.5 0.0 0.0 LO o.o 0.49 -1.04 0.34 1.87 1.84 SHEAR 0.1.3 9 0.6 -2.6 -0.1 0.0 LO 0.0 . 0.40 -LOS .0.56 2.01 2.01 SHEAR 0.14 10 0.9 -2.5 0.0 0.0 1.0' o.o 0.54 -1.03 0.42 1.99 1. 85 SHEAR 0.10 11 -0.7 ,4.6 -2.1 0.4 0.9 0.0 co.46 -1.90 19.38 20.82 7.34 C<.15 0.76 12 0.7 -2.5 -0.1 0.0 l.O 0.0 0.44 -1.04 0.65 2.13 2.04 SHEAR 0.11. 13 -0.9 -4.6 -2.1 0~4 0.9 o.o -0.56 -1.91 19.61 20.96 7.51 C<.l5 0.77 7 0.49 0.1 0.3 0.0 o.o 0.1 o.o 0.06 0.12 0.08 0.26 0.19 SHEAR 0.01 8 0.8 3.2 0.0 0.0 LO 0.0 0.49 -.-1.30 0.37 2.17 1.84 SHEAR 0.13 9 0.6 3.2 o.o o.o 1.0 0.0 0.40 1.32 -0.02 1.71 2.01 SHEAR 0.14 10 0.9 3.2 0.0 0.0 LO o.o 0.54 1.32 0.35 2.21 1. 86 SHEAR 0.10 11 -0.7 0.7 0.0 0.3 0.9 o.o -0.46 0.30 -0.17 -0.93 7.20 SHEAR 0.38 12 0.7 3.2 o.o 0.0 LO 0.0 0.44 1.33 -0.05 1. 78 2.05 SHEAR 0.11 13 -0.9 0.8 0.1 0.4 0.9 o.o -0.56 0.31 -0.56 -1.43 7.38 SHEAR 0.38 7 0.98 0.1 0.9 o.o 0.0 0.1 o.o .0.06 0.35 0.12 0.54 0.20 TN+BN 0.02 8 o.8 8.9 0.0 0.0 LO o.o 0.49 3.66 0.41 4.56 1.85 TN+BN 0.21 9 0.6 9.0 0.1 o.o LO o.o 0.40 3.69 -0.61 4.09 2.02 BEND 0.20 10 0.9 9.0 0.0 o.o 1.0 o.o 0.54 3.68 0.27 4.49 1.86 TN+BN 0.16 11 -0.7 6.1 2.0 0.3 . 0.9 o.o -0.46 2.50 -19.23 -22.19 7.07 C<.l.S 0.77 12 0.7 9.1 0.1 0.0 LO 0.0 0.44 3.72 -0.74 4.16 2.05 BEND 0.15 13 -0.9 6.2 2.1 0.3 0.9 o.o -0.56 2.54 -20.25 -23.34 7.25 C<.15 0.81 I-J CHB 7 o.oo 0.1 0.9 o.o o.o 0.1 o.o 0.06 0.35 0.22 0.63 0.37 TN+BN 0.03 8 0.8 8.9 -0.1 0~0 1.3 o.o 0.49 3.65 0.96 5.10 3.01 TN+BN 0.24 9 0.6 9.0 -0.1 0.1 1.3 o.o 0.39 3.69 . o. 75 4:83 3.93 SHEAR 0.27 10 0.9 9.0 -0.1 0.0 1.3 o.o 0.54 3.68 0.96 5.17 2.98 TN+BN 0.18 11 -0.9 6.2 -1.9 0.5 1.2 -0.1 -0.56 2.54 18.33 20.31 11.90 C<.15 0.75 12 0.7 9.1 -0.1 0.1 1.3 0.0 0.44 3'72. 0.75 4.90 3.91 SHEAR 0.20 13 -1.1 6.3 -1.9 0.5 1.2 o.o -0.66 2.57 18.11 20.03 11.62 C<.15 0. 74 7 0.49 0.1 1.5 0.0 0.0 0.1 0.0 0.06 0.63 -0.17 -0.74 0.37 BEND 0. 04 8 o.8 16.3 0.0 o.o 1.3 o.o 0.49 '6. 71 0.16 7.36 3.01 TN+BN 0.34 9 0.6 16.5 0.3 0.1 1.3 0.0 0.39 6.76 -2.64 -9.01 3.94 BEND 0.44 10 0.9 16.4 0.0 o.o 1.3 o.o 0.54 6.74 0.26 7.54 2.99 TN+BN 0.26 11 -0.9 13.3 0.9 o.s 1.2 -0.1 .-0.56 5.46 -8.82 -14.84 11.77 SHEAR 0.61. 12 0.7 16.6 0.3 0.1 . 1.3 o.o 0.44 6.79 -2.54 -8.90 3.92 BEND 0.32 13 -1.1 13.4 1.2 o~5 1.2 o.o ,0.66 5.51 -11.62 -17.79 11.49 C<.lS 0.62 7 0.98 0.1 2.3 0.1 o.o 0.1 o.o 0.06 0.93 -0.56 -1.42 0.38 BEND 0. 07 8 0.8 23.8 0.1 o.o 1.3 o.o 0.49 9.77 -0.63 10.26 3.02 BEND 0.48 9 0.6 24.0 0.6 0.1 1.3 o.o 0.39 9.84 -6.02 -15.47 3.94 BEND 0.73 10 0.9 23.9 o.o 0.0 1.3 o.o 0.54 9.81 -0.44 10.35 3.00 'I'N+BN 0.36 11 -0.9 20.5 3.8 o.s. 1.2 -0.1 -0.56 . 8.39 -35.48 -44.43 11.63 C<.15 1. 55 12 0.7 24.1 0.6 0.1 1.3 o.o 0.44 9.88 -5.83 -15.27 3.93 BEND 0.55 13 -1.1 20.6 4.3 o.s· 1.2 o.o -0.66 8.4G -40.67 -49.99 11-35 C<.lS 1. 74 lACS Release 5.2 Engineers and Consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08:52:15 PST PAGE 315 SACS-IV SYSTEM MEMBER DETAIL REPORT DIST MAX MEMBER GRP LOAD FROM FORCE. MOMENT MOMENT SHEAR SHEAR ·TORSION ·AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS· y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK P-QCHB 7 0 .oo 0.2 -0.4 o.o o.o 0.1 0.0 0.11 -0.16" 0.03 0.30 0.11 TN+BN 0.01 8 o.a -3.6 0·.0 0.0 0.7 o;o 0.50 -1.49 0.23 '2.21 1.33 TN+BN 0.10 9 0.9 -3.6 -o.1 o.o 0.7 o.o o.5a -1.46 0.94 2.98 1.93 TN+BN 0.14 10 o.a -3.6 o.o 0.0 0.7 0.0 0.52 -1;4a 0.29 2.29 1.31 TN+BN 0.08 11 1.3 -4.0 -0.6 0 ,J._ 0.6 o.o 0.82 -1.63 5.25 7.70 2.71 TN+BN 0.27 12 1.0 -3.5 -0.1 .o.o 0;7 0.0 0.60 -1.46 1.00 3.06 1.95 TN+BN 0.11 13 1.5 -3.9 -0.6 0.1 0.6 o.o 0.90 -1.61 5.96 8.47 3.40 TN+BN 0.29 7 0.49 0.2 -0.1 o.o 0.0 0.1 0·.0 0.11. -().04 0.06 0.20 0.11 TN+BN o.o~ a o.a 0 .. 3 -0.1 0.0 0.7 o.o 0.50 0 .. 11. . 0.53 1.14 1.34 SHEAR 0.09 9 0.9 0.3 0.2 o.o 0.7 0.0 0.5a 0.13 -1.43 -0.98 1. 94 SHEAR 0.13 10 o.a 0.3 -0.1 0.0 0.7 o.o 0.52 0.12 0.51 1.1.5 1.32 SHEAR 0.07 11 1.3 -0.4 o.o 0.1 0.6 o.o o.a2 -0.16 0.09 1.06 2.57 SHEAR 0.13 12 1.0 0.3 0.2 o.o o .• 7 0.0 0.60 0.13 -1.45 -o.9a 1.96 SHEAR 0.10 13 1.5 -0.3 0.2 0.1 0.6 o.o 0.90 -0.14 -1.87 -1.11 3.27 SHEAR 0 .. 17 7 0.98 0.2 0.2 o.o 0.0 0.1 o.o 0.11 o.1o o.oa 0.29 0.12 TN+BN 0.01 a o.a 4.2 -0.1 o.o 0.7 0.0 o.so 1.72 0.83 3.04 1.34 TN+BN 0.14 9 0.9 4.2 0.4 0.0 0.7 0.0 0.5a 1.72 -3.80 -4.94 1. 94 BEND 0.26 10 0 .. 8 4.2 -0.1 0.0 0.7 o.o. 0.52 1.73 0.74 2.98 1.32 TN+BN 0.10 11 1.3 3.2 0.5 0.1 0.6 0.0 ·O.a2 1.33 -4.5a -5.09 2.44 BEND 0.21 12 1.0 4.2 0.4 o.o o. 7· 0.0 0.60 1. 73 -3.90 -5.02 1. 96 BEND o·.2o 13 1.5 3.2 1.0 0.1 o·.6 o.o 0.90 . 1.33 -9.U -9.64 3.14 BEND 0.37 Q-RCHB 7 0.00 0.2 0.2 o.o 0;0 0.1 0.0 0.11 0.1.0 0.15 0.36 0.24 TN+BN 0.02 8 o.a 4.2 -0.1 o-.o 1.0 o.o 0.49 1.n 1.22 3.43 2.67 SHEAR 0.19 9 0.9 4.2 0.3 o.o 0.9 0.1 0.5a 1.72 -2.44 -3.59 4.00 SHEAR 0.28 10 o.a 4.2 -0.1 0.0 1.0 0.0 0.52 1.72 1.23 3.47 2.66 SHEAR 0.14 11 1.3 3.2 -0.7 0.3 0.9 .co.1 0.79 1.33 6.14 8.26 8.60 SHEAR 0.45 12 1.0 4.2 o.3 0.0 0.9 0.1· 0.60 1. 73 -·2.43 -3.57 4.01 SHEAR 0.21 13 1.4 3.3 -0.3 0.2 .0.9 0.0 0.87 1..34 2.4a 4.70 5.45 SHEAR 0.28 7 0.49 0.2 0.7 o.o 0.0 0.1 . 0.0 0.11 0.29 -0.07 0.40 0.24 TN+BN 0.02 8 0.8 9.8 0.1 o.o 1.0 0.0 0.49 4.02 -0.62 4.52 2.68 BEND 0.21 9 0.9 9.8 o.o 0.0 0.9 .0.1 0.58 4.00 0.20 4.79 4.00 SHEAR 0.26 10 0.8 9.8 0.1 o.o 1.0 o .• o 0.52 4.03 -0.56 4.55 2.67 BEND 0.16 11 1.3. 8.6 1.1 0.3 0.9 •0.1 0.79 3.54 -10.39 -13.13 8.47 BEND 0.48 12 1.0 9.8 o.o 0.0 o·.9 0.1 0.60 4.01 0.26 4.88 4.02 SHEAR 0.21 13 1.4 8.6 1.0 0.2 . 0.9 o.o 0.87 3.52 .·-.9.56 -12.21 5.32 BEND 0.45 7 0.98 0.2 1.2 o.o 0.0 0.1 o.o 0.11. 0.:49 -0.29 -0.67 0.25 BEND 0.04 8 0.8 15.4 0.3 0.0 1.0 0.0 0.49 6.34 -2.46 -8.30 2.68 BEND 0.41 9 0.9 15.3 -0.3 o.o 0.9 0.1 0.58 6.29 2.85 9.72 4.01 TN+BN 0.45 10 0.8 15.5 0.2 0.0 1.0 o.o 0.52 6.35 -2.35 -8.19 2.67 BEND 0.30 11 1.3 14.0 2.8 0.3 0.9 co.1 0.79 5.75. -26.43 -31.39 8.34 BEND 1.12 12 1.0 15.4 -0.3 0.0 0.9. ·0.1 0.60 6.30 2.96 9.86 4.02 TN+BN 0.34 13 1.4 13.9 2.2 0.2 0.9 ·o.o o.a? 5.70 -21.12 -25.95 5;1s BEND 0.93 :ACS Release 5.2 Engineers 8nd corisultaD.ts ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08:52:15 PST PAGE 316 SACS-IV SYSTEM MEMBER DETAIL REPORT DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR. TORSION AXIAL ·BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX s'f!I!Ess y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP I<SI I<SI I<SI KSI KSI CHECK . R-S CHB 7 0.00 0.2 1.2 o.o o.o -0.1 o.o 0 .• 13 0.51 0.06 0.70 0.20. TN+BN 0.03 8 l.O 15.9 o.o 0.0 ~1.0 o.o 0.61 6.52 -0.45 7.13 2.29 TN+BN 0.33 9 1.3 16.1 -J..1 0.1 -1.0 .-0.1 . 0.82 6.62 10.33 17.77 5.36 TN+BN o-. a2 10 l.O 15.8 0.1 0.0 -1.0 0.0 0.61 6.50 -0.56 7.11 2.30 TN+BN 0.25 11 1.6 15.0 2.5 -0.2 -0.9 0.1 .1.01 6.16 -23.69 -28.84 7.71 BEND 1. 04 12 1.3 16.1 -1.1 0.1 -1.0 -0.1 0.82 6.60 10.23 17.65 5.34 TN+BN 0.61 13 2.0 15.3 1.4 . -0.1 -0.9 o.o '1.21 6.26 -12.91 -17.96 3.64 BEND 0.67 7 0.49 0.2 o.a o.o o.o -0.1 0.0 0.13 0.31 0.02 0.47 0.19 TN+BN 0.02 8 1.0 10.2 o.o 0.0 . -l.O o;o 0.61 4.20 -0.04 4.81 2.29 TN+BN 0.22 9 1.3 10.5 -0.3 0.1 -1.0 -0.1 . 0.82 ·4.31 2.93 8.05 5.35 TN+BN 0.37 10 l.O 10.2 o.o 0.0 -LO 0.0 0.61 4.18 -0-.l.O 4. 80 2.30 TN+BN 0.17 11 1.6 9.5 1.1 -0.2 ... o.9 0.1 1.01 3.90 -10.01 -12.90 7.84 BEND 0.48 12 1.3. 10.5 -0.3 0.1 . -1.0 -0.1. . 0.82 4.29 2.87 7.97 5.34 SHEAR 0.28 13 2.0 9.8 0.7 -0~1 .:.o~9 o.o . 1.21 4.01 ·-7.05 -9.84 3.77 BEND 0.38 7 0.98 0.2 0.3 o.o o.o -0.1 0•0 0.13 .0.13 -0.02 0.26 0.18 SHEAR 0.01 8 l.O 4.6 . o .. o 0.0 -1.0 o.o 0.61 1.89 ·o.J8 2.88 2.28 SHEAR 0.16 9 1.3 4.9 o.s 0~1 -1.0 -o.1 0-.82 2.00 -4.48 -5.66 5.35 SHEAR 0.37 10 l.O 4.6 o.o 0.0 -1.0 o;o 0.61 1.·87 0.36 2.85 2.29 SHEAR 0.12 11 1.6' 4.0 -0.4 -0.3 -0 .. 9 o.1 1.01 1.64 4.16 6.81 7.97 SHEAR 0.42 12 1.3 4.8 o.s 0.1 -0;9 -0.1 0.82 1.99 .-4.49 -5.66 5.33 SHEAR 0.28 13 2.0 4.3 0.1 -0.1 -0.9 o.o 1.21 1.76 Co.70 2.97 3.90 SHEAR 0.20 ;Acs Release 5.2 Engineers and ConsultantS ID=26040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 2G-FEB-2008 TIME· 06:52:15 PST PAGE 320 SACS-IV SYSTEM MEMBER DETAIL REPORT DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR. SHEAR TORSION. AXI.!\L BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END PX MY MZ FY .FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK z-10 CHB 7 0.00 0.2 2.9 o.o 0.0 -0.2 0.0 0.13 1.21 -0.24 1.34 0.40 BEND 0.07 8 1.2 25.4 0.1 0.0 -1.4 o.o 0.75 10.41 -0.58 11.16 3.23 TN+BN 0.52 9 1.0_ 23.8 -0.3 o.o -1.3 -0.1 "0.62 9."78 2.70 13.11 4.42 TN+BN 0.61 10 1.2 25.4 0.1 0.0 . -1.-.4 ·o.o 0.73 10.41 -0.67 11.14 3.24 TN+BN 0.39 11 1.0 24.7 4.8 -0.6 C1.4 0.1 0.59 10.14 "45.28 -54.82 13.60 BEND 1.92 12 1.0 23.8 -0.3 0.0 -1.3 -0.1 0.60 9:78 2.61 12.99 4.41 TN+BN 0.45 13 0.7 23.2 -4.4 -o.s -1.4 ,0.0 0.46 9.51 -42.00 -51.04 10.90 BEND 1. 79 7 0.49 0.2 2.0 0.0 o.o -0.2 o.o 0.13 .0.82 -0.08 0.95 0.39 TN+BN 0.04 8 1.2 17.2 0.0 0.0 -1.4 o.o 0.75 7.04 0.00 7.79 3.23 TN+BN 0.36 9 1.0 16.1 0.0 o.o -1.3 -0.1 0.62 6.59 . 0.15 7.37 4.41 TN+BN 0.34 10 1.2 17.1 0.0 0.0 -1.4 -o.o 0.73 7.03 -0.06 7.77 3.24 TN+BN 0.27 11 1.0 16.3 1.5 -0.6 -1.4 0.1 . 0.59 6.68 -14.36 -20.44 13.73 BEND 0.73 12 1.0 16.0 0.0 0.0 -1.3 -0.1 0.60 6.58 0.09 7.28 4.40 TN+BN 0.25 13 0.7 15.2 1.5 -0.5 -1.4 o.o 0.46 6.22 -14.21 -19.96 11.04 BEND 0.71 7 0.98 0.2 1.1 0.0 0.0 -0.2 0.0 0.13 0.44 ·0.08 0.65 0.36 'I'N+BN 0.03 8 1.2 9.0 -0.1 0.0 -1.4 0.0 0.75 3.68 0.58 5.01 3.22 TN+BN 0.23 9 1.0 8.3 0.3 0.0 -1.3 -0.1 0.62 3.40 -2.40 -5.17 4.41 SHEAR 0.31 10 1.2 8.9 -O.i o.o -1.4 0.0 0.73 3.67 0.56 4.96 3.23 TN+BN 0.17 11 1.0 7.9 -1.6 -0.6 -l.4 0.1 0.59 3.22 17.05 20.86 13.87 TN+BN 0-.72 12 l.O 8.3 0.3 0.0 -1.3 -0.1 0.60 3.39 -2.42 -5.21 4.40 SHEAR 0.23 13 0.7 7.2 -1.5 -o.s -1.4 o.o 0.46 2.94 14.07 17.46 11.17 TN+BN 0.61 10-11 CHB 7 0.00 0.2 1.1 0.0 0.0 -0.1 o.o I ·0 ,13 . 0.44 0.09 0.66 0.27 TN+BN 0.03 8 1.2 9.0 -0.1 o.o -1.1 0.0 0.75 3.68 0.79 5.22 2.17 TN+BN 0.24 9 l.O 8.3 0.3 0.0 -1.0 0.0 0.63 3.40 -3.19. -5.96 2.53 BEND 0.30 10 1.2 9.0 -0.1 0.0 -1.1 o.o 0.73 3.67 0.89 5.29 2.19 TN+BN 0.18 11 1.1 7.8 2.0 -0.3 -1.1 0.0 0.68 3.19 .::19.25 -21.76 7.47 BEND 0.78 12 1.0 8.3 0.3 0.0. -1.0 0.0 0.61 3.39 -3.09 -5.87 2.51 BEND 0 .. 23 13 0.9 7.1 2.5 -0.4 . -1.1 o.o 0.56 2.91 -23.23 -25.58 7.97 BEND 0.91 7 0.49 0.2 0.3 o.o 0.0 C0.1 0.0 0.13 0.11 0.04 0.28 0.27 SHEAR 0. 02 8 1.2 2.5 0.0 0.0 -1.1 0.0 0.?5 1.02 0.46 2.23 2.16 SHEAR 0,. 15 9 1.0 2.2 0.1 0.0 -1.0 0.0 0.63 0.89 -1.20 1.52 2.53 SHEAR 0.18 10 1.2 2.5 -0.1 0.0 -1.1 0.0 0.73 1.01 0.47 2.22 2.19 SHEAR 0.11 11 1.1 1.1 0.0 -0.3 -_1..1 oco .0.68 0.-47 -0.1.8 1.15 7.61 SHEAR 0.40 12 1.0 2.2 0.1 o.o -1.0 0.0 0.61 0.89 -1.19 1.49 2.50 SHEAR 0.13 13 0.9 o.e 0.2 -0.4 -1.1 0.0 0.56 0.34 Cl.84 -1.62 8.10 SHEAR 0.42 7 0.96 0.2 -0.5 0.0 0.0 •0.1 0.0 0.13 -0.21 · ..;o. 01 0.35 0.26 SHEAR 0.02 8 1.2 -4.0 0.0 0.0 -1·.1 o.o 0.?5 --1.64 0.14 2.52 2.16 SHEAR 0.15 9 1.0 -3.9 -0.1 0.0 •1.0 0.0 0.63 -1.60 0.?9 3.02 2.52 SHEAR 0.18 10 1.2 -4.0 0.0 0.0 -1.1 0.0 0.73 -·1. 64 0.06 2.43 2.18 SHEAR 0.11 11 1.1 -5.s -2.1 -0.4 -1.1 0.0 0.68 -2.25 19.39 22.32 7.74 TN+BN 0.78 12 1.0 -3.9 -0.1 0.0 -1.0 o.o 0.61 Cl.61 0.72 2.93 2.50 SHEAR 0.13 13 0.9 -5.4 -2.1 -0.4 -1.1 . 0.0 0.56 -2.22 20.04 22.82 8.23 TN+BN 0.79 3ACS Release 5.2 Engineers ·and OonSultarits !0=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME 08;52:15 PST PAGE 321 SACS-IV SYSTEM MEMBER DETAIL REPORT DIST -:.,-· MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR TORSION AXIAL BENDING ST~SS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK i1-12 CHB 7 0.00 0.2 -0.5 o.o o.o -0.1 o.o 0.13 -·o. 21. -0.03 0.35 0.22 TN+BN 0.02 8 1.2 -4.0 0.0 0.0 -o.8 0.0 0.75 -1.64 -0.02 2.39 1.65 SHEAR 0.11 9 1.0 -3.9 -0.1 o.o -0.7 0.0 0.63 -1.60 0.53 2.77 1.61 TN+BN 0.13 10 1.2 -4.0 o.o 0.0 -0.8 0.0 o. 73 -1.64 0.03 2.40 1.66 SHEAR 0.09 11 1.3 -5.6 2.3 -0.4 -O.B o.o 0.79 -2.29 -21.39 -22.89 7.90 BEND 0.82 12 1.0 -3.9 -0.1 0.0 -0.7 0.0 ·0.61 -1.61 0.59 2.81 1.62 TN+BN 0.10 13 1.1 -5.5 2.2 -0.4 -0.8 o.o 0.6·7 -2.26 -20.84 '-22.42 7.69 BEND 0.80 7 0.49 0.2 -1.2 0.0 0-.0 -0.1 o.o 0.13 -0.48 -0.01 0.61 0.21 TN+BN 0.03 B 1.2 -8.7 0.0 0.0 -0.8 o.o 0.75 -3.59 -0.34 4.34 1. 65 'I'N+BN 0.20 9 1.0 -8.3 0.0 o.o -0.7 o.o 0.63 -3.40 -o.u 4.03 1. 61 TN+BN 0.19 10 1.2 -8.8 0.0 0.0 -o.8 o.o o. 73 .c3.60 .-0.31. 4.33 1.65 TN+BN 0.15 11 1.3 -10.5 -0.1 -0.4 -o.8 o.o 0.79 ..:4.31 1.16 6.25 8.04 SHEAR 0.42 12 1.0 -8.3 0.0 0.0 ~o.7 o.o 0.61 -3.40 "0.07 4.01 1.61 TN+BN 0.14 13 1.1 -10.0 -0.1 . -0.4 -0.8 0.0 0.67 "4.11 1.40 6.18 7.82 SHEAR 0.41 7 0.98 0.2 -1.8 o.o 0.0 -0.1 0.0 0.13 -0.74 0 .. 02 o.s9 0.21 TN+BN 0.04 8 1.2 -13.5 0.1 0.0 -o.8 0.0 0.75 -5.54 -0.67 6.29 1.64 TN+BN 0.29 9 1.0 -12.6 0.1 0.0 -0.7 0.0 0.63 -5.19 -0.75 5.81 1.60 BEND 0.27 10 1.2 -13.5 0.1 o.o -o.8 o.o 0.73 -5.54 -0.65 6.27 1.65 TN+BN 0.22 11 1.3_ -15.4 .-2.6 -0.4 -o.8 0.-o ·o.79 -6."32 24.20 31.30 8.17 TN+BN 1.09 12 1.0 -12.7 0.1 0.0 . -o. 1 0.0 0.61 -5.19 -0.73 5.80 1.61 BEND 0:21 13 1.1 -14.5 -2.6 -0.4 -o.8 o-.o 0.67 -5.97 ."24:.12 30.75 7.96 TN+BN 1. 07 12-1T CHB 7 o.oo 0.2 -1.8 . o.o 0.0 -0~1 0~0 0.13 -0.74 -0,04 0.87 0.20 TN+BN 0.04 8 1.2 -13.5 0.1 0.0 -0.5 0.0 0.75 -.5.54 -0.74 6.29 1.08 TN+BN 0.29 9 1.0 -12.6 0.1 o.o -0.4 0.0 0.63 -5.19 -0.86 5.81 1.05 BEND 0.28 10 1.2 -13.5 0.1 0.0 -o.5 0.0 0.73 -5.54. -0.58 6.27 1.02 TN+BN 0.22 11 1.4 -15.5 1.4 -o.s -o.5 0.0 0.89 -6.36 -13.38 -18.85 9.42 BEND 0.69 12 1.0 -12.6 0.1 o.o -0.4 . o.o 0.61 -5.19 -0.70 5.80 0.99 BEND 0.20 13 1.2 -14.6 1.4 -0.5 -0.5 0.0. 0.76 -6.00 -13.50 -18.74 9.40 BEND 0.68 7 0.60 0.2 -2.4 o.o 0.0 -0.1. 0.0 0.13 -0.99 -o.os 1.12 0.19 TN+BN 0.05 8 1.2 -17.0 0.0 o.o -0.5 0.0 0.75 -6.97 -0.29 7.72 1-.08 TN+BN 0 ;36 9 1.0 -15.7 0.0 0.0 -0.4 0.0 0.63 -6.43 -0.21 7.06 1. 04 TN+BN 0.33 10 1.2 -17.0 0.0 0.0 -0.5 o.o 0.73 -6.98. -0.40 7.71 1.01 TN+BN 0.27 11 1.4 -19.2 -2.4 -0.5 -0.5 0.0 0.89 -7.89 22.74 31.52 9.58 TN+BN 1.09 12 1.0 -15.7 o.o 0.0 ~o.4 0.0 0.61 -6.43 -0.32 7.04 0.98 TN+BN 0.24 13 1.2 -17.9 -2.4 -o.s -o.s 0.0 0.76 -7.34 22.83 30.93 9.56 TN+BN 1. 07 7 1.19 0.2 -3.0 0.0 o.o -Q.l 0.0 0.13 -1.22 -0.06 1.36 0.19 TN+BN 0.06 8 1.2 -20.5 0.0 0.0 -0.5 0.0 0.75 -8.40 0.17 9.31 1. 07 TN+BN 0.43 9 1.0 -18.7 o.o o.o -0.4 o.o 0.63 -7.66 0.45 8.74 1. 04 TN+BN 0.40 10 1.2 -20.5 o.o 0.0 -0.5 o.o 0.73 -8.40 -0.23 9.13 1.00 TN+BN 0.32 ...1L 1.4 -22.9 -6.3 -0.6 -o.5 0.0 0.89 -~.41 59.58 69.87 9.75 TN+BN 2.43 12 1.0 -18.7 0.0 0.0 -0.4 0.0 0.61 :r.n---o:o6 8.33 0.97 TN+BN 0.29 13 1.2 -21.1 -6.3 -0.6 . -0.5 0.0 0.76 -8.67 . 59.86 69.30 9.73 TN+BN 2.41 SACS Release 5.2 Engineers and Consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS ·DATE 26-FEB-2008 TIME 08:52:15 PST PAGE 337 SACS-IV SYSTEM MEMBER DETAIL REPORT DIST MAX MEMBER GRP LOAD FROM FORCE r,!OMENT MOr,!ENT . SHEAR SHEAR TORSION AXIAL .BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX m r,~z FY FZ r,!X .. STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP "KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK 1X-lY CHB 7 o.oo 0.2 -0.5 0.0. o.o 0.1 o.o 0.14 -0.21 0.30 0.65 0.38 TN+BN 0.03. 8 1.3 -4.1 -0.2 o.o . 0 .. 8. 0.0 0.79 -1.68 1.96 4.44 2.58 TN+BN 0.21 9 1.1 -3.7 -0.2 0.1 0.7 0.0 0.66 -1.52 2.05 4.24 2.78 TN+BN 0.20 10 1.2 -4.1 -0.2 0.1 0.8 o.o 0.76 -1.69 2.24 4.70 2.66 TN+BN 0.16 11 2.2 -3.2 1.4 -0.2 . 1.0 o.o 1.36 -1.30 -12.88 -12.81 5.96 BEND 0.49 12 1.0 -3.7 -0.2 0.1 0.7 o.o 0.63 -1.53 2.34 4.50 2.86 TN+BN 0.16 13 2.0 -2.8 1.4 -0.2 0.9 0.·0 1.23 -1.14 -12.79 -12.69 5.41 BEND 0.48 7 0.55 0.2 0.2 0.0 0.0 0.1 0.0 0.14 0.10 -0.17 0.24 0.39 SHEAR 0.03 8 1.3 1.2 0.1 0.0 0.8 o.o 0.79 0.48 -0.96 1.27 2.59 SHEAR 0.18 9 1.1 1.2· 0.2 Oc1 0.7 o.o 0.66 0.50 -2.36 -2.19 2.78 SHEAR 0.19 10 1.2 1.1 0.1 0.1 0.8 o.o 0.76 0.47 ·-1. 01 1.23 2.67 SHEAR 0.14 11 2.2 3.1 -0.2 -0.2 1.0 oco 1.36 1.28 2.18 4.83 6.12 SHEAR 0.32 12 1.0 1.2 0.3 0.1 0.7 o.o 0.63 0.48 -2.40 -2.25 2.86 SHEAR 0.15 13 2.0 3.2 -0.1 -0.2 0.9 o.o 1.23 1;30 0.79 3.33 5.57" SHEAR 0.29 7 1.10 0.2 1.0 0.1 o.o 0.1 o.o 0.14 0.42 -0.64 -0.92 0.39 BEND 0.05 8 1.3 6.5 0.4 0.0 0.8 o.o 0.79 2.66 -3.89 -5.76 2.60 BEND 0.30 9 1.1 6.2 0.7 0.1 0.8 o.o 0 •. 66 2.53 -6.77 -8.63 2.79 BEND 0.43 10 1.2 6.4 0.5 0.1 0.8 o.o 0.76 2.64 -4.26 -6.14 2.68 BEND 0.24 11 ?."2 9.4 -1.9 -0.3 1.0 o.o 1.36 3.87 17.86 23.10 6 ."28 TN+BN 0.80 12 1.0 6.1 0.8 0.1 0;7 o.o . 0.63 2.51 -7.13 -9.01 2.87 BEND 0.33 13 2.0 9.1 -1.6 -0.2 0.9 0.0 1.23 3.74 14.99 19.96 s. 73 TN+BN 0.69 1Y-1Z CHB 7 0.00 0.2 1.0 0.1 0.0 0.1 o.o 0.14 0.42 -0.98 -1.26 0.71 BEND 0.06 8 1.3 6.5 0.6 -0.2 1.1 o.o 0.80 2.65 -6.09 -7.95 4·.5s BEND 0.40 9 1.1 6.1 1.1 -0.3 1.0 o.o 0.67 2.52 -10.22 -12.07 6.53 BEND 0.59 10 1.2 6.4 0.6 -0.2 1.1 o.o 0.76 2.64 -5.86 -7.73 4.53 BEND 0.30 11 2.5 9.3 1.6 -0.2. 1.3 o.o 1.53 3.84 -15.48 -17.79 5.46 BEND 0.67 12 1.0 6.1 1.1 -0.3 0.9 o.o 0.64 2.51 -9.99 -11.86 6.51 BEND 0.43 13 2.3 9.0 2.1 -0.3 1.2 o.o 1.41 3.70 -19.61 -21.91 7.34 BEND 0.81 7 0.55 0.2 2.0 -0.1 0.0 0.2 o.o 0.14 0.82 0.63 1.59 0.71 TN+BN 0.07 8 1.3 13.4 -0.4 -0.2 1.1 o.o 0.80 5.52 3.34 9.65 4.55 TN+BN 0.45 9 1.1 12.4 -0.9 -0.3 1.0 o.o 0.67 5.10 8.44 14.21 6.54 TN+BN 0.66 10 1.2 13.4 -0.4 -0.2 1 .. 1 o.o 0.76 5.50 3.50 9.77 4.54 TN+BN 0.34 11 2.5 18.0 0.6 -0.2 1.3 o.o 1.53 7.39 -5.79 -11.64 5.62 BEND 0.46 12 l.Q 12.4 -o.·g -0.3 1.0 o.o ·0.64 5.08 8.~1 14.33 6.52 TN+BN 0.50 13 2.3 17.0 0.1 -0.3 1.-2 o.o 1.41 6.97 ~0.68 8.37 7.50 SHEAR 0.39 7 1.10 0.2 3.0 -0.2 0.0 0.2 o.o 0.14 1.24 2.24 3.61 0.72 TN+BN 0.17 8 1.3 20.4 -1.4 -0.2 1.1 o.o 0.80 8.39 12.76 21.95 4.56 TN+BN 1.02 9 1.1 18.7 -2.9 -0.3 1.0 0•0 0.67 7.69 27.iO 35.46 6.54 TN+BN 1. 64 10 1.2 20.4 -1.4 -0.2 1.1 o.o 0.7.6 8.37 12.87 2.2. 00 4.54 TN+BN 0.76 11 2.5 26.7 -0.5 -0.2 1.3 o.o 1.53 10.94 4.51 16.99 5.78 TN+BN 0.59 12 1.0 18.7 -2.9 -0.3 1.0 o.o 0.64 ·7.67 .27.21 35.51 6.52 TN+BN 1.23 13 2.3 25.0 -2.0 -0.3 1.2 o.o 1.41 10.24 18.86 30.50 7.66 TN+BN 1.06 SACS Release 5.2 Engineers and ConsultantS ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-20M TIME 08:52:15 PST PAGE 33:S SACS-IV SYSTEM MEMBER DETAIL REPORT !liST ~<Ax MEMBER GRP LOl\D FROM FORCE MOMENT MOMENT SHEAR SHEAR .. TORSION AXIAL BENDING sTREss COMB. SHEAR CRIT. C'oMB. CASE END FX MY MZ "py FZ MX STRESS y z STRESS STR.ESS COND. uNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI cHECK 1Z-20 CHB 7 0.00 o.o 1.9 o.o 0.0 ~0.1 o.o -0.03 .0. 77 -0.43 -1.23 0.21 C<.l5 0.06 8 -0.2 13.1 0.1 0.0 -0.7 0.0 .-0.12 ·5.38 -0.66 -6.16 1.58 C<.lS 0.29 9 -0.2 12.6 1.2 "0.1 -0.7 o.o -0.15 5.17 -11.80 -17.11 2.88 C<:.lS 0.79 10 -0.3 12.9 0.1 0.0 -0.7 o.o -0.18 5.31 -0.72 -6.20 1. 61 C<.l5 0.22 11 -2.1 10.5 0.8 -0.3 -0.7 o.o ~1.30 4.33 -7.67 -13.30 6.10 C<.15 :o .47 12 -0.3 12.4 1.3 -0.1 -0.6 0.0 -0.20 5.09 . -11.85 -17.15 2.81 C<.l5 :o .60 13 -2.1 10.0 2.0 -0.4 -0.7 0.0 _.1. 33 4.12 -18.81 -24.25 7.57 C<.15 0.85 7 0.55 o.o 1.2 0.0 0.0 -0.1 o.o c0.03 0.50 -0.37 -0.90 0.21 C<.15 ·o. 04 8 -0.2 8.6 0.2 0~0 -0.7 0.0 -0 .. 12 3.53 -1.70 -5.36 1.58 C<:.lS 0.25 9 -0.2 8.3 0.6 -0.1 -0.7 0.0 -0.15 3.39 -6.01 -9.55 2. 87 C<.15 0.44 10 -0.3 8.5 0.2 0.0 -0.7 0.0 -0.18 .3.49 -1.97 -5.63 1.61 C<.15 0.20 11 -2.1 6.0 -1.0 -0.3 -0.7 0.0 -1.30 2.47 9.68 10.84 6.25 C<.15 '0 .47 12 -0.3 8.1 0.7 -0.1 -0.6 o.o -0.20 3.34 -6-.28 -9.82 2. 80 C<.15 0.34 13 -2.1 5.7 -0.6 -0.4 "0.7 0.0 -1.33 2.32 5.36 6.36 7.72 SHEAR 0.40 7 1.10 o.o 0.6 0.0 o.o -0.1 o.o -0.03. 0.23 -0.32 -0.58 0.20 C<.15 0.03 8 -0.2 4.1 0.3 0.0 -0.7 . 0.0 -0.12 1.69 -2-.74 -4.56 1. 57 C<.l5 0.21 9 -0.2 3.9 0.0 -0.1 -0.7 0.0 -0.15 1.62 -0.23 -1.99 2.87 SHEAR 0.20 10 -0.3 4.1 0.3 0.0 -0.7 0.0 -0.18 1.68 -3.22 -5.07 1.60 <;!<.15 :o .18 11 -2.1 1.5 -2.9 -0.3 -0.7 o.o -1.30 0.61 27-.63 26.94 6.40 C<:.lS ·1. 03 12 -0.3 3.9 0.1 -0.1 -0.6 0.0 -0.20 1.60 -0.71 -2.51 2.79 SHEAR 0.15 13 -2.1 1.3 -3.2 -0.4 -0.7 0.0 -1.33 0.54 30.14 29.35 7.87 C<.15 1.12 20-25 CHB 7 0.00 o.o 0.6 o.o 0.0 ,0.1 0.0 -0.03 o;23 -0.11 -0.37 0.18 C<.lS -0.02 a -0.2 4.1 . 0.1 0.0 -0.4 o.o "0.13 1.70 -1.05 -2.88 1.20 C<.15 0.13 9 -0.2 4.0 o.o o.o -0.4 0.0 -0.15 1.62 .:.o.J.o -1.87 1.02 C<.15 0.09 10 -0.3 4.1 o.o 0~0 -0.4 0.0 -0.19 1.68 -0.44 -2.31 1. 06 C<.lS 0.08 11 -1.6 2.1 3.3 -0.4 -0.3 0.0 -1.00 0.85. -30.84 -32.69 6.65 C<.15 1.14 12 -0.3 3.9 -0.1 0.0 -0.4 0.0 -0.21 1..60 .0.51 1.91 0.88 C<.l5 0.08 13 -1.6 1.9 3.2 -0.4 -0.3 0.0 -1.02 0.78 -29.88 -31.68 6.46 C<.lS 1.10 7 0.60 o.o 0.1 0.0 0.0 -0.1 0.0 -0.03 0.06 0.06 0.09 0.18 SHEAR 0.01 8 -0.2 1.4 o.o o.o -0.4. o.o -0.13 0.58 0.28 0.72 1.19 SHEAR o.oa 9 -0.2 1.2 -0.1 0.0 .;..0.4 o.o -0.15 0.48 0.55 0.89 1.01 SHEAR 0.07 10 -0.3 1.4 0.0 0.0 -0.4 0.0 -0.19 0.59 0.41 0.81 1.06 SHEAR 0.06 11 -1.6 -0.2 0.6 -0.4 -0.3 0.0 -1.00 -0.09 -5.50 -6.59 6.82 SHEAR 0.36 12 -0.3 1.2 -0.1 0.0 -0.4 o.o -0.21 0.50 0.68 0.97 0.88 C<.lS 0.05 13 -1.6 -0.4 0.6 -0.4 -0.3 0.0 cl.02 -0.18 -5.22 -6.43 6.63 SHEAR 0.35 7 1.21 o.o -0.3 o.o o.o -0.1 0.0 -0.03 -0.11 0.22 0.31 0.17 Cc:::.15 0.02 8 -0.2 -1.3 -0.2 0.0 -0.4 0.0 -::0.13 -0.53 1.60 2.01 1.18 C<.15 0.11 9 -0.2 '-1.6 -0.1 0.0 -0.4 0.0 -0.15 -0.64 1.20 1.69 1. 00 C<.lS 0.09 10 -0.3 -1.2 -0.1 o .• o -0.4 0.0 "0.19 -0.48 1.26 1.55 1. OS C<.lS 0.07 11 -1.6 -2.5 -2.2 -0.4 -0.3 0.0 -1.00 -1.02 20.57 20.58 6.99 C<.15 0.79 12 -0.3 -1.5 -0.1 0.0 -0.4 0.0 -0.21 -0.60 0.85 1.24 0.87 C<.15 0.06 13 -1.6 -2.7 -2.1 -0.4 . -0.3 0.0 -1.02 "1.13 20.U 20.27 6.80 C<.lS 0.78 SACS Release 5.2 Engineers and Consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 25-FEB-2008 TIME 08~52:15 PST PAGE 342 SACS-IV SYSTEM MEMBER DETAIL REPORT DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SllEAR SllEAR · TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-Kill KSI KSI KSI KSI KSI CHECK 27-28 CHB 7 o.oo -0.1 -1.3 0.0 o.o 0.0 0.0 -0.03 -0.53 0.29 0.79 0.15 C<.15 0.04 8 -,0.3 -6.7 -0.2 0.0 0.1 0.0 -0.16 -2.76 2.28 4.88 1.13 C<.15 0.24 9 -0.3 -7.3 -0.2 o.o o.o 0.0 -0.17 -2.99 1.97 4.78 0.94 C< .·15 0.24 10 -0.4 -6.3 -0.3 0.1 0.1 0.0 -0.23 -2.58 3.11 5.46 1.37 C<.l5 0.21 11 -1.2 -5.5 2.6 -0.3 0.1 0.0 -0.73 -2.24 -24.59 -27.55 6.33 Co:::.lS 0.96 12 -0.4 -6.8 -0.3 0.0 o.o 0.0 -0.24 -2.81 2.80 5.37 1.18 C<.15 0.20 13 -1.2 -6.0 2.6 -0~4 0.1 (). 0_ -0.74 -2.47 :..24.90 -28.11 6.29 C<.lS 0.98 7 0.60 -0.1 -1.4 0.0 o.o o.o 0.0 -0.03 -0.57 -0.06 -0.66 0.15 C<.15 0.03 8 -0.3 -6.3 . 0.0 0.0 0.1 0.0 -0.16 -2.60 -0.40 -3.16 1.13 C<.lS 0.15 9 -0.3 -7.1 o.o 0.0 0.0 o.o -0.17 -'2.91 -0.42 -3.50 0.94 C<.15 0.16 10 -0.4 -5.8 0.1 0" 0.1 0.0 -0.23 -2.39. -0.50 -3.11 1.37 C<.15 0.11 11 -1.2 -4.4 0.1 -0.4 0.1 o.o -0.73 C1.82 -0.50 -3.04 6.51 SHEAR 0.34 12 -0.4 -6.6 0.1 0.0 0.0. • 0.0 -0.24 -2.69 ~0.51 -3.45 1.18 C<.lS 0.12 13 -1.2 -5.2 0.1 -0.4 0.1 0.0 -0.74 -2.12 -0.52 -3.38 6.47 SHEAR 0.34 7 1. 21 -0.1 -1.4 0.0 0.0 o.o 0.0 -0.03 -0.59 -0.41 -1.03 0.14 C<.15 0.05 8 -0.3 -5.9 0.3 0.0 0.1 0.0 -0.16 -2.44 -3.08 -5.68 1.14 C<.lS 0.26 9 -0.3 :.6.9 0.3 o.o 0.0 0.0 -0.17 -2.82 -2.80 -5.80 0.95 C<.lS 0.27 10 -0.4 -5.3 0.4 0.1 0.1 0.0 -0.23 c2.18 -4.10 -6.51 1.38 C<.15 0.23 11 -1.2 -3.4 -2.6 -0.4 0.1 o.o -0.73 -1.39 24.33 24.99 6.69 C<.lS 0.92 12 -0.-4 -6.3 0.4 o.o 0.0 0.0 .. 0.24 -2.57 -3.82 -6.63 1.19 C<.15 0.23 13 -1.2 -4.3 -2.6 -0,4 0.1 0.0 -0.74 -1.77 24.60 25.63 6.65 C<.lS 0. 94 28-2 CHB 7 o.oo -0.1 -1.4 0.0 o.o 0.0 0.0 -0.03 -0.59 -0.41 -1.03 0.14 C<.15 0.05 8 -0.3 -5.9 0.3 o.o 0.1 0.0 -0.16 -2.44 -3.08 . -5.68 1.14 Co:::.l5 0.26 9 -0.3 -6.9 0.3 0.0 0.0 o.o -0.17 -2.82 -2.80 -5.80 0.95 C<.lS 0.27 10 -0.4 -5.3 0.4 0.1 0.1 o.o -0.23 -2.18 -4.10 -6.51 1.38 C<.15 0.23 11 -1.2 -3.4 -2.6 -0.4 0.1 0.0 -0.73 -1..39 24.33 24.99 6.69 C<.lS 0.92 12 -0.4 -6.3 0.4 0.0 . Q.O 0.0 -0:24 .:.2.57 -3.82 -6.63 1.19 C<.15 0.23 13 -1.2 -4.3 -2.6 -0.4 0.1 o.o -0.74 -1.77 24.60 25.63 6.65 Co:::.l5 0.94 7 0.29 -0.1 -1.4 0.1 o.o· o.o (1.0 -0.03 --0.59 ~o.s8 -1.21 0.14 C<.lS 0.06 8 -0.3 -5.7 0.5 o.o 0.1 o.o -0.16 •2.35 -4.38 -6.90 1.14 Co:::.lS 0.32 9 -0.3 -6.8 0.4 0.0 0.0 0.0 -0.1.7 -2.77 -3.96 -6.91 0. 95 C<.15 0.32 10 -0.4 -.5.1 0.6 0.1 0.1 o.o -0.23 -2.08 -5.85 -8.16 1.38 Co:::.lS 0.28 11 ..:1.2 --2.9 -3.9 -0.4 0.1 0.0 -0.73 -1.17 36.67 37.11 6.78 C<.lS 1.34 12 -0.4 -6.1 0.6 0.0 0.0 0.0 -0.24 -2.50 -5.44 -8.18 1.19 Co:::.15 0.28 13 -1.2 -3.9 -3.9 -0.4 0.1 0.0 -0.74 -L59 37.08 37.94 6.74 Co:::.lS 1.37 7 0.59 -O.i -1.5 0.1 0.0 0.0 0.0 -0.03 -0.60 -0.75 -1.38 0.14 Co:::.15 0.06 8 -0.3 -5.5 0.6 0.0 0.1 0.0 -0;16 -2.27 . -5.68 -6.11 1.15 C<.l5 0.38 9 -0.3 -6.6 0.5 0.0 0.0 0.0 -o .17 -2~72 -5.12 -8.02 0.96 Co:::.lS 0.37 10 -0.4 -4.8 0.8 0.1 0.1 o.o -0.23 -1.98 -7.60 -9.81 1.39 C<.lS 0.34 11 -1.2 -2.3 -5.2 -0.4 . 0.2 0.0 -0.73 -0.95 49.18 49.41 6.87 Co:::.lS 1. 77 12 -0.4 -5.9 0.7 0.0 o.o· 0.0 -0.24 -2.43 --7.05 -9.72 1.20 C<.lS 0.34 13 -1.2 -3.4 -5.3 -0.4 0.1 0.0 -0.74 ~1.41 49.74 50.42 6.83 C<.lS 1.80 SACS Release 5.2 Engineers and-Consultants ID=-28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-PEB-2008 TIME 08:52:15 PST PAGE 298 SACS-IV SYSTEM MEMBER DETAIL REPORT DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR· SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ py FZ MX STRESS y :;; STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP K):PS KlPS. IN-KIP KSI KSI KSI KSI KSI CHECK F-FQ C5 7 o.oo 0.0 0.0 0.0 0.0 0.0 0.0 o.oo ~o.o2 0.05 0.07 0.09 SHEAR o·.o1 8 0.0 -0.4 -0.1 0.0 0.3 0.0 -0.01 -0.23 0.39 0.62 0.99 SHEAR 0.07 9 0.0 -0.4 -0.1 0.0 0.3 o.o -0.-0l -0.23 0.40 0.62 1.00 SHEAR 0.07 10 0.0 -0.4 -0.1 0.0 0.3 o.o -0.01 -0.23 0.50 0.73 1. 03 SHEAR 0.05 11 0.0 -0.4 -7.3 0.2 0.3 o.o ~-0.01 -0.23 34.20 34.42 3.64 C<.l5 1.2_0 12 o.o -0.4 -0.1 o.o 0.3 0.0 -0.01 -0.23 0.51 o. 73 1.03 SHEAR 0.05 13 o.o -0.4 -7.3 0.2 0.3 0.0 -0.01 -0.23. 34.21 34.42 3. 64 C<.15 1.20 7 2.00 0.0 0.4 0.0 0.0 0.0 o.o o.oo 0.20 -0.01 -0.21 0.05 C<.l.S 0.01 8 0.0 4.8 0.0 0.0 0.1 0.0 -0.01 2.53 -0.04 -2.58 0.57 C<.15 0.12 9 0.0 4.8 0.0 0.0 0.1 0.0 -0.01 2.53 -o.o5 -2.59 0.57 C<.15 0.12' 10 0.0 4.8 0.0 o.o 0.1 o.o -0.01 2.53 -o.o5 -2.59 0.60 C<.lS 0.09 ll 0.0 4.8 -1.5 0.2 0.1 o.o .:..Q.Ol. --2.54 6.82 9.34 3.21 C<.lS 0.33 12 o.o 4.8 o.o 0.0 0.1 0.0 -0.01 2.53 · -o.os -2.59 0.61 C<.15 0.09 13 0.0 4.8 -1.5 0.2 . 0.1. o.o -0.01 2.54 . 6.81 9.34 3.22 C<.lS 0.33 7 4. 00 0.0. 0.5 o.o o;o 0.0 0.0 . 0.00 . 0.27 -0.07 -0.34 0.02 C<.lS 0.02 8 0.0 6.5 0.1 0.0 0.0 0.0 -0.01 3.46 -0.47 -3.94 0.14 C<.15 0.18 9 0.0 6.5 0.1 c.o o.o 0.0 -0.01 -3.46 -0.49 -3.96 0.14 C<.lS 0.18 10 0.0 6.5 0.1 o.o 0.0 0.0 -0.01 3.46 -0.60 . -4.07 0.17 C<.lS 0.14 11 0.0 6.5 4.4 0.2 0.0 0.0 :-0.01 3.48 .;_20.57 -24.06 2.83 C<.l.S 0.84 12 0.0 6.5 0.1 0.0 0.0 0.0 -0.01 3.46 -0.61 -4.08 0.18 C<.15 0.14 13 0.0 6.5 4.4 0.2 0.0 0.0 -0.01 3.48 -20.-59 -24.08 2.83 C<.15 0.84 FQ-15 C5 7 0.00 0.0 o.s 0.0 0.0 0.0 o.o 0.00 0.27 ~o.o9 -0.37 0.03 C<.15 0.02 8 o.o 6.5 0.1 o.o o.o o.o -0.01 -3.46 -0.53 -4.00 0.15 C<.15 0.19 9 0.0 6.5 0.1 o.o o.·o · 0 .. 0 -0.01 3.46 -0.57 -4.04 0.15 C<.lS 0.19 10 o.o 6.5 0.1 o.o o.o 0.0 -0.01 3.46 -0.65 -4.12 0.18 C<.lS 0.14 11 o.o 6.5 -4.1 0.2. o.o o.o o.oo ·3.45 19;14 22.59 2.70 C<.15 0.78 12 0.0 6.5 0.1 0.0-o.o o.o -0.01 ·3.46 -0.69 -4.16 0.19 C<.lS 0.14 13 0.0 6.5 -4.1 0.2 .0.0 o.o o.oo 3.45 19.10 22.55 2.70 C<.15 0.78 7 2.00 o.o 0.4 0.0 0.0 0.0 0.0 o.oo 0.20 o.oo -0.20 0.06 C<.15 0.01 8 0.0 4.8 0.0 o.o -0.1 o.o -0.01 2".53 -0.02 -2.56 0.57 C<.15 0.12 9 0.0 4.8 0.0 o.o ~0.1 o.o -0.01 2.53 -0.02 -2.56 0.58 C<.15 0.12 10 0.0 4.8 0.0 O;O -0.1 : 0.0 -0.01 2.53 -0.03 -2.57 0.61 C<.15 0.09 n 0.0 4.7 1.5 0.2 -0.1 0.0 0.00 . . 2.52 -6.91. -9.44 3.08 C<.15 0.33 12 0.0 4.8 0 .. 0 0.0 -0.1 0.0 -0.01 2.53 -0.03 -2.57 0.62 C<.l5 0.09 13 0.0 4.7 1.5 0.2 ~0.1 0.0 0.00 2.52 -6.91 -9.44 3.09 C<.lS 0.33 7 4. 00 o.o o.o o.o o.o o.o 0.0 o.oo -0.02 0.09 0.11 0.09 SHEAR 0.01 8 o.o -0.4 -0.1 o.o -0.3 o.o -0.01 -0.23 0.48 0.71 1.00 SHEAR 0.07 9 0.0 -0.4 -0.1 0.0 -0.3 0.0 .-0.01 -0.23 0.53 0.75 1.01 SHEAR 0.07 10 0.0 -0.4 -0.1 0.0 -0.3 0.0 -0.01 -0.23 0.59 0.82 1.04 SHEAR 0. OS n 0.0 -0.4 7.1 0.2 -0.3 o.o o.oo -0.23 -32.97 -33.20 3.51 C<.lS 1.15 12 o.o -0.4 -0.1 0.0 -0.3 0.0 -0.01 -0.23 0.64 0.86 1. 04 SHEAR 0.05 13 0.0 -0.4 7.1 0.2 -0.3. o;o 0.00 -0.23 -32.92 -33.16 3.51 C<.l5 1.15 J-FU C1 7 o.oo o.o 0.3 0.0 0.0 0.0. 0.0 0.00 0.17 0.02 0.19 0.04 BEND 0.01 8 0.1 3.1 -0.1 o.o 0.3 ·o.o 0.04. 1.76 0.34 2.15 0.52 BEND 0.13 9 0.1 -5.6 0.1 0.0 0.3 0.0 0.08 -3.18 . -0.30 -3.40 0.50 BEND 0.23 10 0.1 3.1 -0.1 o.o 0.3 o.o 0.04 1.76 _0 .41 2.21 0.54 BEND 0.10 n -0.3 20.2 -3.3 0.1 0.1 o.o -0.21 11.57 12.68 24.05 0.58 C<.lS 1. OS 12 0.1 -5.6 0.1 o.o 0.3 o.o 0.08 -3:19 --0.23 3.34 0.48 BEND 0.17 13 -0.2 11..6 -3.2 0.1 0.1 0.0 "0.17 6.63 12.05 18.50 0.46 C<.l5 0.77 7 2. 00 o.o 0.6 0.0 o.o o.o o.o . o.oo o-.37 -0.01 -0.38 0.02 BEND 0.03 8 0.1 8.2 o.o o.o 0.1 0.0 . 0.04 4.66 0.04 4.75 0.29 BEND 0.32 9 0.1 -0.3 0.1 o.o 0.1 o.o ·o.oa -0.17. -0.29 -0.39 0.27 BEND 0.03 10 0.1 8.1 o.o 0.0 0.1 0.0 .0.04 4.66 0.04 4.75 0.31 BEND 0.24 11 -0.3 21.5 -0.3 0.1. o.o 0.0 -0.21 12.33 1.22 . 13.34 0.49 C<.l5 0.69 12 0.1 -0.3 0.1 o.o 0.1 0.0 o.oa -0.18 . -0.29 -0.39 0.25 BEND 0.02 13 -0.2 13.1 -0.2 o.1 o.o o.o -0.17 7.49 0.89 8.21 0.36 C<:.lS 0.43 7 4.00 0.0 0.8 o.o o.o 0.0 0.0 0.00 0.44 -0.04 -0.48 0.01 BEND 0. 03 8 0.1 9.8 o.1 o.o o.o 0.0 0.04 ·s.61 -0.26 -5.83 0.08 BEND 0.40 9 0.1 1.6 0.1 o.o 0.0 0.0 0.08 0.89 -o-.29 -1.10 o.os BEND 0. 07 10 0.1 9.8 o.1 o.o· 0.0 0.0 0.04 5.61 co.32 -5.88 0.10 BEND 0.30 11 -0.3 19.5 2.7 0.1 ~0.2 o.o -0.21 11.13 CJ.0.24 -21.58 0.60 C<.lS 0.94 12 O.l. 1.5 0.1 o.o 0.0 o.o o.o8 0.88 -0 .• 35 -1.15 0.03 BEND 0.06 13 -0.2 11.2 2.7 0.1 -0.2 0.0 -0.17 6.41 -10.27 --16.85 0.48 C<.l5 0.70 SACS Release 5.2 Erigineers and Consultants_ ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-PEB-2008 TIME 08:52:15 PST PAGE 240 SACS-IV SYSTEM MEMBER DETAIL REPORT DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR . SHEAR TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK Y-G9 C1 7 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.00 -0.02 0.01 0.02 0.04 SHEAR 0.00 8 0.0 -0.4 o.o 0.0 0.3 . 0.0 -0.04 -0.23 0.10 -0.30 0.56 SHEAR 0. 04 9 0.1 -0.6 -0.1 0.0 0.3 o.o 0.12. --0.33 0.'38 0.83 0.56 SHEAR 0.04 10 0.0 -0.4 o.o 0.0 0.3 0.0 -0~04 -0.23 0.15 0.35 0.57 SHEAR 0. 03 11 -0.2 -0.2 2~1 -0.1 0.3 o.o -0.-18 -0.12 -7.86 -8.16 0.83 C<.15 0.29 12 0.2 -0.6 -0.1 0.0 0.3 0.0 0.12 -0.33 0.43 0.88 0.55 TN+BN 0.03 13 0.0 -0.4 2.0 -0.1 0.3 0.0 -0.02 -0.23 "7.58 -7.83 0.59 C<.15 0.28 7 2.00 0.0 0.3 0.0 o.o 0.0 0.0 o.oo 0.19 o.oo -0.19 0.03 C<.lS 0.01 8 0.0 4.8 o.o 0.0 0.1 o.o -0.04 2.74 o.os -2.79 0.33 C<.l5 0.19 9 0.1 4.4 0.0 0.0 0.1 0.0 0.12 2.53 -0.16 2.70 0.34 BEND 0.18 10 0.0 4.8 o.o 0.0 0.1 0.0 -0 •. 04 2.74 0.04 -2.79 0.35 C<.15 0.14 11 -0.2 5.1 0.1 -0.1 0.2 o.o -0.18 2.95 -0.49 -3.61 0.65 C<.15 0.18 12 0.2 4.4 0.0 0.0 0.1 0.0 0.12 2.53 -0.17 2.71 0.33 BEND 0.14 13 o.o 4.8 0.2 -0.1 0.1 0.0 -0.02 2.74 -0.70 -3.46 0.40 C<.l5 0.17 7 4.00 0.0 0.5 o.o 0.0 0.0 0.0 0.00 0.27 0.00 -0.27 0.01 C<.15 0.02 8 0.0 6.6 0.0 o:o 0.0. 0.0 -0.04 . 3.75 . -0.01 -3.80 0.11 C<.15 0.26 9 0.1 6.0 0.2 0.0 0.0 . 0.0 0.12 3.45 -0.71 -4.03 0.14 BEND 0.27 10 o.o 6.5 o.o -o.o o.o o.o -0.-04 3.75 -0.07 -3.86 0.12 C<:.15 0.20 11 '-0.2 7.1 -1.8 -0.1 0.0 0.0 -0.18 4.06 . 6.87 10.76 0.53 C<.lS 0.46 12 0.2 6.0 0.:2 0.0 0.0 o.o 0.12 3.44 -0.76 -4.09 0.13 BEND 0.20 13 o.o 6.5 -1.6 -0.1 0.0 ·o.o -0.02 3.76 6.17 9.91 0.28 C<.15 0.41 z-GA C1 7 0.00 0.0 0.4 0.0 o,o o.o 0.0 0.01 0.21 0~02 0.23 0.03 BEND 0.01 8 0.1. 3.4 0.0 0.0 0.3 0.0 0.05 1.94 0.03 2.02 0.46 BEND 0.13 9 0.1 -10.8 -0.1 0.0 0.3 o.o 0.10 -6.19 0.26 6.56 0.51 BEND 0.43 10 0.1 3.4 0.0 0.0 0.3 0.0 0.05 1.95 0.09 2.09 0.47 BEND 0.10 11 -0.3 24.6 2.7 -0.1 0.1 o.o -0.-22 14.07 .-10.14 -24.44 0.36 C<.15 1. 09 12 0.1 -10.8 -0.1 0.0 0.3 0.0 0.10 ~.6.19 0.32 6.61 0.53 BEND 0.32 13 -0.2 10.4 2.6 -0.1 0.1 0.0 -0.17 5.94 -9.92 -16.02 0.40 C<.15 0.66 7 2. 00 0.0 0.7 0.0 o.o 0.0 0.0 0.01 0.40 . o.oo 0.41 0.02 BEND 0.03 8 0.1 8.5 0.0 0.0 0.1 0.0 0.05 4.84 -o:o4 4.90 0.23 BEND 0.34 9 0.1 -s.s o.o 0.0 0.2 0~0 0 .. 10 -3.1.2 0.10 3.32 0.29 BEND 0.22 10 0.1 8.5 0.0 0.0 0.1 0.0-0.05 4.84 -0.03 4.90 0.25 BEND 0.25 11 -0.3 24.9 0.2 -0.1. -0.1 0.0 -0.22 . .14.26 -0.83 -15.32 0.34 C<:.lS 0.78 12 0.1 -5.4 0.0 0.0 0.2 0.0 0.10 -3.12 0.10 3.32 0.30 BEND 0.16 13 -0.2 11.0 0.-2 -0.1. 0.0 . 0.0 -0.-17 6.30 -0.70 -7.17 0.36 C<:.lS 0.36 7 4.00 o.o 0.8 0.0 0.0 0.0 0.0 o .·o1. 0.47 . -0.02 -0.48 0.00 BEND 0.03 8 0.1 10.1 0.0 o.o o.o .o.o 0.:05 5.78 -0.1.1 5.86 0.02 BEND 0.40 9 0.1 -3.5 0.0 0.0 o.o 0.0 0.10 -2.00 -0.07 2.12 0.06 BEND 0.14 10 0.1 10.1 0.0 0.0 0.0 0.0 0.05 5.78 -0.16 -5.90 0.03 BEND 0.30 11 -0.3 21.8 -2.2 -0.1 -0.2 o.o -0.22 12.50 8.48 20.75 0.46 C<.lS 0.95 12 0.1 -3.5 0.0 0.0 o.o 0.0 0.'10 -2.00 -0.12 2.14 0.08 BEND 0.11 13 -0.2 8.2 -2.2 --0.1 -0.2 o.o -0.17 4.71 8.52 13.06 0.48 C<.15 o.ss SACS Release 5.2 Engineers and Consultants ID=28040200 PICEANCE FACILITIES MCC BUILDING IN-PLACE ANALYSIS DATE 26-FEB-2008 TIME o8,52,15 PST PAGE 301 SACS-IV SYSTEM MEMBER DETAIL REPORT DIST MAX MEMBER GRP LOAD FROM FORCE MOMENT MOMENT SHEAR SHEAR· TORSION AXIAL BENDING STRESS COMB. SHEAR CRIT. COMB. CASE END FX MY MZ FY FZ MX STRESS y z STRESS STRESS COND. UNITY FT KIPS IN-KIP IN-KIP KIPS KIPS IN-KIP KSI KSI KSI KSI KSI CHECK 20-2H C6 7 0.00 0.0 -0.1 0.0 0.0 0.0 0.0 o.oo -0.03 o.u 0.15 0.13 SHEAR 0.01 8 0.0 -0.5 -0.2 0.0 0.3 0.0 0.03 -0.26 Q.92 1.20 1. 04 SHEAR 0.07 9 -0.1 -0~4 0.0 o.o 0.3 0.0 -0.06 -0.23 0.09 -0.29 0.87 SHEAR 0.06 10 0.0 -0.5 -0.3 0.0 0.3 o.o 0.02 ·-0.26 l..S2 · 1.80 1.11 TN+BN 0.06 11 0.1 -0.6 6.9 -o.5 0.4 -0.6 0.05 -0.30 -32.50 -32.?6 7.85 BEND 1.14 12 -0.1 .-0.4 -0.1 0.0 0.3 .0.0 -0.06 -0.23 0.69 0.86 0.94 SHEAR 0.05 13 0.0 -0.5 7.1 -0.5 0.3 -0.7 -0.03 -0.27 -33.33 -33.64 7.84 C<.l5 1.17 7 1.16 0.0 0.4 0.0 0.0 0.0 o.o 0.00 0.21 0.03 0.24 0.11 TN+BN 0.01 8 o.o 3.0 -0.1 0.0 0.2 o .. o 0.03 1.61 0.23 1. 87 0.75 TN+BN 0.09 9 -0.1 2.6 0.0 0.0 0.2 0.0 -0.06 1.41 -0.11 -1.5"8 0.58 C<.15 0.07 10 0.0 3.0 -0.1 0.0 0.2 o;o 0.02 . 1.61 0.25 1.88 0.82 TN+BN 0.07 11 0.1 3.8 0.3 -0.5 0.3 -0.6 0.05 .2.05 -1.27 -3.27 7.56 SHEAR 0.39 12 -0.1 2.6 o.o o.o. 0.2 0.0 -0.06 1.41 ·-0.09 -1.57 0.65 C<:.15 0.06 13 0.0 3.5 0.3 -0.5 0.2 --0.7 C0.03 · 1.85 _-1.62 -3.50 7.56 SHEAR 0.39 7 2.31 0.0 0.8 o.o 0.0 0.0 o.o 0.00 0.40 -0.06 -0.46 0.09 BEND 0.02 8 0.0 5.1 0.1 o.o o.1 0.0 0.03 2.75 -0.45 -3.18 0.46 BEND 0.15 9 -0.1 4.4 0.1 o.o 0.1 o.o -0.06 2.33 -0.31 -2.70 0.29 C<:.15 0.13 10 0.0 5.2 0.2 0.0 0.1 . o.o 0.02 2.76 -1.02 -3.76 0.53 BEND 0.13 11 0.1 6.9 -6.4 -0.5 0.2 -0.6 0.05 3.68 29.96 33.69 7.28 TN+BN 1.17 12 -0.1 4.4 0;2 o.o 0.1 0.0 -OC06 2.34 -0.88 -3.28 0.37 C<:.15 0.11 13 0.0 6.1 -6~4 -o.s 0.1 ·-o.-7 co.o3 3.26 30.10 33.33 7.28 C<:.l5 1.16 2I-24 C6 7 0 .oo 0.0 0.8 o.o o.o o.o 0.0 o.oo . 0.41 -o~ol. -0.42 0.08 BEND 0.02 8 0.0 5.2 0.0 0.0 -.0:1. 0.0 0:03 2.77 -0.23 -2.97 0.43 BEND 0.14 9 -oa 4.4 o.o o.o -0.1 o.o -0.06 2.34 -0.12 -2.52 0.27 C-::.15 0.12 10 o.o 5.2 0.1 o.o -0.1 o.o 0.02 2.78 -0.64 -3.40 OA9 BEND 0.12 11 0.1 5.3 7.0 -o.5 -0.1 "0.7 0.08 2.86 -32.93 -35.72 7.76 BEND 1.24 12 -0.1 4.4 0.1 o.o -0.1 o.o "0.06 2.35 -0.54 -2.95 0.32 C<.15 0.10 13 o.o 4.5 7.0 -0.5 -0.1 -0.7 . -0.01 2.43 -32.83 -35.27 7.61 C<:.15 1.23 7 1.16 o.o 0.4 0.0 o.o 0.0 o.o 0.00 0.21 0.03 0.24 0.10 TN+BN 0.01 8 0.0 3.0 0.0 o.o . -o.2· o.o 0.03 1.61 0.22 1.86 0.72 TN+BN 0.09 9 -0.1 2.6 0.0 0.0 -0.2 o.o -0.06 1.41 -0.12 -1.59 0.56 C<:.l5 0.07 10 0.0 3.0 o.o 0.0 . -0.2. o.o 0.02 1c62 0.22 1.87 0.77 TN+BN 0.06 11 0.1 3.1 -0.4 -o.5 c0.2 -0.7 0.08 1.65 2.05 3.78 8.03 SHEAR 0.42 12 -0.1 2.6 o.o 0.0 -0.2 o.o -o;o6 1·.42 -0.11. -1.59 0.61 C<:.lS 0.06 13 0.0 2.7 -0.4 -0.5 -0.2 -0.7 -0.01 1.45 1.72 3.16 7.87 SHEAR 0.41 7 2.31 0.0 -0.1 o.o 0.0 o.o ·0. 0 0.00 -0;03 0.07 0.10 0.12 SHEAR 0.01 8 o.o -0.5 -0.1 0.0 -0.3 o.o o.o3 -0.26 0,66 0.95 1.01 SHEAR 0.07 9 -0.1 -0.4 o.o 0.0 -0.3 o.o -0~06 -0.23 -0.12 -0.40 0.84 SHEAR 0.06 10 0.0 -0.5 -0.2 0.0 -0.3 . o.o o.o2 -0.26 1.09 1.37 1.06 SHEAR 0.06 11 0.1 -o.5 -7.9 -o.5 -0.3 -0.7 0.08 -0.27 37.04 37.38 8.31 TN+BN 1.30 12 -0.1 -0.4 -0.1 o.o -OCJ o.o -0.06 -0.23 0.31 0.48 0.90 SHEAR o.os 13 o.o -0.4 -7.7 -0.5 -0.3 -0.7 -0.01 ·-0.24 36.26 36.49 8.14 C<.15 1.27 \ I \,) MISCELLANEOUS CALCULATION . '--) . . 0\IPROJECT IMASSOCIATES •••••••••••••••••• BY-_.,.,~=."'1°,1--.J;J"--'--. ___ DATE Wlz -pg CHKED.BY ec M DATE t;(Diffl 11999 Katy Fwy. Suite 560 Houston, TX 77079 6660 Riverside Drive Suite 300 Metairie, lA 70003 ) suBJECT flier--/-""' -· ;, !-.A I _ -~ n::z.-r;A U 'tz:'Z.! SHEET NO. ' OF--- _ _,_I(/'-'--"'C.-'C'--'B~J..,;j2~'-_s<s;;!!.-"..• ___ JOB NO. 2 t::q, '3.e2t? / . ;o<:l' . . -n~:F: ~~,~-= •-. •· . ~ ~C• ~ ~.:13 ~;-I-. ·--··-·-L_ .. L . , .. ·'·--···: .. ··i· ·'· 1.,. .•. ........ ~-.• j.. ... ;· ___ .L . -j ' ''··----.• o ... ·! l l . . ···:-':""' .,. .. _, ___ ) ..!_ ~ ..... : • ----"1· --~~----.. -t--~r 0\IPROJECT 1M ASSOCIATES ···········!·t····· BY _b.e-r/2 J · c:Kffisv f!C M/t. DATE Fd -o£> DATE (; {171 0 f:j 11999 Kaly Fwy. Suite 607 Houston, 1X 77079 6660 Riverside Drive Suite 300 Metairie, lA 70003 SUBJECT t)i C:.£?1' ?/ CC. p -If c_;: k--!:zh SHEET NO. 'f< OF~~ f1 C C. f3J.,,]';/'G JOB NO. 2 Q '? 3, Z !7-/ , fP~_&//'f/N''IR(C :fi77l#~S · ~--QN ~r:'(IJ~riJLl, -ra.~: ~-., C~tMf?' ~l.l:rt. <QJEC.T/ON 'f?(eopyu;t · ..... . .... ···'-···· . .;3,58-27'1 I t . .., ..... , .. .i,. . 1/: 0,757-JI, . : .. .\ ..... l'::Y\IPROJECT I'M ASSOCIATES INCORPORATEO ) BY~ J · \_ CHKED. BY e c_...vt DATE T~ -t:>!!!,. DATE Gt/716'l .. :, ·:·· .. ' . .-:':\:· .-.. •' ,•· I .--_: <,:.• .. ,. . ., ··+· ' ......... " ... ---; !· . ,! J . .. ! ' 11999 Katy Fwy. Suite 607 Houston, TX 77079 6660 Riverside Drive Suite 300 Metairie, lA 70003 SUBJECT Fr C ~"<-~ttr-<Y) SHEETNO . ...d_.3 _____ 0F __ _ _ _t_!'f..!.C.C.==--'-'B."'>.L-:::;P"--"if"--,-----JoB No. -zo >~. '2 =I . '•··· ·'·. .•.. '-····· ~-' ..__ ··"l"· . -~ ; ..... · _..._ ____ --~---·'··· . """'' ----:-.. . .... .; .. \:__.),. -<.--· .. { ..... ~-:...-.... r·---·--. -· -· .. -t··· - ' -;··· ; .. ; .: ,; -· ·---l- .... ~ . . . ~-' ' 1 . .•., . .... ·: .; . r·· , .. -1-·. . ;-"". . ... \ . ;-·'i-· 11999 Ka1y Fwy. 0\IPROJECT IMASSOCIATES ..,.;. MM§+M,MM·*•*-H,MMM•i "' Suite 607 Houston, TX 77079 · 6660 Riverside Drive Suite 300 Metairie, LA 70003 / : ' DATE ,2)//)pg . SUBJEC; rfa;;;>N'cJLJ"'I.> C!l-t.n,G;$ SHEET NO. ~ OF __ ~;; L LA e: c_ a o , GT Jos No. z ""'>::;. ...2 Pf DATE · wt1JJ8, rr · ) sv.4.4 S. \ J CHKED.BY ec~ . o, rn:_ _ -r'Jf? t'f ?Z-(_Jv~t>J~ e-.ew) "",_'t.t n~ ·,~oi;' · ·. . _~., .f.d/~' -. <7:-_.: ., '" -~ t:tP)re ~c;:::;[:p;;;nr~ '. A; I· 1 r II I .. l''$lj -... -~ . s:;~7·tt' . ...-.. ~· . LCJ>) )!; . .,. .... fL . :_ .... ,.... •. "i . . 7!1 GJH!f; I 2 ::=> "?-7 -C.<::"""'-· df ' . ......, 1'/ ~ iaciiDKI A -A : .. , ... :, ..... . ··~ r[5;i:) C,./) t r ,, i8J"i!'! . I _ka'ILS< i .. . . ' i . ,_, __ ... . ~ ' ... · . . ·.. . ~ . ·. r--·!J..?.) I./ · t·--s1'~" · .. 1-~ -'-:oO,I ul "' \ ... . . . "' .L . . ' .; .:' ,3;~15' Oi'6'f' ., .. ,.;; .. '-· ' (.1',<JJ4FI-&L) ~,.&~.., .· I · ac~., F .: 2-<?JIZf? I ., ~ 2.-'15/2.1/j ··-~: ! . .. .... ,+-<-----·· :p:J~;t:? ')itii"IPq:_ i ' .. 7V 61 '!!E.L.-' }( , ' -· ,, . · z,l/f3. , ' (lt172-~-f .• ~-:7 ~ .. tiT"~~~~ L'r'fP)~ : .....• . . . e &GN_~~.,~7 ~-~~r¥k) . . ·' . . ~ ~ .... t\ ~. i' p~::,'. • •.. ~··· .. ~ .ettc~l ·~MS".jz~,~:··. · ... _. ·.·· -~ :· cJ t>l..jz . f!/7~ Q?·. !Uf14Z. wp .. . 4..-, lii.a1dZJ I:J\IPROJECT IMASSOCIATES ••••••••••••••••••••• 11999 Katy Fwy. Suite 607 Houston. TX 77079 6660 Riverside Drive Suite 300 Metairie, lA 70003 ) BY ,4dp ;3.,.. DATE_.$,· 'J-/;fi.Q;:C/-0-"t?"'iJ.~-SUBJECT fi'? CI${J..NccftJ· ~'FA C.: 1/.. I rt . SHEET NO. __;1f"z· ____ Of __ _ DATE--"~""~'-"-/_._7.,/0ug,.______,_,I(~C::_:C:::::. ~~~-·=-~-_ __,· •:__ ___ JOB NO. _______ _ ~;.__) CHKED. BY 8 CUt ' .. 4 .• , ~ --+-····· -----,· l ' ;o.r51'1 11 ..,. ~~-·:· ., ' i ..... f------!---. L --. .J. ,, +·. .. :---:..... ....... .. . ..... ~ ......... ; ----······ .... ; ..... ---··. '·· .L. -~ ·-·" . . :" .. ···-'-····: .. b.J~~---·?f1!-. -~-/~.4/ /lll?fa'ne. f111P"'~~-~~~ :~---.· . ' . " . ' . . . . ' . ' ...• ; .. .. .... ..•. -~--...•.. 1· ... ·t ..... _ ..... ; ___ ,,' .•..• .i. ····"'· ...,_i ___ ;. __ .\... .; -· .. ,. .. ~ . ~- . ·'···· .. I ) . iPAI JOB# ?n~~ ?~!lcl:i MCC "'nee.• No 6 S. E C T I 0 N P R 0 P E R T I E S cc . POST (ill I"IWN I I:_ND = CL2 "'' 1' nvr ITEM 1-------(t1 ): I' Hvl\. ITEM 2-------(t2): 1' rlCK. ITEM 3-------(13): 1' "'-'"· ITEM 4-------(14): I' Hvl\. ITEM 5------·(!5): I' ""'"· ITEM 6------(16): I"".E!' ITEM 1------------: IAR:EA ITEM 2------------: IAR:EA ITEM 3------------: '""'A ITEM 4-----------: IARtEA ITEM 5-----------: IAR:EA ITEM 6-------·---: ITEM AREA 1 2 3 .. 0.46492 0, 1. 73 _Z 1.693 0. 0.236 IN. 0.236 IN. 0.236 IN. 0.236 IN. 0.236 IN. 0.236 IN. 0.46492 IN•2. 0.427396 IN•2. 1.505208 IN•2. 1.47736 IN•2. 0.455244 INA2. 0.464684 IN•2. WIDTH ITEM 1--d1: ITEM 2--d2: ITEM 3--d3: ITEM 4--d4: ITEM 5--d5: ITEM 6--d6: Z1= Z2= Z3= Z4= Z5= Z6= 1.693 IN. Y1= 0.9055 IN. Y2= 0.118 IN. Y3= 3.13 IN. Y4= 6.142 IN. Y5= 7.2445 IN. Y6= .. A*Z Z' A*Z'"2 Io 0.787 0.84 0.33 0.002 0.38 1.63 13 0.117 0.17 2.41 77 0.007 4.62· -0.60 4.825 I 4 5 6 18'12 3.1: 6.14 7.24•15 ~~~~~~~.o.61-r~~~O~• .. O~C02~----~ -4.71 2 0.150 12.14 27.D1 :5.10 IN~IJ!RAI-AXIS-Cz: [NEUTRAL AXIS-Cz': 2.532 .IN. 5.697 IN. ly-y~--: Sy-y • ..;: 32.11 1NA4 5.64 1NA3 . ~I~' AR][~---~Y----A~-*~•·y----~y~··--~A~*'~Y~r-·'~2--~I~o------~· . . . 1 0.985 5.05 11.86 0.150 2 '0.427396 2.088 3.95 6.66 1.002 3 '1. 5.395 8. t.<uo:.t 0.64 0.62 i i.103 4 1.47736 8.70: -2. 10.50 17 5 ~:~< ·~~-·~t~~1~ .. 17n.4~~go_.~,:~~----_, 6 J.mg "28.94 -O." o;fo4 5.41 7 lz-z---: 36.44 INA4 ~ ' 1.97 IN. 1.811 IN. 6.378 IN. 6.26 IN. 1.929 IN. 1.969 IN. 0.985 IN. 2.088 IN. 5.395 IN. 8.702 IN. 7.6195 IN. 6.773 IN. !NEUTRAL AXIS-Cy: !NEUTRAL AXIS-Cy': 6.036 IN. 2.784 IN. Sz--z: 6.04 INA3 -ke.. : d5 z· , "~w;.~~6~)~---r- v .! uo!. (5) 'Z6 ~ . . Y DIMENSION = Z DIMENSION = Y SHEAR AREA = IZ SHEAR AREA = 12.07262 IN. 11.39487 IN. 2.425 SQ-IN. 2.369 SQ-IN. 0.088928 IN•4 01 : ; r.--y , Fj"""" ~----+------G: d2 ~z~ -z2-rl, t :D l 0 Z5 lv D ri.::.:Tz4 ·+'·-~ N/A d4 Z4 Y2' , :n~' ~ il Tz3 ~!~ ...-._ 1 ""''"v""' resist.. R= Y' \ I J PAl JOB# ?nH .,!:IES MCC ;:once 1 No. 7 SECT I 0 N P R 0 PERT IE S ~~D~CD~CO~Rl S~ILL.;;;, ='~ CSR~======I WIDTH 1 ""'"· ITEM 1-------(!1 ): 1 ""'"· ITEM 2-------(!2): I ""'"· ITEM 3-------(13): 1 ""'"· ITEM 4-------(14 ): 1 ""'"· ITEM 5-"-----(15): I Mvt<.. ITEM 6-------(16): IARlEA ITEM 1------------: ·-· ITEM 2------------: IARlEA ITEM 3------------: IARlEA ITEM 4------------: ',.,..,A ITEM 5------------: IARlEA ITEM 6-----------: 0.1771 IN. 0.1771 IN. 0.1771 IN. 0.1771 IN. 0.1771 IN. 0 IN. 0.422012 INA2. 0.976175 INA2. 0. 784075 1NA2. 0.226529 INA2. 0.313821 1NA2. 0 1NA2. ITEM 1--d1: ITEM 2--d2: ITEM 3--d3: ITEM 4--d4: ITEM 5--d5: ITEM 6--d6: Z1= Z2= Z3= Z4= Z5= Z6= 0.0886 IN. Y1= 2.756 IN. Y2= 5.6199 IN. Y3= 5.2655 IN. Y4= 4.7145 IN. Y5= 0 IN. Y6= ITEM AREA z A*Z Z' A*Z' A2 Io . 1 2 . 3 4 5 6 n <~72012 0.0 0.976175 2.' ·O.IO'IUIO 5.E 0 5.2 0. 4.714 0 . 2.722611 0.037 2.690 4.406 1.193 1.480 0.000 9.81 ;r<cu 1 rui.L AXIS-Cz: :•u;u • ...,..,_ AXIS·Cz': 3.602 IN. 2.303 IN. ITEM AREA 1 2 3 4 5 6 n <~??012 i 0.9io II<> i 0. IO'IUIO 0 0. 0 2.722611 !NEUTRAL AXIS-Cy: !NEUTRAL AXIS-Cy': y 1. !69 l89 !82 !75 5.650 0.000 A*Y I o.o1 1ooo 1.059112 1.77309 0 5.36 1.970 IN. 4.566 IN. 3.51 0.85 -2.02 -1.66 -1.11 3.60 5.21 0.70 3.19 0.63 0.39 0.00 10.12 ly-y•--: Sy·y···: 0.001 2.472 0.002 0.031 0.001 0.000 2.51 . 12.62 1NA4 3.50 INA3 Y' A*Y'A2 Io 0.60 1.88 -0.41 -2.71 -3.68 1.97 lz-z---: Sz--z: 0.15 1.41 .1: .61 4.25 0.00 9.65 0.200 0.003 1.281 0.001 0.082 0.000 1.57 I I 2.3829 IN. 5.512 IN. 4.4273 IN. 1.2791 IN. 1.772 IN. 0 IN. 1.3686 IN. 0.0886 IN. 2.382 IN. 4.6754 IN. 5.65 0 IN. . ") IY DIMENSION = iz DIMENSION = IY SHEAR AREA= jz SHEAR AREA = 9.132 IN. 7.204 IN. 1.520 SQ-IN. 1.203 SQ-IN. . --.-rv ; .ld4 1~ .Y4i i 24 ~i~DTz5 D -· --~~ ___ (Jd -~----------->J/./l I• v & ' i 1771r(typ) --~~-W~==~~----~~•v V? ~~ ~~1'j I' v• ~·v"g' resist.. R= 0.028436 1NA4 IPAIJ()B # ?n~~ ?~~IES MCC No.8 SECTION PROPERTIES . POST@ REAR END= CL1 ) I' Hv". ITEM 1·------(11 ): .J I' HvK. ITEM 2-------(12): 1' nvr . ITEM 3-------(13): 1' nvr ITEM 4-------(14): 1' rlCK. ITEM 5-------(15): 1' nvr ITEM 6---'·--(16): I' Hv". ITEM 7 -·-----(17): 1'11''"'" ITEM 1------------: IAR:EA ITEM 2----------:-: 'n"• ITEM 3------------; IAR:EA ITEM 4------------: . .. ·-· ITEM 5------------: IAR:EA ITEM 6-----------: IAR:EA ITEM 7----------: o.~1o1 11 4 . 0.74403 5 6 7 0.74403 I 0.42i ""o 6.34148 . NEUTRAL AXIS~z: NEUTRAL AXIS~z': ITEM AREA 1 2 3 4 5 6 7 ? 0. /0/10 1. 0. 4403 0.''4403 0.4~/.:l"O 6.34148 !NEUTRAL AXIS-Cy: :NEUTRAL AXIS-Cy': ) !Y DIMENSION = . Z DIMENSION = Y SHEAR AREA= Z SHEAR AREA= 0.236 IN. 0.236 IN. 0.4724 IN. 0.4724 IN. 0.236 IN. 0.4724 IN. 0.236 IN. 2.026768 INA2. 0.278716 INA2. 1.655856 INA2. 0.74403 IN'2. 0.464684 INA2 . 0.74403 INA2. 0.427396 IN'2. WIDTH ITEM 1--d1: ITEM 2-. d2: ·. ITEM 3--d3: ITEM 4--d4: ITEM 5--d5: ITEM 6--d6: · ITEM 7--d7: Z1= Z2= Z3= Z4= Z5= Z6= Z7= 0.118 IN. Y1= 0.5905 IN. Y2= 1.5748 IN. Y3= 1.0235 IN. Y4= 1.693 IN. Y5= 1.0235 IN. Y6= 0.9055 IN. Y7= Z A*Z . 118 0.78 0.009 0.31 0.032 ..().67 . 0.031 .. 0.762 -0.12 0.01 0.154 0.787 -0.79 0.29 0.002 I ~~~-~0 .. ~11:2~+-~0.01~~0~'··1~1:M~+---~ Q.387 0,01 0.00 0.117 1235 5;71 2.34 0.50 0.900 IN. 0.911 IN. ly-y--: Sy-y--': . 2.83 IN"4 3.11 IN"3 _Y A*Y Y' A*Y'A2 Io 4.530 0.118 4.:112 0. f( 10.0• 6.77 8.942 9.181259 7. 0.351331 4.667518 3.821775 4.768 IN. 6.261 IN. 12.5226 IN. 0.24 ·.65 1.46 30 -5.28 . 2.01 -2.68 lz-z---: Sz--z: 1.821749 IN. D=d7 4.147 SQ-IN.---Nj·--- 2.194 SQ-IN. A 0.11 6.03 0.34 13.73 12. ~4 2.119 3.07 39.22 12.457 o. )01 1. )95 0.1 0. 0.1 0.002 14.33 I '· resist.. R= 29.89577 IN'4 8.588 IN. 1.181 IN. 3.5052 _IN. 1.575 IN. 1.969 IN. 1.575 IN. 1.811 IN. 4.53 IN. 0.118 IN. 4.312 IN. 0.4722 IN. 10.0445 IN. 6.7732 IN. 8.942 IN. PICEANCE FACILITIES MCC BUILDING PAl JOB# 2033.201 SHEET No •. 9 SECTION PROPERTIES INTERIOR SHAPE TUNNEL=C7 CROSS SECTION WIDTH \ I THCK. ITEM 1-------(!1 ): 0.177 IN. ITEM 1--d1: 2.973 IN. THCK. ITEM 2-------(12): 0.177 IN. ITEM 2--d2: 5.9055 IN. THCK. ITEM 3-------(!3): 0.177 IN. ITEM 3--d3: 3.76 IN. THCK. ITEM 4-------(!4): 0.177 IN. ITEM 4--d4: 1.102 IN. THCK. ITEM 5-------(!5): 0.177. IN. ITEM 5--d5: 1.772 IN. THCK. ITEM 6-------(!6): 0 IN. ITEM 6--d6: 0 IN. AREA ITEM 1------------: 0.526221 INA2. Z1= 0.0885 IN. Y1= 4.0455 IN: AREA ITEM 2------------: 1.045274 IN'2. Z2= 2.9528 IN. Y2= 5.6205 IN. AREA ITEM 3------------: 0.66552 IN'2. Z3= 5.817 IN. Y3= 3.652 IN. AREA ITEM 4-----------: 0.195054 IN'2. Z4= 5.1775 IN. Y4= 1.8605 IN. AREA ITEM 5------------: 0.313644 INA2. Z5= 4.892 IN. Y5= 0.886 IN. AREA ITEM 6-----------: 0 INA2. Z6= 0 IN. Y6= 0 IN. ITEM AREA z A*Z z• A*Z'"'2 Io I 1 0.526221 0.0885 0.047 3.39 6.04 0.001 2 1.045274 2.9528 3.086. 0.52 0.29 3.038 3 0.66552 5.817 3.871 -2.34 3.64 0.002 4 0.195054 5.1775 1.010 -1.70 0.56 0.020 5 0.313644 4.8.92 1.534 ~1.41 0.63 0.001 6 0 0 0.000 3.48 .0.00 0.000 2.745713 9.55 11.17 3.06 . NEUTRAL AXIS-Cz: 3.478 IN. ly-y • ..;.: 14.23 1NA4 NEUTRAL AXIS-Cz': 2.428 IN. · Sy-y---: . 4.09 1NA3. . . ITEM AREA y A*Y Y' A*Y'"'2 Io I 1 0.526221 4.046 2.128827 -0.01 0.00 0.388 2 1.045274 5.621 5.87496 -1.59 2.63 0.003 3 0.66552 3.652 2.430479 0.38 0.10 0.784 4 0.195054 1.861 0.362898 2.17 0.92 0.001 5 0.313644 0.886 0.277889 3.15 3.11 0.082 6 0 0.000 0 4.03 0.00 0.000 2.745713 11.08 6.76 1.26 NEUTRAL AXIS-Cy: 4.034 IN. lz-z--: 8.01 1NA4 I NEUTRAL AXIS-Cy': 1.675 IN. Sz •• z: 1.99 1NA3 • ' • Z' ' • 0 d3: • d5 !~ -·-·-·-·· d4 r:~-·-l Y3_.,): Tz3 z~~r x_.,. N/A Y DIMENSION = 8.067161 IN. -----~ly ~s~:------:---------- Z DIMENSION = 6.955297 IN. '' !~ Tz2 d2=D rt SHEAR AREA = 1.505 SQ-IN. ~:. d1: Z SHEAR AREA = 1.240 SQ-IN. : (1). ' • ) Torsional resist.. R= 0.028645 IN'4 ~jY4! T Z1 Y' B . PICEANCE FACILITIES MCC BUILDING PAl JOB# 2033.201 SHEET No.10 SECTION PROP.ERTIESOFCHANNEL BUTT JOINT PLYWOOD=C5 CROSS SECTION WIDTH ) THCK. ITEM 1-------(11 ): 0.1574 IN. ITEM 1--d1: 1.6146 IN. THCK. ITEM 2-------(12): 0.1574 IN. ITEM 2--d2: 4.803 IN. THCK. ITEM 3-------(13): 0.1574 IN. ITEM 3--d3: 2.7956 IN. THCK. ITEM 4-------(14 ): 0 IN. ITEM 4--d4: 0 IN. THCK. ITEM 5-------(15): 0 IN. ITEM 5--d5: 0 IN. THCK. ITEM 6-------(16): 0 IN. ITEM 6--d6: 0 IN. AREA ITEM 1------------: 0.254138 INA2. Z1= 0.0787 IN. Y1= 1.9883 IN. AREA ITEM 2----------: 0.755992 INA2. Z2= 2.4015 IN. Y2= 2.8743 IN. AREA ITEM 3---'--------: 0.440027 INA2. Z3= 4.7243 IN. Y3= 1.3978 IN. AREA ITEM 4------------: 0 IN"2. Z4" 0 IN. Y4= 0 IN. AREA ITEM 5------------: 0 IN"2. Z5" 0 IN. Y5= 0 IN. AREA ITEM 6------------: 0 IN"2. Z6= 0 IN. Y6" 0 IN. ITEM AREA z A*Z Z' A*Z'A2 Io I . . ·. 1 0.254138 0.0787 0.020 2.62 1.75 0.001 2 0.755992 2.4015 1.816 0.30 0.07 1.453 3 0.440027 4.7243 2.079 -2.03 1.80 0.001 4 0 0 0.000 2.70 0.00 0.000 5 0 0 0.000 2.70 0.00 0.000 ) ', 6 0 0 0.000 . 2.70 0.00 0.000 . 1.450158 3.91 3.62 1.45 · .. NEUTRAL AXIS-Cz: 2.699 IN. ly-y---: 5.07 INA4 NEUTRAL AXIS-Cz': 2.104 IN. . Sy-y---: 1.88 INA3 ITEM AREA y A*Y Y' A*Y'"'2 .· Io I 1 0.254138 1.98.8 0.505303 0.28 0.02 0.055 2 0.755992 2.874 2.172948 -0.60 0.28 0.002 3 0.440027 1.398 0.61507 0.87 0.34 0.287 4 0 0.000 0 2.27 0.00 0.000 5 0 0.000 0 2.27 0.00 0.000 6 0 0.000 0 2.27 0.00 0.000 1.450158 3.29 0.63 0.34 NEUTRAL AXIS-Cy: 2.271 IN. lz-z---: 0.974 1NA4 f NEUTRAL AXIS-Cy': 0.682 IN. Sz--z: 0.429 JNA3 ' ' ' Z' ' d3 ' ' T+= (3) ' ' ..Y4l ' iz; ' . .x__.,.. N/A Y DIMENSION = 4.542018 IN. ~------------- _________ J ___ -------~ Z DIMENSION " 5.398499 IN. 2 Tz2 d2"D Y SHEAR AREA " 0.694 SQ-IN. ' d1' Z SHEAR AREA" 0.756 SQ-IN. :·c 1) • ' ' ) Torsional resist.. R" 0.011964 1NA4 .n.....,; jY4,! T Z1 Y' B . \J In • • •~n ~,~_':'::"':-!TIES MCC BUI I~"""' .,v., ~ .,".,., ?n< SHEET No. 11 ~ECJION PROPERTif:_50FCHANNEL BUTT JOINT ON TUNNEL=C6 [ThvK. ITEM 1-------(11): 1' n~,;". ITEM 2-------(12): I' Hvl\. ITEM 3-------(13): [ThvK. ITEM 4-------(14): 1' n'-'"· ITEM 5-------(15): I' Hvl\. ITEM 6-------(16): IARtEA ITEM 1------------: 'M~ A ITEM 2-----------: IARtEA ITEM 3------------: JARlEA ITEM 4------------: IARtEA ITEM 5------------: JARlEA ITEM 6-----------: ITEM AREA z 0.1574 IN. 0.1574 IN. 0.1574 IN. 0 IN. 0 IN. 0 IN. 0.254138 INA2. 0.731123 IN'2. 0.440027 INA2. A*Z 0 IN'2. 0 IN'2. 0 INA2. • WIDTH ITEM 1--d1: ITEM 2--d2: ITEM 3--d3: ITEM 4--d4: ITEM 5--d5: ITEM 6--d6: Z1= Z2= Z3= Z4= Z5= Z6= 0.0787 IN. Y1= 2.3225 IN. Y2= 4.7243 IN. Y3= 0 IN. Y4= 0 IN. Y5= 0 IN. Y6= I 2 3 IO. I 0.731123 In 0.0787 23225 4.7243 0.020 1.698 2.079 • 9 1.71 1.001 0.0 ~~---:~5i:-l-__;_--l 4 5 6. 0 0 0 1 0 0 0 0.000 0.000 0.000 3.60 1.8 11 0.0 10 . 2. 6 2.f6 .,.,, 'TRAL AXIS-Cz: 2.664 IN. · ly-y---: 4.97 JNA4 1.86 JNA3 1 ou;;u 1 ""',_ AXIS-Cz': . 1.981 IN. Sy-y--: ITEM AREA y A*Y 1 5 0.254138 0.731123 n 1.988 n 0.27 0.02 0.055 2.874 2.10146 -(J.fl1 .28 0.002 1.398 0.6' 50i 0.86 '.33 0.287 0 0.000 6 1.( 1.000 0 0.000 0 !6 0. 0 .000 J 6 1 ~;;;;-'--=.: 01 .. .::.: COO::.::._O_,___O=,; 3-:> .. 2!:2;;-1--=!:.::._6_.__...:=,: 0.'~;:-;;:;-62 ....___,"". o-;;;gl~.';;:;--'34 '----f ·~I:U I nAL AXIS-Cy: NEUTRAL AXIS-Cy': 2.260 IN. 0.693 IN. lz-z---: Sz--z: ~ ' ' ' Z' , d3 : 1.6146 IN. 4.645 IN. 2.7956 IN. 0 IN. .0 IN. 0 IN. 1.9883 IN. 2.8743 IN. 1.3978 IN. 0 IN. 0 IN. 0 IN. .. .. ). Y DIMENSION = iZ DIMENSION = 'y SHEAR AREA= ,Z SHEAR AREA = 4.520965 IN. 5.327841 IN. 0.694 SQ-IN. 0.731 SQ-IN. 0.011759 IN'4 T+== (3) ! --------------r--~~-~L--~---· ~}~_--[L,.. N/A , d1 ~ n; d2=D ----1-.J;~y~-1 J:::;:;:J:!_j.h !;,==:J__,.. Y' I' v• ~·v"u' resist.. R= v1 ~ Tz1 ITIElS MCC IPAI JOB# ?n~~ ?M <>nr;:r;: • No. 12 S E C T I 0 N P R 0 P E R T I E S OF B 0 T T 0 M S I D E C H A N N E L = C4 WIDTH ) · o nvf\. ITEM 1-------(11 ): 0.177 IN. ITEM 1--d1: 1.004 IN. 1 Hvi<... ITEM 2-------(12): 0.177 IN. ITEM 2--d2: 6.378 IN. I . 1 Hvf\. ITEM 3-------(13): 0.177 IN. ITEM 3--d3: 1.713 IN. ·' nvf\. ITEM 4-------(14): 0 IN. ITEM 4--d4: 0 IN. i I Hvi<... ITEM 5------(15): 0 IN. ITEM 5--d5: 0 IN. 11 rlCI\. ITEM 6-------(16): 0 IN. ITEM 6--d6: 0 IN. AR.EA ITEM 1------------: 0.177708 IN'2. Z1= 0.0885 IN. Y1= 1.211 IN. !.<~o<=.<~ ITEM 2------------: 1.128906 INA2. Z2= 3.189 IN. Y2= 1.8015 IN. I '\RE." ITEM 3------------: 0.303201 IN'2. Z3= 6.2895 IN. Y3= 0.8565 IN. ARFA ITEM 4-----------: 0 IN'2 . Z4= .0 IN. Y4= 0 IN. .<~o<=.<~ ITEM 5----------:-: 0 INA2. Z5= 0 IN. Y5= 0 IN. iA0 E,A ITEM 6----------: 0 INA2. Z6= 0 IN. Y6= 0 IN. ITEM AREA z A*Z z~ A*Z 1 h2 Io . I . . 1 ,0.1~8 0.016 3.34 1.99 0.000 2 !1.1: 06 3. 89 3.600. 0.24 0.07 3.827 3 " 6 Rfi 1.907 ~2.86 .2.48 0.001 4 0.000 3.43 0.00 0.000 5 0.000 3.43 0.00 0.000 . 6 0.000 3.43 . 0.00 0.000 .1.609815 5.52 4.53 '3.83 ) . jNEUTRAL AXIS-Cz: . 3.431 IN . . ly-y---: . 8.36 JNA4 !NEUTRAL AXIS-Czl: . 2.947 IN. Sy-y---: 2.44 INA3 . ITEM ·· AREA y A*Y yl A*Y 1h2 Io I 1 .177708 1.211 10.2 i204 0.35 '.02 0 .. 2 ~ l2.u lf.£4 -0.24 1.07 0. 3 II '· 11 0.' 4 0 0.000 0 0.0( 0.000 5 0 0.000 0 0.0( 0.000 6 0 0.000 0 1.56 0.00 0.000 1.609815 2.51 0.24 0.09 !NEUTRAL AXIS-Cy: 1.558 IN. lz-z--: 0.330 JNA4 f jNEUTRAL AXIS-Cy1 : 0.332 IN. Sz-z: 0.211 1NA3 I I I z~ I d3. I I T+= (3) I I J:2..i I Tz3 I x_.,. N/A IY DIMENSION = 3.116657 IN. --------------_________ J ___ -------~ jz DIMENSION = 6.861398 IN. 2 Tz2 d2=D ~SHEAR AREA= 0.481 SQ-IN. I d1 I jz SHEAR AREA= 1.129 SQ-IN. : c 1) I I I I' orb1u11a1 resist.. R= 0.016794 IN'4 .YL..,.i ~ Tz1 Y' B . PICEANCE FACILITIES MCC BUILDING PAl JOB# 2033.201 SHEETNo.13 SECTION P R 0 P E R T I E S OF T 0 P C H A N N E L ON T U N N E L (C3) . CROSS SECTION WIDTH THCK. ITEM 1-------(!1 ): 0.177 IN. ITEM 1--d1: 0.843 IN. THCK. ITEM 2-------(12): 0.177 IN. ITEM 2--d2: 3.937 IN. THCK. ITEM 3------(!3): 0.177 IN. ITEM 3--d3: 0.843 IN. THCK. ITEM 4-------(!4): 0 IN. ITEM 4--d4: 0 IN. THCK. ITEM 5-------(!5): 0 IN. ITEM 5--d5: 0 IN. THCK. ITEM 6-------(!6): 0 IN. ITEM 6--d6: 0 IN. AREA ITEM 1------------: 0.149211 IN'2. Z1= 0.0885 IN. Y1= 0.4215 IN. AREA ITEM 2------------: 0.696849 IW2. Z2= 1.9685 IN. Y2= 0.9315 IN. AREA ITEM 3-----------: 0.149211 IW2. Z3= 3.8485 IN. Y3= 0.4215 IN. AREA ITEM 4-----------: 0 IN'2. Z4= 0 IN. Y4= 0 IN. AREA ITEM 5------------: 0 IW2. Z5= 0 IN. Y5= 0 IN. AREA ITEM 6------------: 0 IN'2. Z6= 0 IN. Y6= 0 IN. ITEM AREA z A*Z Z' A*Z'"'2 Io I . 1 0.149211 0.0885 0.013 1.88 0.53 0.000 2 0.696849 1.9685. 1.372 0.00 0.00 0.900 3 0.149211 3.8485 0.574 -1.88 0.53 0.000 4 0 0 0.000 1.97 0.00 0.000 5 0 0 0.000 1.97 0.00 0.000 6 0 0 0.000 1.97 0.00 0.000 0.995271 1.96 1.05 0.90 . NEUTRAL AXIS-Cz: . 1.969 IN • 'ly-y--: . 1.96 INA4 NEUTRAL AXIS-Cz': 1.969 IN. Sy-y---: 0.99 INA3 . ITEM AREA y A*Y Y' A*Y'/\2 Io I 1 0,149211 0.422 0.062892. 0.36 0.02 0.009 2 0.696849 0.932 0.649115 -0.15 0.02 0.002 3 0.149211 0.422 0.062892 0.36 0.02 0.009 4 0 0.000 0 0.78 0.00 0.000 5 0 0.000 0 0.78 0.00 0.000 6 0 0.000 0 0.78 0.00 0.000 0.995271 0.77 0.05 0.02 NEUTRAL AXIS-Cy: 0.779 IN. lz-z---: 0.074 1NA4 z Z' ... NEUTRAL AXIS-Cy': 0.241 IN. Sz--z: 0.095 1NA3 ' B ' I d3 ' I T+= (3) : :&.! I Tz3 I I 0 I Y DIMENSION = 1.557163 IN. I ~'A I -------------1----· y Z DIMENSION = 3.937 IN. I Y SHEAR AREA= d1 I d2=D 0.298 SQ-IN. '(1) I Z SHEAR AREA= 0.697 SQ-IN. I : Torsional resist.. R= 0.010383 IN'4 (1 . .Y-4! Tz1 Y' , I I I I l:l\IPROJECT IMASSOCIATES IM§++.+·M·+•+-M.M++.M BY~~~. CHKED.BY EC~ ·. ·~···.. ' .. .·. DATE .2/17'/Pfb DATE G./1716(( 11999 Katy Fwy. Suite 607 Houston. TX 77079 6660 Riverside Drive Suite 300 Metairie. lA 70003 SUBJECT,;7tC£.;7,41Q!;; %.:!CJt.Q17€."':;, SHEET No._,/c_/f_,__ ____ OF ___ _ _ _:_M.:._::::C_:C:___ol3=l,-"!):._".:::C7r__ ___ JOB NO. .U>~fl.-Zt!:>/ -+- ~ ·j- . -~-.. .. 1 ; r . ' .. J ''I .-·· .. L .: .. · f~-c~"'M d~_~i;~ ~ ~~~kr-L~ ~f/PS) . . . .. : , .. . .,\ . . · ... "• ..... •! ... .!., ... ... , --~ . ..: .· ····-·-') " , .. .. , ---:- >· :-- ·--·--+· ~ ,. : .. (" -- ' L.) ··-t· ' f. ' :· :-.•.. , .. ( ' .. ··!·· .... ,;-- 0\IPROJECT I'M ASSOCIATES INCORPORATED ) BY~. '2. CHKED. BY f!CM. ' ~--:·T - i-l---... ;· •··- --· •'" ! .. ·-····· .... --'"-~--· .,,., DATE DATE l. ... :... 11999 Katy Fwy. Suite 607 Houston, 1X 77079 6660 Riverside Drive Suite 300 Metairie, lA 70003 :&11/fk$ r: !1716<1 SUBJECT f!CI?'4Nct!. ~C./l..l"j SHEETNO. /~ CF __ _ _...LM--'...::C'-'C.,_· _;,t:>"--'=1-:..::P:._'~G:___---'--JOB NO. 2 C> :3 ~. 2. C'f ·' •.. J P/9 . · ...•. fr ' ... . ' --~ .. -1' f./,.;4 'J . -·!-·· ··'· '· '•. "I' ... 1.;. . _; . . -,, ;. f .. ••• ! ... : • _1,, ... ,. -r· \. r:Y\IPROJECT I'M ASSOCIATES ••t••············· svMf- cHKED.BY ee,f"t DATE 2MP£? DATE ~ IZ?l6& . -~---· -------: ... •·-:· . . , ... • . • ''l ___ _ ~ ... -;_, __ ... i-.. .; \.. -· .. ,.. .. ,. ) -· '-> .; ......... . '· ' ; . ; . ,---. ·t-... :···· ... , ' .. ..L •• ·. ~ . -~ i' ·r r·· .}. ... ;.. .. ' ... ;--... ~t·· ,. ····'"!"'"· . --.: .. , i i . ' ' .: •••• ! •. --· ...... ;-- :! ·----;" ·I, ••.. . : ... ,.c. ~--·. "•("' --~ _. .... L .. ·r .... ···) 11999 Katy pwy. Suite 607 Houston, TX 77079 . ..... ~ "' r·· ..... ~--.... i. . 6660 Riverside 'orive Suite 300 Metairie, LA 70003 .:, .. :· . . .... , --.· . .• !' . ... -~-- ; ....... , . ..;., --~- .;.. . .. ...• c: ... l:l\IPROJECT I'MASSOCIATES INCORPORATED BY ./at(r J · CHKED.BY 8C#<1 DATE 2// ?J/(Jfb DATE (i_ {f7(08 11999 Katy Fwy. Suile 607 Houston, TX 77079 6660 Riverside Drive Suite 300 Metairie, LA 70003 SUBJECT f'lc:_p:4,n/C::£ ~~C/4?ysHEETNO._Lt7-l-----'--OF __ _ __t.:.H!.:C~C.~0=1-"-'Q~· ~~~----JOB N0.,£,2'-"0'-=3'-"~'-'-'Z~t;;>,_( ----- ..-:: 'if. JJ::s,7C?1'' . --!--• s~re~~&_~· ' .. .- i ··-1-·---·-·· . ~--· ,_ ---;-· .. ~ .. ····' ... .... ; •.. ; '···. ·!·· ... 1.---:.-. ( . -· .. ---~-. ._ .... :._ ---· ·' . ; T ·; 1 '1" . -.. -~ - . .. -! .. . ·":·· --~---·. "-~---.. -·~---- .\ . . ,,.., ... ,.,. ... -~--, ... , '·· ···-:4·· .. ~ ... -! . '"" .. .···w· ~ j.,-.2.:!1.;':..!"..:.;7 J!..'~' ~1~-+o:.:.~' rri" :?•1"'>''1 .~ TV}JIJT!;~ ........ il···-·· ....... A -r --""···---· · .. ., ... _,_ ..•. 1". .; :., .. . ,. . ·:-. , __ . . ' . ..... ·--------· .J,.. -·-"' .. "'! ~-- ..... i ..... '• --· --·-. .. -··· . ...!. •• r::ftiPROJECT I'M'ASSOCIATES JNCORPORATI:.D ) BY ~!'S :/. CHKED. BY £Z,ih?L• "·,' ~ J.il. <l IS\ ' 'IJ) ' J ~ t{\ ((\ ~ I .-'- " I' 11999 katy Fwy. Suite 607 Houston. 1X 7'7079 ~.S~t:'-~I 4.'10"'16" " "f, 7k'l"' lt772. tl·?>$~ fP!lif " --';( -- c>) ' s-,t.l'if/' q .... ' ;..!. ' 1;1 . .. . . ~ (5J -~ N . ~) -r=; ll :M5~r '!( q ~ -~ 11\. -wJI ' . . .f>. " (!) p,/11/ o~f>B&Ii1 · ·· i z ... sc.!' ·' ~ t a! ,·I i,.~ ~l.'l" ! ~ I ~ ,, , .. § 6660 Riverside Drive Suite 300 Metairie, LA 70003 SHEET NO. I 8 OF-~- JOB NO. 2£/'32-2.01 l . f)c£>12. s..t: fL [[1.rf:iff>'J m~ cR tzR.a.rZ.. em) . r:Y\IPROJECT I'M ASSOCIATES ••••••••••••••••• BY 4-!'.> ~. CHKED. BY 8Ctflt ----.! .~ .. -·p•·----- I ' ,. , .. '·r.-~·-· ., .... -....... ., ' !·' j . . :tA . ~ -~ N IS'\ ·ij) ·-·r ... , I . 11999 Ka1y Pwy. Suite 607 Houston, TX 77079 6660 Riverside Drive Suite 300 Metairie. LA 70003 SUBJECT fl~<J cc_ tt:AC-/L.filE;> SHEET NO. / 'J OF __ _ Mc.J:_ e>J .. :oer. JoBNo.__2!?:;:12~.2/C'Z ···+·· T I ...... . ' ' f)oo,/2. .$-(: f L ; r;tv-.~ ,r;~ cR tieM?-~) ' '····+· , ' I ~--'II\ It\ ' ... ' i. ' .......... ~~---··-_;., __ ._;_ .. .r_;._._t· ··_····-+· f=·Ci::'~=. :::::r.,4 t>riT!/11 : • .. I ~,$~ r -, .. v · .. ,; .... ..): ·:; " -~-.... -~·-·-: ····---~---i-..... . , ..• :-... ... ] ,_ ' 'i . . . ~- -! .•• r··· . ·'. ·•-'· :---.+ . ,j., :.... .... ' ' ...... _. __ l .... ... ,:\ . .,... t .. .L !-------;-------:------1·---~------f ,.. . _) __ . ' ', -1-·-·r·- , _____ :--t ; + --- '' .I ---+· -l I "·;·· ·-,_. .. ; .. ····~' I i •. ... ~-.. -........ . ----;--. ... ··-"' --; . .. · . . I G,A\2-FI~LD COLWI\YJ!ill ?s;t-oMtc.. (j..,u;,.uLA(IloH~ · 0-to-oo . i f."i"zi.A~wc,. ;fiJ~ 'i>"ic-E-L-f'(2..(-'f=.A:6 <;:>"[12-U C\\J L£-; 0. 'N, i/i:.--0)0 rt--'j I tfAlZ-f" 1[1..-p eou rn:)l. ce; · J • ' -?t::t?MIC. <6DJL-'SrTe ~ "' !=-(PFJ<-J:-j;L-·2003; AlA . .uVtAt.., Not-J-;Sf).)<4Mp) iffl2. :1-V5C.. <?fC.. IL.>IZ?·'2...: ftv1D c,:,~.u.:t!V\-t.--f\~~Z.,O.TitJ Y\ So;, ~.'51 ' : Ss F!2.tl~"~ TA'!?L-i.-~-(;,·i-s( 1') \ i'oll.-C'Z.YI\1&\L-~ ~fluP a:>vnTY ::;; o. 4 '2.. · ! '?:1.. F-1WW\ 1A'bt..L 1tw\S(z)_\forL C£-nfi?AL ~l't1C-fttJ.:D eounlY: o.oen ... ' ,____.----- ' ~~ jJj.C... ~(.. IIPJI;;.i,Z.; FIND '5WI".> ~ f>w,1 I ' SM~:c Fo-. . So;;, : V5". O.L-1-Q.._ :; !.OS <; m1 = t:v '~t .:: 5.5 • o.oss: 0.}"\'21? ; l. · -···· -..... [_Sp:, :::_ -~?'-5m!(, __ E ?t.&::I·O? ='--~~ ~~-~ _ j-5-o, :. ~~~ • 'Sw11 :: 7-/:; • 0,192-S :: 0.1'2$~ I ..... ·----·---· ...... ,. -····---.. -·······--.... --l. t ) ) ' . . . ' ' ' /0Q.,.•IV)Il\Y-0::: -;;\)'>;: 0,~0!'\ {vr,.c_ ~~VlC'f.. fv<'I-~/X.~...Q_ ('c:Jrl'od ~ v-...""d -to ~.J~i)l-~ ' ' t;rcnon 14-ile.S -~ 14>11,\.\: / f f.¥-1" A~\..£.. \le \ £..-3 .I ?£\:,WI I C... ~It, I/\ ClrfS fA 0 t:f ::: "\) p~ 'il\'15L:t-I~ \{f>• ;. '2. S!;:\71"1 \L-'t'e-? \411' ~'i:.-C.. O't--'-1.,;:.. B . -~~E.-~\ION 1/QJl,S.l: : j;.. = L'l .,.. ~ "" IN"" - ~ /,'!.. "' D. /p'\") W:: o.IO 5' W 8 " 11/' .:It >::1. · :Tf ' vv -;,-trvc::t:ul!--t.-== 1,51X:> .,. 114-IO :::: 'b1 '!W W p1 <'l vtt.)v~ "' 2.0 ooo "¢1 VJ -tut.J2 = B e;uf)() * . """" • c "' t; .lOS :J? d..B,C.It'uO-:f!. -'JO 41 · i i j I I I I I I ! i I ! ). " STRUCTURAL DESIGN 304 ='=\~!'*,.=~~ zf~.U.eGidlliolll'ot!blouploiDb:oll.kmm I!EiiRI'JIIocloult ~o'=."""'o!Qldboumi'Mie:a~d<oi:Ul .....,.., Note; ·Region 1 Is shown enlarged In Figure 1615(3). , Region 21s shown enlarged in Figure 1615(5), ) FIGURE 1615(1) 5s -:=. O.if'2. -fbr §tti2-F/£L..D fJu11ry' , ) MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR THE CONTERMINOUS UNITED STATES OF 0.2 SEC SPECTRAL RESPONSE ACCELERATION (5 PERCENT OF CRITICAL DAMPING), SITE CLASS B 2003INTERNATIONAL BUILDING CODE® ) ) STRUCTURAL DESIGN 306 Note; ·Region 11s shown enlarged In Agure 1615(4) . . Region 2 !s shown enlarged In Figure 1615(6), FIGURE1615(2) £1: Q,Of:/'2. .fb.,.-§1'>~1£l.P {b(/11-ry MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR THE coN1 ERMINoOS ONII ED S IAI ES OF 1.0 SEC SPECTRAL RESPONSE ACCELERATION (5 PERCENT OF CRITICAL DAMPING), SITE CLASS B 2003 INTERNATIONAL BUILDING CODE® ) . W f.G\Jlei'Vltl'\'i Al'ICHO!'IAV\C I I I I I' .I f£..F!-A-6'-Ec 7-tJS : '\Ai3L..f 13.{..-1 .:;..e-,''?w.1''-Coe{!{,'c;t'-'h-+s 1¥1<--c.-"" "\ -e.\-e: C--c.o>""-fo VI-Vl"-'t 5 f;f.v-'J pe-..-,1>61'11\1:: !S-'51: (we/ dtJ) · I ·ap = 215 ~p= r;:: i f.'r :"''\ f!'~' )l.S,I'Vl.:... f..-~ I l v I J.r '2,t; rLr~ tp -------~~ ;J6a-7:·t1;~;-~--i3:3:i · ~;~;~ -~~~-rvrz£:' '······ ·-··-·"···-· ·---~ .. ) .··-- .. .:.. .. .' ) I . I IFP I I ' . i I I I I I i I I I llr /fJL-Tl -KW!f'-'J5ot._.( 1 115 P-/<8-T:Z 3/i "x 10'' wj £.W!.b~DI?7U'IT Ot=" .£; 5'8" Vl1t'n- I ! J//1 ~/j I I l/tW?U44P;;LL LMD 111 4-0por/ Corte. c.z72rt ~51'b11 r-.;.;5'1?-:rJsAeet.r ------iP~~ _f!J_t?-__ }f29.tl.fl5-'~-.coa"'~~~ ·······-········-····-----Lf?-'fJ'·tlt-?vl<J>t~>·n ---s-?'F1 ;(1 ~;;,_r-i ! i ·I ' !MCT0/2. . tJF. ~Bf(T;( I ~ !Bfj;,.e;p O,A.! IOO'?o !7712-~ {wmtovi-hcl"t!!>.~ 1-3"',) foi Shorf.-ft'r/<1. j,t<cJ) ! ) i . I ' J FS:: ~l!owA-h/.e ;:in-s<; :: 55 '/7-:rt _ z, td-1 .£!5:.. . ! ! Ac:tu~ _'$1N?s .. ~o~oJJ -I I i i,von. 11-130 THII1 'IHI'?. DfJE:'> !VOT 7?9KE '$He17iL rtZotri P/ZIC.Tiol? tn;b } I. . AU~ I FitrCT!()JI/4{._.-f;rf'iA!<... : o.ao t!-Wf.tjhf ::-o,;;.o * ~'b.)OOO '#:;:; ?looO:Ii.:f'<-'ct/·~ I jnr '"'"""'-~?HZC£ !>' W" -/i-Mlon_' 11,71 s•->•oo"' ~ ;bt!S"' 1 1 ·,F5 II t:: rJJ-:t # -"'"' "7;t; • [ :: ltl/0""""'1--t $Tfl-t~ ;:: -:J "7> '1' T • 07?7 5.lf l/ JL-t.i.c.fV~ ~-1-rt<;:. indvrNn) {r.·c::tic'l ((;/l~+(o · /o/q:o. • 0 ! . ._.- /tt(I:JZM(L [)t;.SJt:.J{ FOIZ. C.tYi-1-IN-f'LAL£ nntJ,HC}j:. J:;oif: tf!.-Y bjfJLt/4Hf7:'E.P 3;4-:tttJI !'}l)cHOIZ 601-1 wlfk 5 5~" fl'/11'1 £J>Jo£PI'11--11t lASE. A34> -;,tte/ lf)r hdfer (Jb Jt-Gi y·'r::ld G"i,-""'1fA) . ft_ = J'f,) /O'?c. -r;;_;ft?WP.bfe rr 3A.j'1 (?ot.-F 'fft/00 /f-1- rv~) = <:r,g~ ft-'7£. IV ,.1/INI...blt /.w-3/lj'1 1'-fH.:{ = 'fi.f {)0 p~ UJ11yle ~ar) fS .'Yl(.luJc~} {rr'diol'l :: f!.fOO:#" l.ftiOO-:# :::: Lj.g;<. t?Jt::; ~/1511-.;tp /0 t1'*' ) 11-i Ef2!:-F01Z-E. 8 I U5J;:. HI/XI &.u!~f)o[{ ~ -T~ 3}f11 X/0 11 f!.E, 3/4::tj£ A~b orr.>£Trte wj ~~''pun t:tt~Btq; 40'x8'x9'6" TRITON Technical Specification For 40' x 8' x 9'6" ISO Type Dry Cargo Steel Container (TRITON) Specification No. Drawing No. Date of Issue This specification is used in all factories of S084A45G1 084A45G1G Feb.4,2004 China International Marine Containers (Group) Ltd. Including: 1. 2. 3. 4. 5. 6. 7. 8. 9. Issue: 04A-01 Shenzhen Southern CIMC Containers Manufacture Co., Ltd. Nantong CIMC-Smooth Sail Container Co., Ltd. Dalian CIMC Container Manufacturing Co., Ltd. Xinhui CIMC Container Co., Ltd. Shanghai CIMC Fareast Container Co., Ltd. Tianjin CIMC North Ocean Container Co., Ltd. Qingdao CIMC Container Manufacture Co., Ltd. Shanghai CIMC Baowelllndustries Co., Ltd. Zhangzhou China Merchants Containers Co., Ltd. Page: l of20 This file Is strictly confidential and privileged. It is intended only for the use of the intended recipient tf you are not the Intended recipient. please notify us immediately by e~mail at hsd@cimc.com, or phone +86 755 26691130. Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any person. PDF created with FinePrint pdfFactory trial version http://www.fineprint.com CIMC 40'x8'x9'6" TRITON Scope This specification covers design, construction, materials, testing, inspection & prototype container. The container is built in accordance with the requirements of I.S.O. 1AAA Type steel dry freight containers by China International Marine Containers (Group) Limited (CIMC). This Specification is for the purposes of information only and should not be copied without permission of CIMC. Contents 1. GENERAL ................................................................................... ... . .. ..... 3 2. APPROVAL AND CERTIFICATES........................................................ 3 3. HANDLING ................................................................................ .. . ... . .. .... 4 4. TRANSPORTATION............................................................................... 4 5. DIMENSIONS AND RATINGS............................................................... 5 6. GENERAL CONSTRUCTION ...................................................... ... .. . .. .. 6 7. PRESERVATION........................................................................... ........ 13 8. MARKINGS ................................................................................... ... .... .. 14 9. TESTING AND INSPECTION .............. .............................................. ... 15 10. DOCUMENTS SUBMISSION............................................................... 18 11. GUARANTEE .............................................................. ........................... 18 12. MATERIALS .......................................................................................... 18 Page: 2 of20 This file Is strictly confidential and privileged. It Is Intended only for the use of the intended recipient. tf you are not the intended recipient, please notify us immediately by e-mail at hsd@cimc.com, or phone +86 755 26691130. Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any person. PDF created with FinePrint pdfFactory trial version http://www.fineprint.com CIMC 40'x8'x9'6" TRITON 1. General 1.1 Operational Environment The container will be designed and constructed for the transportation of general cargo on sea (above or under deck ) and on land (road or rail) throughout the world, and will be suitable for the environmental conditions imposed by those modes of transport. All materials used in the construction will be able to withstand extreme temperature ranging from -30°C(-22°F) to 70°C(158°F) without effect on container's strength and watertightness. 1.2 Standards . Regulations and Rules 1.2.1 Standards and Regulations Containers shall comply with following in their latest editions: 1) I.S.O.rrC-1 04 668 -Series 1 freight containers-Classification, external dimensions and ratings -Coding, identification and marking for freight containers 6346 1161 149611 -Specification of corner fittings for series 1 freight containers -Specification and testing of series 1 freight containers. Part 1 : General cargo containers for general purposes 830 -Freight containers-Terminology. 6359 -Freight containers-Consolidated data plate 2)The International Union of Railway ( UIC) code 592 OR. 3)The Customs Convention on the International Transport of Goods ( T.I.R. ). 4)The International Convention for Safe Containers ( CSC ). 5)Transportation Cargo Containers and Unit Loads Quarantine Aspects and Procedures by Commonwealth of Australia Department of Health. ( T.C.T. ) 1.2.2 To satisfy the requirements of Rules of B.V or G.L. Classification. 2. Approval and Certificates 2.1 Classification Certificate All the containers shall be certified for design type and individually inspected by Classification Society. 2.2 Production Certificate The Production Certificate of series containers to be issued by the Classification Society. The Society's seal shall be provided. 2.3 T.C.T Certificate Certificate of timber treatment to the requirement of Australia Department of Health. 2.4 Customs Certificate IT.I.R.l Customs' Approval and Certificate to be issued by Customs. Page: 3 of20 This file is strictly confidential and privileged. It is intended only for the use of the intended recipient If you are not the intended reclpient,-please notify us Immediately by e~mail at hsd@cimc.com, or phone +86 755 26691130. Do not copy, fo!Ward or use this Specification for any unauthorized purpose or disclose the contents to any person. PDF created with FinePrint pdfFactory trial version http://www.fineprint.com :CIMC 40'x8'x9'6" TRITON 2.5 U.I.C. registration All the containers will be registered & comply with the International Union of Railways. 2.6 C.S.C. Certificate All the containers will be certified and comply with the requirements of the International Convention for Safe Containers. 3. Handling The container shall be constructed to be capable of being handled without any permanent deformation which will render it unsuitable for use or any other abnormality during the following conditions: 1) Lifting, full or empty, at the top corner fittings vertically by means of spreaders fitted with hooks, shackles or twistlocks. 2) Lifting, full or empty, at the bottom corner fittings using slings with appropriate terminal fittings at slings angle of thirty (30°) degrees to horizontal. 3) Side lifting from two top corner fittings when fully laden. (The reaction force will be supported by the corner posts only). 4. Transportation The container shall be constructed to be suitable for transportation for following modes without any permanent deformation which will render the container unsuitable to use or any other abnormality. 4.1 Marine: -In the ship cell guides: Eight ( 8 ) high stacked base on Max. gross weight 30,480 kg ( 97,200 kg stacking capacity I post). -On the deck : Four (4) high stacked and secured by suitable vertical an diagonal wire lashings. 4.2 Road -On flat bed or skeletal chassjs: Secured by twistlocks or the equivalent at the four bottom corner fittings. 4.3 Rail -On the flat cars or special container car: Secured by twistlocks or the equivalent at the four bottom corner fittings. 4.4 One door off operation: Five (5) high stacked on the deck base on Max. gross weight 30,480 kg. Page: 4 of20 This file is strictly confidential and privileged. It is Intended only for the use of the intended recipient If you are not the intended recipient, please notify us immediately by e-mail at hsd@cimc.com, or phone +86 755 26691130. Do not copy, foiWard or use this Specification for any unauthorized purpose or disclose the contents to any person. PDF created with FinePrint pdfFactory trial version http://www.fineprint.com 5 . Dimensions and Ratings 5.1 Dimension a. External Dimensions Length ........... . Width ........... . Height ........... . b. Internal Dimensions Length ........... . Width ........... . Height ........... . No part of the container mentioned above. 12,192 ( 0,-10) mm 2,438 ( 0,-5) mm 2,896 ( 0,-5 ) mm 12,032 ( 0,-10 ) mm 2,352 ( 0,-5 ) mm 2,698 ( 0,-5 ) mm will protrude beyond 40'x8'x9'6" TRITON 40' (0,-3/8") 8' (0,-3/16") 9'6" (0,-3/16") 39'5-45/64" (0,-3/8") 7'8-19/32" (0,-3/16") 8'1 0-7/32" (0,-3/16") the external dimensions Maximum allowable difference between two diagonals on any one of the following surface are as follow: Roof, Bottom and Side Diagonals 19 mm. Front and Rear Diagonals ...................... 10 mm. 5.2 poor Openjng Width Height 2,340 ( 0,-5 ) mm 2,585 ( 0,-5) mm 7'8-1/8" (0,-3/16") 8'5-49/64" (0,-3/16") 5.3 Gooseneck Tunnel Length ........... . 3,315 mm 10'10-1/2" 3'4-13/32" (+1/8",0) 4-23/32" (0,-1/8") Width ........... . Height ............ . 1,029 ( +3,0 ) mm 120 ( 0,-3) mm 5.4 Inside Cubjc Capacitv 76.4 cu.m 5.5 Rating Maximum Gross Weight .............. . Maximum Payload ............... . Tare Weight ( ±2%) ................ . Maximum Test Gross Weight 5.6 Corner Protrusjons 2,700 cu.ft 30,480 kg 26,640 kg 3,840 kg 32,500kg 67,200 lbs 58,730 lbs 8,470 lbs 71,650 lbs 1) The upper faces of the top corner fittings will protrude above the highest level of the roof construction except corner plate by 6 mm. 2) For the containers under empty condition the lower faces of the crossmembers in their bases including their end transverse members shall be on a plane located at 17 mm above the lower faces of the bottom corner fittings. 3) The outer side faces of the corner fittings will protrude from the outside faces of the corner post by minirnurn 3 rnm. The outer side faces of the corner fittings will protrude from the outside faces of the side walls by nominal 7 mm and from the outside faces of the end wall by 7.4 mm. Page: 5 of20 This file is strictly confidential and privileged. It is Intended only for the use of the Intended recipient tf you are not the intended recipient, please notify us immediately by e~mail at hsd@cimc.com, or phone +86 755 26691130. Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any person. PDF created with FinePrint pdfFactory trial version http://www.fineprint.com CIMC 40'x8'x9'6" TRITON 4) For the containers under the condition such as the load equal to 1.8R-T uniformly distributed over the floor, no part of the base of the container will deflect more than 6 mm below the lower faces of the bottom corner fittings. 6. Construction 6.1 General The container will be constructed with steel frame, fully vertically corrugated steel side and end walls, die-stamped corrugated steel roof, wooden flooring, corrugated double hinged doors and ISO corner fittings at eight corners. All steelwork will be built up by means of automatic and semi-automatic C02 gas arc welding. All exterior welds including that on base structure will be continuous to insure watertightness, all the welds, even spots, will have full penetration without undercutting or porosity. 6.1.1 Welding All welding wire and other electrodes are to be approved by one or more of the recognized classification societies. All welding equipment shall be maintained in good working order to produce acceptable weld quality. All workers operating welding machines shall be skillful and knowledgeable of proper welding techniques and shall avoid excessive weld speed, excessive current, and excessive ventilation causing loss of shielding gas. All welding is to be skillfully and accurately performed by a shielded arc process and shall exhibit even beads, good shape and· full penetration (100%)and shall not exhibit signs of cracking, porosity, spatter, burn through, undercutting or blow holes upon completion. Welding back bead shall exhibit full penetration. Back bead should be a continuous, smooth round shape free of skips, jagged edges or voids. All roof and side panel butt welds shall have full (100%) penetration with a smooth, even, round shaped backbead that is free of any jagged, flared, or mushroomed areas. All joints to be welded shall be spaced a minimum of 2mm apart except for thin panels which shall be spaced not greater than the material thickness. All stitch welds shall be a minimum of 25 mm long. If required, any manual welding which is not performed by a shielded gas process shall be accomplished with low hydrogen flux-coated welding electrodes. Inspections will be performed after each stage of welding to identify any weld defects. Adequate lighting shall be provided at each station to complete these inspections. Defect repair and weld spatter removal will be performed at each station and not left for the final touch up area. Chisels should be used to remove spatter and high spots. Weld defect repairs shall be performed by shielded metal arc or gas metal arc welding process and shall be skillfully done. Page: 6 of20 This file is strictly confidential and privileged. It Is intended only for the use of the intended recipient. tf you are not the intended recipient, please notify us immediately by e~mall at llsd@cimc.com, or phone +86 755 26691130. Do not copy, f01ward or use this Specification for any unauthorized purpose or disclose the contents to any person. PDF created with FinePrint pdfFactory trial version http://www.fineprint.com CIMC 40'x8'x9'6" TRITON All welds will be inspected prior to final blast in an effort to minimize post blast touch up. Grinding shall be performed on obvious weld defects such as rough or jagged areas and shall produce a smooth round weld bead. Grinding shall not be excessive to the point of removing the weld bead or damaging the base metal adjacent to the weld. 6.2 Corner Fittings Corner fittings will be designed in accordance with IS0/1161 standard, and manufactured at the workshops approved by the classification society. 6.3 Base Frame The base frame will be composed of two ( 2 ) bottom side rails, a number of crossmembers and gooseneck tunnel, which are welded together as a sub-assembly. 6.3.1 Bottom Side Rail Each bottom side rail is built of a steel pressing made in one piece. The bottom flange faces outward for ease of repair and corrosion resistance. Qty. Two ( 2 ). Shape Channel section . Dimension 162 x 48 x 30 x 4.5 mm. 6.3.2 Crossmember There are two type of crossmembers in the base assembly. Normal crossmembers with a 45 mm top flange and joint crossmembers with a 75 mm top flange. The units with the 75 mm top flange with three 4.0 mm thick vertical webs are located under the plywood floor butt joints. Shape " C " section Normal 122 x 45 x 45 x 4.0 mm , Qty. 25 Joint 122x75x45x4.0mm, Qty. 3 6.3.3 Gooseneck Tunnel The gooseneck tunnel consists of a one piece pressed hat section tunnel plate, a number of pressed channel section tunnel bows, one open section rear bolster with four 4.0 mm thick reinforcement gussets and tunnel outriggers. The gooseneck tunnel is designed according to ISO standard : a) Tunnel plate thickness : 4.0 mm Qty. : 1 b) Tunnel bow thickness: 4.5 mm Qty.: 12 c) Bolster thickness: 4.5 mm Qty. : 1 d) Outriggers-"C" section: 118x75x45x4.0 mm, Qty.: 1/each side 118x45x45x4.0 mm, Qty.: 7/each side Page: 7 of20 This file is strictly confidential and privileged. It is Intended only for the use of the intended recipient. ff you are not the intended recipient. please notify us immediately by e~mall at hsd@cimc.com, or phone +86 755 26691130. Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any person. PDF created with FinePrint pdfFactory trial version http://www.fineprint.com CIMC 40'x8'x9'6" TRITON 6.3.4 Reinforcement " L " shaped reinforcement plates fully welded to the outside face of the bottom rail web at each ends of the rail. Dimension : 300 x 120 x 4.5 mm 6.4 Front End The front end will be composed of corrugated end wall and front end frame, which are welded together as a sub-assembly. 6.4.1 Front End Wall The front end wall is composed of two vertically corrugated panels, butt welded, with automatic welding equipment, into a single unit. Thickness: 2.0 mm Corrugation dimension-Outer face : Inner face: Pitch: 6.4.2 Front End Frame 110 mm 104 mm 250mm Depth : 45.6 mm Slope: 18 mm The front end frame will be composed of one front sill, two corner posts, one front header and four corner castings. 6.4.2.1 Front Sill The front sill consists of a square tube upper and open style front. Gooseneck tunnel gusset : 6.0 mm Thk. Qty.: 2 Square tube : 60 x 60 x 3.0 mm Qty.: 1 Flat strips : 4.0 mm Thk. Qty.: 2 Triangular shaped reinforcements : 9.0 mm Thk. Qty.: 2 6.4.2.2 Corner Post Each corner post is made of a 6 mm thick steel pressing to ensure the suitable strength, light weight and easy maintenance. 6.4.2.3 Front Header The front header is constructed of one, 4.5 mm thick, " Z " pressed steel plate with reinforcements at each top corner. The header extends inward 366 mm from the front face of the corner casting and covers the full width of the roof from top rail to top rail. 6.5 Rear End Rear end is composed of Rear End Frame which consists of one door sill, two corner posts, one rear header with header plate and four corner fittings, which are welded together as a sub-assembly, and Door Systems with locking devices. Page: 8 of20 This file Is strictly confidential and privileged. It is Intended only for the use of the Intended recipient If you are not the Intended recipient, please notify us immediately by e~mall at hsd@cimc.com, or phone +86 755 26691130. Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any person. PDF created with FinePrint pdfFactory trial version http://www.fineprint.com :CIMC 40'x8'x9'6" TRITON 6.5.1 Door Sill The door sill is built of a special channel section steel pressing with internal gussets at the back of each cam keeper. The upper face of the sill has a slope for better drainage and the highest part is on the same level as the upper face of the wooden floor. a) Door sill : 4.5 mm thick : 4.0 mm thick Slope : 1: 1 0 approx. b) Stiffener gussets Qty.: 4 Pes. 6.5.2 Corner Post Each corner post is constructed from an inner part of channel shaped hot-rolled section steel and an outer part, welded together to form a hollow section to ensure width of the door opening and suitable strength against the stacking and racking force. Four ( 4 ) sets of hinge lugs are welded to each outer corner post. Inner part Outer part 6.5.3 Door Header 113 x40 x 12 rnm 6.0 mm thick. The door header is constructed from a lower " U " shaped steel pressing, with internal stiffener gussets located behind cam keepers, and an upper steel pressing (header plate). They are welded together to form a highly rigid box section. Rear header Header plate Gussets 6.5.4 Door Systems 4.0 mm thick 3.0 mm thick 4.0 mm thick Qty.: 4 Pes. The doors consist of two leaves. Each leaf consists of a door panel, continuously welded into a frame, a pair of locking rods with mounting brackets and handles, four hinge blades and pins, sealing gaskets with retainers, and "tie back" retaining lines. The doors will be attached to the rear frame by the hinge pins and will be capable of opening through an arc of about 270 degrees. Door panel and frame welding will be accomplished with mixed gas welding equipment only. 6.5.4.1 Door Leaves Each door leaf consists of a panel and a door frarne. The door frame consists of vertical ( inner & outer ) and horizontal ( upper & lower ) members. The door panel and door frame (including square tube end plate) are welded together with mixed gas welding equipment, and form the rectangular door leaves. The doors are so arranged that the left leaf can't be opened without displacement of the right leaf. a. Door Panel : With 5 corrugations Depth 36 Mm Width : 72 mm Slope Panel thickness 68mm 2.0mm Page: 9 of20 This file is strictly confidential and privileged. It is intended only for the use of the intended recipient. tf you are not the Intended recipient, please notify us Immediately by e~mail at hsd@cimc.com, or phone +86 755 26691130. Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any person. PDF created with FinePrint pdfFactory trial version http://www.fineprint.com ~CIMC 40'x8'x9'6" TRITON b. Door Frame 1) Horizontal door member: 150 x 50 x 3.0 mm, channel section. 2) Vertical door member: 100x50x3.2 mm RHS (outer & inner) 6.5.4.2 Hinges and Pins Four forged hinges, providing with bushed hole, are welded to each door leaf. Each door is installed by hinge pins, washers and bushings. Washer : Stainless steel, under the bottom of hinge Bushing : Self-lubricating synthetic Pin : Stainless steel. 6.5.4.3 Locking Devices Two min. 3mm thickness steel tube locking rods with handles, cam ends, and mounting brackets are attached to each door leaf. They are fastened to the door with standard bolts f nuts as well as six huck bolts for TIR security purposes. The bars are suspended in the mounting brackets with synthetic, self-lubricating bushings. An EPDM shim will be inserted between the mounting brackets and the door for abrasion protection, the shim will be a minimum of 3 mm larger in circumference than the brackets. Cam keepers are welded to the door header and sill to receive the cams mounted on the lock rods. a)Locking device type : Saejin SJ-66M or HH-EA with secura cam & keeper. b) Locking rod treatment: Hot-Dipped galvanized toBS729 (75f.L) c) Cam keeper treatment: Electro zinc plated. 6.5.4.4 Door Holder and Receptacle A door tie back, made of mixed nylon rope, is tied to the centerside locking rod & the receptacle ( door hook ) is welded to each bottom side rail to retain the door in the open position. 6.5.4.5 Seal Gaskets The black door seal gaskets are E.P.D.M rubber and of a "C" type for the bottom, "J" type for the top and side. They are attached to the door frame with stainless steel rivets and retainer strips. The gasket is set atop a bead of adhesive sealant. 6.6 Side Wall Assembly 6.6.1 Top Side Rails Each side rail of right and left hand is made of square steel tube. Rail: 60x60x3.0 mm RHS Page: 10 of20 This file is strictly confidential and privileged. It is intended only for the use of the Intended recipient. If you are not the intended recipient, please notify us immediately by eMmail at hsd@cimc.com, or phone +86 755 26691130. Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any person. PDF created with FinePrint pdfFactory trial version http://www. fineprint.com CIMC 40'x8'x9'6" TRITON 6.6.2 Side Walls Each side wall will be composed of a number of sheets for the intermediate (inner) parts and outer panels at each end of side wall, fully vertically corrugated into trapezium section, butt welded together to form one panel by automatic welding. a) Inner panel b) Outer panel 1.6 mm Thk. 2.0 mm Thk. Qty. Qty. 9 Pcs./Each side 2 Pcs./Each side c) Trapezium Outer face Inner face Pitch 6.7 Roof 72mm, 70mm, 278mm Slope Depth 68mm 36mm The roof will be constructed by several die-stamp corrugated steel sheets with a 5 mm upward camber at the center of each trough and corrugation, these sheets are butt jointed together to form one panel by automatic welding. Corrugation Shape Depth 20 mm Pitch 209 mm Inter face : 91 mm Slope 13.5 mm Panel thickness Sheets Qty. 6.7.1 Roof reinforcement plate Outer face : 91 mm Camber upwards 2.0mm 11 Pes. 5 mm Four 3.0 mm thick reinforcement plates shall be mounted around four comer fittings. 6.8 Floor 6.8.1 The Floor Boards The floor consists of plywood. The plywood is treated with preservative according to the latest requirement of Commonwealth Department of Health, Australia. Plywood thickness Plywood moisture content Plywood ply number 6.8.2 Arrangement and Fixing 28mm Less than 14% 19 plies The plywood boards are laid on the crossmember with a pre-blasted, painted, free floating flat steel bar at the center and two pressed steel floor angles along both side rails. The floor center rail will be installed on the finishing line after all blasting and painting have been completed. A adhesive backed sponge tape will be applied to the vertical flange of floor angle. The plywood boards are tightly secured to each crossmember with countersunk self-tapping steel screws. The heads of the floor screws are countersunk below the level of the upper surface of the floor by 1.5 mm to 2.5 mm. Page: 11 of20 This file Is strictly confidential and privileged. It is Intended only for the use of the Intended recipient If you are not the intended recipient, please notify us immediately by e-mail at hsd@cimc.com, or phone +86 755 26691130. Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any person. PDF created with FinePrint pdfFactory trial version http://www.fineprint.com CIMC 40'x8'x9'6" TRITON Screws Screws' Qty. Floor angle Floor centre rail M8 x 45 x <!>16 (head), Electro zinc plated 6 Pes/end row, 5 Pes/other, 3 Pes/outrigger 25x25x3 mm 50 x 4 mm, Painted with Zinc rich primer 6.9 Specja! Features 6.9.1 Customs Seal Provision Customs seal provisions are made on each locking handle and retainer in accordance with TIR requirements by rivets. 6.9.2 Lashing rings a. Lashing rings are welded to each bottom and top side rail at corresponding recessed area of side wall. Lashing rods Qty./ bottom or top side rail : 10, Total : 40 b. Lashing rods are welded on each rear corner post slot & on each front corner post. Lashing rods Qty./front corner post: 5, Total : 10 Lashing rods Qty./rear corner post : 5, Total : 10 c. Capabilities of pull load of every lashing point are as following: Lashing rings on the side rails : 2,000 kg/each Lashing rods on the corner posts : 1,500 kg/each d. Treatment of lashing ring I bar: Electro zinc plated 6.9.3 Sill Cut-Outs 200 x 75 x 9 mm channel section steel recesses are provided in each ends of rear sill adjacent to the bottom fitting to prevent damage due to any twistlock misalignment. 6.9.4 Ventilators Two ventilators with EPDM seal gasket are supplied on each end side wall, fixed by three aluminum huck-bolts, the sealant is to be applied on the edges except the bottom side of the ventilator, after the completion of paint. The sealant is "Brown Chloroprene". Ventilator material Ventilator Qty. ABS Resin Labyrinth Type. 2/side wall , Total: 4 Pa e: 12 of20 This file is strictly confidential and privileged. It is intended only for the use of the intended recipient. H you are not the intended recipient, please notify us immediately by e-mail at hsd@cimc.com, or phone +86 755 26691130. Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any person. PDF created with FinePrint pdffactory trial version http://www.fineprint.com CIMC 40'x8'x9'6" TRITON 7. Preservation 7.1 Surface Preparation of the Steelwork 1) All steel surfaces will be degreased and shot blasted to Swedish Standard SA 2.5 to obtain a surface roughness of 25 to 45 f!· This will result in the removal of all rust, dirt, mill scale and other contaminants. The surface profile of all blasted surface will comply with Rugo Test #3, BN9a to BN10b. Removal of all loose grit and dust shall be accomplished with clean dry compressed air, dust cleanliness standard will comply with Hempel standards. 2) All fasteners such as bolts/nuts, washers, self-tapping screws, which are not mentioned in this Spec. will be electro zinc:plated to 12 f!· 3) Sealant All floor seams, perimeter, holes for securing bolts, unwelded interior joints and other places where water may enter will be sealed. Sealant Materials: a. Neoprene/Chloroprene ( cargo contact area ) b. Butyl ( non-cargo contact areas ) 7.2 Coating 7 .2.1 Prior to Assembly All steel surfaces will be coated with primer paint immediately after being shot-blasted (within 1 hour). 7.2.2 After Assembly After assembly before 2nd blast, a final inspection will be performed to identify, remove, or correct spatter, contamination, and weld defects. All weld joints will be shot blasted to remove welding flux, spatters, burnt primer, and other contaminates. After 2nd blast, all units will have a light check performed to identify pinholes or weld defects. Immediately after the light leak check the units will be coated with zinc rich primer (interval between· 2nd blast and primer coat not to exceed 1 hour Page: 13 of20 This file Is strictly confidential and privileged. It is intended only for the use of the Intended recipient If you are not the Intended recipient, please notify us Immediately by e~mail at hsd@cimc.com, or phone +86 755 26691130. Do not copy, fo!Ward or use this Specification for any unauthorized purpose or disclose the contents to any person. PDF created with FinePrint pdfFactory trial version http://www.fineprint.com :CIMC 40'x8'x9'6" TRITON 7.2.3 All the surface of the assembled container will have coating system as follows: Process Paint Name OFT ( ll) Exterior Surface Zinc rich epoxy primer 30 Epoxy primer 30 Acrylic topcoat 60 { Colour: RAL 8004 ) Total: 120 Interior Surface Zinc rich epoxy primer 130 Epoxy topcoat, Colour: RAL 7035 I 50 Total: 80 Under Structure Zinc rich epoxy primer 30 Hempinol 1022-1999 I ACST8508 I 200 DCC8W /Ivan 512/ Antas 221/ Dinitrol 4941K/Tectyl121b Total: 230 *The DFT decision rules in practice is 90-10: For each area, and coat, less than 10% of the readings may be below the DFT specified. No readings may be below 90% of the DFT specified. Areas where the total DFT is more than twice the DFT specified are not acceptable and must be redone completely. * There are contrasting zinc primer colors for the shop primer and main primer coatings. 7 .2.4 The paint supplier shall be as per Triton approved supplier list. 7.2.5 The surface preparation, painting, and drying process will be carried out in accordance with the approved paint vendor's instructions (" Painting Procedures for Triton Dry Cargo Containers in CIMC Factory"). 8. Markings 8.1· Letterjng The markings will be designed decal and arranged according to buyer's requirement. The markings consist of the following contents: 1) Owner's emblems .......... according to owner's design. 2) Owner's code , serial number and check digit ( outside & inside ) 3) Size and type code ( outside ) 4) Weight details (on door ) 5) Other marking: According to owner's requirements. 6) Material of marking : 3M Scotch cal (Cast) VS5018. 7) Supplier of marking :"New Century" , "Ocean Shine". Page: 14 of20 This file is strictly confidential and privileged. It Is intended only for the use of the intended recipient. tf you are not the intended recipient, please notify us immediately by e-mail at hsd@cimc.com. or phone +86 755 26691130. Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any person. PDF created with FinePrint pdfFactory trial version http://www.fineprint.com CIMC 40'x8'x9'6" TRITON 8.2 Consolidate Plate 8.2.1 The containers will bear marking plate in accordance with the requirements of the Classification Authorities and owner such as mentioned in section 2.2 in this specification. The plate will be permanently riveted to the specified position, with an EPDM backing shim that is 3 mm larger in circumference than the plate, between the door panel and the plate. Plate material Stainless steel Plate treatment Chemically etched & enameled Rivets material Stainless steel Plate thickness 0.8 mm 8.2.2 Contents of the plate: 1) Owner's plate ( name and address ) . 2) CSC approval No. 3) Customs approval No. 4) Australian wood treatment . The engraved letters on this plate are as following : IM : Immunization XXXX : The name of preservative. XXXX : The time of immunization. 5) Date of manufacture (year-engraved, month-stamped) 6) Owner's serial number (stamped) 7) Owner's model number. 9. Testing and Inspection 9.1 Proto-type Container Proto-type container to be manufactured in accordance with this specification and shall be tested according to procedures described in the ISO 1496/1 and the Classification Society's requirements. The containers will be fabricated & tested in advance of the mass production. 9.2 Container in Mass Production 9.2.1 Every container in mass production shall be manufactured under effective quality control procedures to meet the specified standards. One in every 100 of containers shall be tested for following items: a) Stacking test b) Lifting from top corner fitting test c) Lifting from bottom corner fitting test d) Floor test (one in every 50) After completion, all the containers shall be subject to dimension check, door operation check, light leakage test & production type weather-proofness test. The containers shall be inspected by the surveyor of Classification Society and identified by the appropriate society seal. Pa e: 15 of20 This file is strictly confidential and privileged. It is intended only for the use of the intended recipient. If you are not the intended recipient, please notify us immediately by· e-mail at hsd@cimc.com, or phone +86 755 26691130. Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any person. PDF created with FinePrint pdfFactory trial version http://www.fineprint.com CIMC 40'x8'x9'6" TRITON 9.2.2 Each assembled corner post structure will have tension test with 15,240 kg after welding in the construction line. 9.3 The proposed criteria table for general prototype testing: Test No. Test Load Method a. Stacking Internal Load: Hydraulic cylinder load to corner post through 1.8R-T top corner fittings. Testing Load: Time duration : 5 mins . 97 ,200kg/Post b. Lifting from Top Internal Load: Lifting vertically from top corner fittings. Corner Fittings 2R-T Time duration : 5 mins . c. Lifting from Internal Load: Lifting from bottom corner fitting 30 Deg. to Bottom Corner 2R-T horizontal. FittinQS Time duration : 5 mins . d. Side Lifting from Internal Load: Lifting vertically from two top corner fittings. two Top Comer 1.25R Time duration : 5 mins . Fittings e. Restraint Testing Load: Hydraulic cylinder load applied to bottom side (Longitudinal) 2R(Riside) rails in compression & then tension . Internal Load: Time duration : 5 mins . R-T f. Floor Strength Truck Load: Special truck is used. 7,260 kg Total contact area: 284 sq em, Wheel width: 180 mm, Wheel center distance: 760 mm g. Wall Strength Test Load: Compressed air bag is used. (Front & Door) 0.4 p Time duration : 5 mins. h. SideWall Test Load: Compressed air bag is used. Strength 0.6 p Time duration : 5 mins. i. Roof Strength Test Load: Applied area will be the weakest place of 600 300 kg x 300 mm longitudinal & transverse. Time duration : 5 mins . j. Rigidity Test Force: Hydraulic cylinder will be applied to front top (Transverse) 15,240 kg end rail & door header through top comer (150 kn) fittings, each time pulling & pushing. Time duration : 5 mins . In rear end, a water tightness shall be demonstrated while the container is under half-rackinq load. k. Rigidity Test Force: Hydraulic cylinder load will applied to side top (Longitudinal) 7,620 kg rail through top corner fittings. (75 kn) Time duration : 5 mins . I. Weather Nozzle: 12.5 mm (inside dia.) I Distance: 1.5m Proofness Pressure: 1 oo Kpa (1 kg/sq.cml Speed: 100 mm/Sec. * Note: R-Maximum Test Gross Weight (32,500kg) P -Maximum Test Payload T-Tare weight *Certification by Class shall be shown on 32,500kg MGW Page: 16 of20 This file is strictly confidential and privileged. It is intended only for the use of the Intended recipient ff you are not the intended recipient. please notify us Immediately by e-mail at hsd@cimc.com, or phone +86 755 26691130. Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any person. PDF created with FinePrint pdfFactory trial version http://www.fineprint.com :CIMC 40'x8'x9'6" TRITON 9.4 One door off operation test The container shall be tested for one door open off operation and marked the allowance to CSC plate. The test shall include stacking test and transverse rigidity test with right hand door moved 9.4.1 Stacking Test The test shall base on five (5) high stacked. Internal Load: 1.8R-T, Testing load: 54,860 kg/post. 9.4.2 Racking Test Test force: 11.430 kg. 9.4.3 Door Wall Strength Test Test load: 5,650 kg, applied to the closed door side. 9.5 Inspection 9.5. 1 Materials and Component Parts Inspection All the materials and components will be inspected by Quality Control Dept. to make sure that the.most suitable and qualified components being used for the containers and to meet this specification. 9.5.2 Production Line Inspection Every container will be manufactured under effective Quality Control procedures, and every production line of the factory will be inspected and controlled by the Quality Control Dept. to meet this specification. 9.5.3 Container Quality Control Container production shall be attended by the Buyer's representative and/or a duly designated inspector. The concerned party shall have authority to provide directives concerning the production and quality thereof. Any and all costs which are resulted from poor production necessitating the intervention and/or reinspection by the Buyer's inspector or appointed inspector shall be borne by the container manufacturer. The Buyer and/or it's designated inspectors shall have the right to recommend the manufacturer to halt the production providing such is related to a quality control problem that is not remediable without stopping the production line. The manufacturer's failure to remedy a particular quality control problem on line in a timely manner shall be interpreted as the manufacturer's inability to remedy such quality control problems without stopping the production line. Failure to stop the production line in accordance with the above mentioned outline shall oblige the Buyer and/or it's designated inspector to immediately report such to the manufacturer's regional and corporate headquarters and to consider any unit produced following such as a rejected unit. Pa e:17of20 This file Is strictly confidential and privileged. It is Intended only for the use of the intended recipient ff you are not the intended recipient, please notify us Immediately by e-mail at hsd@cimc.com, or phone +86 755 26691130. Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any person. PDF created with FinePrint pdfFactory trial version http://www.fineprint.com CIMC 40'x8'x9'6" TRITON 10. Documents Submission CIMC shall submit the specification with following drawing ( 3 sets): General arrangement Side wall assembly Base assembly Front end assembly Rear end assembly Marking arrangement Roof assembly 11. Guarantee The guarantee period will commence at the day of delivery and the delivery is not later than three ( 3 ) months after the containers are accepted by the owner. 11.1 pajnt Guarantee The paint system applied to the container surface shall be guaranteed against corrosion and/or paint failure for a period of five (5) years. The guarantee shall be applied to all the kinds of faults I failures affecting more than 10% ofthe painted surface, and partial or total repainting shall be assured for the container(s) at the manufacturer's expense. Normal wear/tear, or corrosion caused by acid, alkaline solution or result from damages by abrasion impact or accident are excluded. Corrosions is defined as the rusting exceeding RE3 ( European scale of degree of corrosion ). 11.2 Other Gyarantee All containers shall be guaranteed by CIMC against any defects or omissions in construction, poor workmanship, or defective materials for a period of two ( 2 ) years. All plywood shall be warranted for five (5) years. Any damages caused by mis-handling, mis-securing, mis-loading, impact and other natures of accident are excluded. The self-adhesive film decal shall be guaranteed seven ( 7) years. 12. Materials The main materials used in construction are as follows or approved equivalent, and the tolerance of steel plate thickness will obey JIS standard G3193-1990. Where used Materials Front End Assembly Front corner post Front sill gusset Front rail Front panel Front header Base Assembly Bottom side rail Crossmember Outrigger Gooseneck tunnel Corten A or SPA-H SS41 Corten A or SPA-H Corten A or SPA-H Corten A or SPA-H Corten A or SPA-H Corten A or SPA-H Corten A or SPA-H Corten A or SPA-H Page: 18 of20 This file is strictly confidential and privileged. It is intended only for the use of the intended recipient. tf you are not the intended recipient, please notify us immediately by e~mail at hsd@cimc.com, or phone +86 755 26691130. Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any person. PDF created with FinePrint pdfFactory trial version http://www.fineprint.com CIMC Floor centre rail Floor support angle Rear End Assembly Rear corner post (outer) Rear corner post ( inner ) Doorsill Door header Door panel frame Door panel Door hinge Door hinge pin Locking device Locking cam, cam keeper Locking rod Door gasket Gasket retainer Washer Rivet Shim Corner fitting Side Wall Assembly Side panel Top side rail Lashing bar, lashing ring Ventilator Roof Assembly Roof corner gusset Roof panel Floor Floor board Floor screw Note A: Corten A or SPA-H Corten A or SPA-H Corten A or SPA-H SM50YA 40'x8'x9'6" TRITON Corten A or SPA-H Corten A or SPA-H Corten A or SPA-H Corten A or SPA-H S25C, Electro zinc plated Stainless steel Saejin SJ-66M or HH-EA with secura cam & keeper S20C STK41 EPDM Stainless steel Stainless steel Stainless steel EPDM. SCW49 Corten A or SPA-H Corten A or SPA-H SS41, Electro zinc plated A.B.S Corten A or SPA-H Corten A or SPA-H Plywood Electro zinc plated Material SS41 JISSCW49 SS50 Yield point (kg/sq.mm) 25 Tensile strength (kg/sq.mm) 41 S20C S25C SM50YA Corten A SM50A 28 29 25 28 37 35 33 49 50 42 46 50 49 50 Pa e: 19 of20 This file is strictly confidential and privileged. It is Intended only for the use of the Intended recipient lf you are not the intended recipient, please notify us immediately by e-mail at hsd@cimc.com. or phone +86 755 26691130. Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any person. PDF created with FinePrint pdfFactory trial version http://www.fineprint.com ! I l I ' CIMC 40'x8'x9'6" TRITON Note B: Approved supplier: As per Triton approved supplier list. Revisjon List c. Revision date: Jul. 28, 2003 1. Change the locking device to Saejin SJ-13BF Type or Haihang HH-E, with secura cam and keeper. d. Revision date: Dec. 10,2003 1. In suppliers of marking, delete the "Long Chang". 2. The color of shop primer and main primer coatings shall be contrasting colors. e. Revision date: Feb. 6, 2004 1. Locking rod tubes shall be MINIMUM 3mm thickness. 2. The floor center rail will be installed on thefinishing line after all blasting and painting have been completed. 3. Material of marking: Cast Vinyl 3M VS 5018, Supplier of marking: As per Triton Approved Supplier List. 4. Main materials used in construction from Corten skin to full Corten, and material list to be revised accordingly. 5. Inside serial numbers should be changed to white kiss-cut. f. Revision date: Mar. 30, 2004 1. Change the Locking device from Saejin SJ-13BF or HaiHang HH-E with secura cam and keeper to Saejin SJ-66M or HH-EA with secura cam & keeper. Page: 20 of20 This file Is strictly confidential and privileged. It Is Intended only for the use of the intended recipient tf you are not the intended recipient, please notify us immediately by e-mail at hsd@cimc.com, or phone +86 755 26691130. Do not copy, forward or use this Specification for any unauthorized purpose or disclose the contents to any person. PDF created with FinePrint pdfFactory trial version http://www.fineprint.com Chevron CHEVRON PICEANCE BASIN EXP. DATE 07-31-10 INCORPORATED 0 Issued for Construction 19-Nov-TKO RLV TKO A Issued for Review 04-Nov-08 TKO RLV TKO Rev Status Date Origin. QA/QC LDE EM PM Document Title: PICEANCE FIRE PROTECTION PHILOSOPHY PAl Project No. Document No. Page 2033 2033-201-00-ST -0001 1 of14 Title: PICEANCE FIRE PROTECTION PIDLOSOPHY Customer: Chevron Project: Piceance Basin Project Spec No: 2033-201-00-ST-0001 Date: 7 December 2008 TABLE OF CONTENTS REV: 1 Page2 of14 1.0 EXECUTIVE SUMMARY •.•..••.••.••..•..•.••••••.••.•.•..•.•.••.•••••••.•••.•••.••.••.••.••.••••••.••.••.•••••••.••.•......••.••.• 3 2.0 PURPOSE ••.•••....•.••.••.••.••...•.•.••.••••••.•.••...••••.••.•.••....•.•.••.•.••.•..•..•..•.•••.••••••••.••••.•••.••.••.••••••.••..•.•.•••••. 4 3.0 SCOPE .••••.•.•..•.••.••••.•••...••.••.••.••.•••..••••.••.••.••.•..•..•.••.•.••••.••••.•...•••.•••.•••••.••.•...•.•••.••.•.••.•.•••..•..••.••.•••• 4 4.0 CONCLUSIONS •.••.••.•.••.•••••.•••.••.••..•.••.••.••.••.•.••....••.•.••.•.••.•..•..•.•.•••.•.•••.•••••••.•.••.•.••.••.••••.•..•.••.••.••• 4 5.0 RECOMMENDATIONS ............................................................................................................... 4 6.0 REFERENCE DOCUMENTS •.••..••.••.••.•..••.••••.••.•.••...•.••.••.•.••.••.......•••.•.••••••.••.••.•.•••••.••.•.••.••.•..... 4 7.0 FACILITY DESIGN PARAMETERS ••..•.••.••.••••.•.••••.•.••.••.•.•••.•....••.•••.••.••.•••.•.......•.••.••.•.••.•..•.... 5 8.0 FLAMMABLE HYDROCARBON INVENTORY ••••.•.••••..•....•••.••.••.••.•••.•...•.•.••.••.•.••.••.•..•.••.•.•• 5 9.0 FACILITY AND ENCLOSURE DESIGN PARAMETERS ..•.•••.••.•••.•.•••.••.••.•.••.••.••••••....••.••.•.• 7 10.0 CONSTRUCTION .•••.•.•••.••.•.•••.••.••.••.•••••..•..•.••.••.•.••••.•...••..•.••.••.••••••.....•.••.••.••.••.•.......••.•.•.••.••.••.•. 7 11.0 FIRE AND GAS DETECTION .••.••.••.••.•.•••.•.••.••.•.•.•....••.••.•.•••••.•••.•.•••.••.•••••.•••••......••.••.•.••.•••••••.. 9 12.0 FIRE SUPPRESS! 0 N .................................................................................................................... 9 13.0 CODE DISCUSSION •••.•••••.••.••.•••.•••••.•••••....••.•.••.••.•.••.•...••.••.••••••••..•.....•.•••.••••.••.••......••.••••.•..••.•. 10 Tables Table 1: Liquid lnventories .......................................................................................................................... 6 Appendix Appendix A ................................................................................................................................................. 13 Appendix B ................................................................................................................................................. 14 Page2/14 1.0 EXECUTIVE SUMMARY Title: PICEANCE FIRE PROTECTION PIDLOSOPHY Customer: Chevron Project: Piceance Basin Project Spec No: 2033-201-00-ST-0001 Date: 7 December 2008 REV: 1 Page 3 of 14 The Chevron Mid-Continent & Alaska Business Unit (Chevron) is currently developing facilities in the Piceance Basin of Western Colorado for the purposes of natural gas production, treatment, transmission, and delivery to sales pipelines. These facilities include modular facilities close to the gas wellheads, as well as a number of modular unit process facilities at a Central Production Facility (CPF) to be located north of the town of De Beque, Colorado. Because of the unique nature of fire and explosion hazards at natural gas facilities, Chevron has planned and designed these facilities to incorporate fire prevention and protection systems and procedures in accordance with industry standards, relevant building and fire protection codes, and Chevron's Safety in Design program. The purpose of this document is to present the design and operational philosophy Chevron proposes for the development of these facilities within the CPF. The key design parameter in the design of the fire protection system for the CPF is the ability to quickly and automatically depressure most of the facility, shut down the flow of hydrocarbons to the facility, and remove all electrical power, except essential power, upon automatic detection of a fire anywhere in the facility. As is typical in the petroleum industry, Chevron has designed the production and treatment facilities at the CPF as a series of modular unit processes. Each module is designed to accomplish some function or functions related to natural gas processing, such as removal of water and solids flowing within the gas stream, removal of heavier hydrocarbons from the gas stream, compression of the gas prior to release to a pipeline, metering the gas prior to delivery of the gas to a customer's pipeline, etc. Because of the harsh weather conditions at the site, many of these unit processes are enclosed to protect certain equipment and instrumentation from the elements. Some of the process skids will be mostly enclosed; other process modules will have an enclosure around the instrumentation and control equipment only. Most of the process enclosures will be factory built, and Chevron has been working with the Colorado Division of Housing to secure plan reviews and permits for these prefabricated facilities. Several of the facilities will be site- built enclosures, including a large facility housing the main compression equipment at the CPF. Additionally, some of the prefabricated facilities will house support and utility processes, but will not house any significant hydrocarbon materials. Because of the nature of the fire hazard associated with the enclosures housing process gases and associated equipment, the primary focus of this narrative will be on the process buildings. The process equipment enclosures are classified by the International Building Code (ffiC) as buildings with an Occupancy Classification of H-2. This rating is based on the amount of flammable gas and liquids carried in the equipment and piping within the enclosures. Although buildings with an H-2 occupancy rating are normally required to have an automatic sprinkler system, Chevron is proposing to protect these facilities with a non-water-based emergency system in accordance with the exemptions allowed in me Section 903.3.l.l.l. The design and construction of the process building enclosures have been conducted after identifying and taking into account the hazards associated with the types of equipment and materials contained within the enclosure. The design and construction standards utilized are more stringent than required by current industry codes and standards. The enclosures are constructed of noncombustible materials and have fire and gas detection systems specifically designed for the gas processing industry. The egress requirements of IBC Chapter 10 and the NFPA Life Safety Code requirements are also incorporated into the design. Page3/14 2.0 PURPOSE Title: PICEANCE FIRE PROTECTION PHILOSOPHY Customer: Chevron Project: Piceance Basin Project Spec No: 2033-201-00-ST-0001 Date: 7 December 2008 REV: 1 Page 4 of 14 This philosophy identifies the design parameters utilized to engineer equipment enclosures that meet the requirements of the IBC for buildings with an H-2 rating but without an automatic sprinkler system. This document also establishes that the level of life safety proposed for the process facilities is equivalent to those code requirements. 3.0 SCOPE This document only analyzes those equipment enclosures located at the Central Processing Facility in Chevron's Piceance Basin Development. It focuses on those enclosures with an H-2 rating by identifying the hazards within the enclosure and the design measures used to mitigate those hazards to personnel who may be present at the time of an incident. 4.0 CONCLUSIONS The parameters utilized in the design and construction of the equipment enclosures covered by this philosophy adequately protect personnel from the hazards due to the presence of hydrocarbons in the enclosure, without employing automatic sprinkler systems. 5.0 RECOMMENDATIONS All enclosures covered by this philosophy must be built and installed as designed. Additionally, operational and maintenance procedures should be implemented to ensure that all safety systems are tested and maintained in accordance with IBC and International Fire Code (IFC) requirements. 6.0 REFERENCE DOCUMENTS Reference Document IBC 2003 IFC 2003 IMC 2003 APIRP14C APIRP14G Document Title International Code Council - International Building Code -2003 International Fire Code -2003 International Mechanical Code -2003 American Petroleum Institute - Recommended Practice for Analysis, Design, Installation, and Testing of Basic Surface Safety Systems for Offshore Production Platforms Recommended Practice for Fire Prevention and Control on Open Type Offshore Production Platforms Page 4/14 APIRP500 APIRP752 APIRP2030 API Publication 251 OA COGCC 30 CFR Chapter II NFPA 101 Title: PICEANCE FIRE PROTECTION PillLOSOPHY Customer: Chevron Project: Piceance Basin Project Spec No: 2033-201-00-ST-0001 Date: 7 December 2008 REV: 1 Page 5 of14 Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as Class I, Division 1 and Division 2 Management of Hazards Associated with Location of Process Plant Buildings Application of Fixed Water Spray for Fire Protection in the Petroleum and Petrochemical Industries Fire Protection Considerations for the Design and Operation of Liquid Petroleum Gas (LPG) Storage Facilities Colorado Oil and Gas Conservation Commission Rules for Oil and Gas Development in Colorado -Section 606A "Fire Prevention and Protection" Code of Federal Regulations- Title 30 (Mineral Resources) -Chapter II Part 250.800 "Production Safety Systems" National Fire Protection Association- Life Safety Code 7.0 FACILITYDESIGNPARAMETERS The CPF is designed to be an unmanned facility. The control system is specifically designed to ensure that in the case of a significant event all instrumentation fails safe, the main electrical feed to the affected area is shut off, incoming hydrocarbon flow to the facility is blocked at the battery limit (boundary) of the facility, and the bulk of the hydrocarbon inventory in the facility is depressured to the facility's flare system. Although some limited portion of the piping and some vessels within the plant may have a residual gas pressure after the shutdown, virtually all fuel sources within the facility will be immediately shut off. The CPF does not have water available for fire suppression activities. Additionally, no local fire water system exists to provide for tie-in for CPF fire suppression systems. 8.0 FLAMMABLE HYDROCARBON INVENTORY 8.1 Liquid Inventory The primary fire hazard within the enclosures listed in Table 1 is related to hydrocarbons processed within the facility. In addition to various volumes of natural gas, these buildings will contain various quantities of hydrocarbon condensates (condensates are flammable hydrocarbon liquids that condense out of the gas stream when the gas is exposed to typical ambient temperature and pressure). The hydrocarbon condensate liquid contained in most of the process buildings in Table 1 is a Class lA flammable liquid (its flash point is less than 73°F and its boiling point is less than 100°F). The exempt quantity of Class 1A liquids, per the IBC, is 30 gallons. The exempt quantity for flammable gases in the IBC is 1000 standard cubic feet, which is Page5/14 Title: PICEANCE FIRE PROTECTION PHILOSOPHY Customer: Chevron Project: Piceance Basin Project Spec No: 2033-201-00·ST-0001 Date: 7 December 2008 REV: 1 Page 6 of14 exceeded in each of the building enclosures. Due to the inventory of flammable materials located in each enclosure, a rating of H-2 for each of the enclosures and compressor building is warranted. Fire protection methods based on this occupancy classification are further discussed below. Gas Separator Liquid Separator Gas Filter Separator Sales Gas Compressors Condensate Loading Produced Water and Condensate Pumps Flare Scrubber Vapor Recovery Unit Fuel Gas 604 128 426 1013 34 253 42 1000 55 20 51 257 14 35 Table 1: Liquid Inventories Condensate Water Condensate Water Condensate Water Condensate Water Lubricating oil Condensate Water Condensate Water Condensate Water Condensate Water Condensate Water -16 37 -2 78 N/A N/A -20 34 262 >300 -2 78 -2 78 -2 78 -4 75 -15 37 Page6/14 '"~,e'\,.i''C-( ''"'••' ••• Title: PICEANCE FIRE PROTECTION PIDLOSOPHY Customer: Chevron Project: Piceance Basin Project Spec No: 2033-201-00-ST-0001 Date: 7 December 2008 REV: 1 Page 7 of14 9.0 FACILITY AND ENCLOSURE DESIGN PARAMETERS 9.1 General Almost all of the process building enclosures will contain some amount of hydrocarbon condensate liquid, which is produced from the wellhead along with the lighter natural gas components. Some of the individual unit processes are specifically designed to remove these flammable liquids and transfer them to holding tanks elsewhere within the plant. The volumes of flammable liquids in many of these enclosures exceed the IBC thresholds at which a building is classified as H-2. These volumes may increase the fire hazard within each enclosure to some degree, but do not change the overall philosophy of our proposed fire protection program. 9.2 All flammable liquids and gases within the enclosures are totally contained within the process piping and ASME-rated pressure vessels. An automatic fire and gas detection system is provided to detect any leaks or fires. 9.3 In the event of a fire anywhere within the CPF, the facility is depressured to the flare to remove the bulk of the flammable gas sources from the fire. Any remaining hydrocarbon liquid would initially be protected and contained within the process piping and/or vessel(s) in which it resides within the enclosure. The rate at which the hydrocarbon liquid would contribute to the ongoing fire would depend upon the amount of damage in the containing piping/vessel(s). If the containment is damaged or breached, the materials would bum in place along with the remaining gaseous components. The relative volumes of gas and liquids being burned, and access to the fire of an oxidizing airflow, would determine the extent to which the liquid boils in place as it contributes to the fire. 9.4 Although a combination liquid-and-gas fire might bum hotter and longer than a pure gas fire, the fundamental principle behind our proposed fire protection system is unchanged. The system is designed to contain the fire and allow it to burn out in place. There is no need to attempt to suppress the fire with a water-based sprinkler system. It would likely cause a more substantial hazard by allowing the remaining flammable gases to form a combustible cloud capable of re-ignition until allowed to dissipate. 9.5 It would also be undesirable for the fire department to attempt to put out the fire within an enclosure prior to the consumption of the fuel exposed to the fire. As mentioned above, the remaining gaseous components, along with liquid components that are vaporized due to the heat of the fire, would be dangerous and subject to re-ignition. (See sections 13.3.4 and I 3.3.5 for details of this hazard.) 9.6 A closed drain system is provided that removes all liquid from the enclosure's coaming area to a remote underground sump tank. The drain system incorporates P-traps to prevent flammable gases from venting into the enclosure. Liquids collected in the underground sump are subsequently pumped into the facility's above-ground storage tanks. 10.0 CONSTRUCTION Each enclosure has the following construction attributes: 10.1 All hazardous gases and liquids within each enclosure are housed in self-contained process piping and/or pressure-rated vessels. Piping is designed and constructed in Page7/14 Title: PICEANCE FIRE PROTECTION PHILOSOPHY Customer: Chevron Project: Piceance Basin Project Spec No: 2033-201-00-ST-0001 Date: 7 December 2008 REV: 1 Page 8 of14 accordance with ANSI B31.3 requirements for gas facilities of this type. All pressure vessels are designed in accordance with applicable ASME Section VIII requirements for these vessels. 10.2 Process piping and vessels are designed to contain all materials with no significant leakage. A fire and gas detection system is specifically designed for each enclosure to detect the presence of hydrocarbons in the air or a fire event, and will initiate emergency shutdown systems within the plant upon detection of a significant amount of hydrocarbons. (Details of tbis system are described in the following sections.) 10.3 Each enclosure is constructed entirely of noncombustible materials. 10.4 Additionally, all equipment, piping, instrumentation, junction boxes, panel boards and cable within the enclosure are also noncombustible or flame-retardant. 10.5 Adequate access/egress is provided to allow safe evacuation from the enclosure in the event of a fire or gas release in compliance with IBC and NFP A Life Safety Code requirements. These criteria include the provision of at least two means of egress from any building with travel distance to an exit greater than 25 feet. No dead-end corridors are allowed in any of the buildings greater than 20 feet. 10.6 Ventilation is provided to the enclosure in compliance with JMC requirements. 10.7 Panic door hardware and emergency exit lighting are provided in compliance with IBC. 10.8 To prevent electrical ignition of hydrocarbon vapors, all electrical components on the process skids are explosion-proof and rated for service in Class I, Group D, Division 1 atmospheres as rated by API RP 500, and each component is certified as such by a Nationally Recognized Testing Laboratory (NRTL). All 208V AC and 120V AC wiring and equipment within each process skid are wired to an on-skid explosion-proof panelboard. All equipment in the compressor building is rated for Class I, Division 2. (The distinction is a result of the presence of the combustion engines driving the compressors.) 10.9 Although the enclosures are designed to be safe when continuously occupied, the facilities in practice will be normally unoccupied. Personnel only occupy an enclosure when conducting equipment monitoring and observance activities; doors are kept open when the enclosure is occupied. 10.10 The operational activities typically require personnel in the enclosure for less than 15 minutes on any given day. Any maintenance activities within the facility will be conducted under stringent safety protocols, including additional fire suppression equipment and personnel being present and the use of lock-out/tag-out procedures. 10.11 Operational procedures at the plant prohibit the accumulation of any combustible materials within the enclosure. 10.12 The design of the site surrounding each enclosure incorporates a barrier zone approximately 20 feet wide covered with noncombustible gravel and no vegetation. Additionally, the site has significant security measures in place, and no admittance to the general public is allowed. 10.13 All enclosures and the process control and safety systems that interface with tbem were designed using Chevron's "Offshore Gulf of Mexico" standards and design criteria. Page 8/14 Title: PICEANCE FIRE PROTECTION PIDLOSOPHY Customer: Chevron Project: Piceance Basin Project Spec No: 2033-201-00-ST-0001 Date: 7 December 2008 REV:1 Page 9of14 Chevron considers these standards to be more stringent than most onshore standards, leading to a more conservative design. 11.0 FIRE AND GAS DETECTION Each enclosure is equipped with the following fire and gas detection technology, in strict compliance with the IFC and API RP 500: 11.1 Infrared point gas detectors which are tied to a central monitoring system will initiate shutdown of electrical service and hydrocarbon flow to and from the enclosure when gas is detected. These detectors are set to alarm when flammable gas at a concentration of 20% of the lower explosive limit (LEL) is detected. A complete shutdown of power and hydrocarbon flow to the enclosure is initiated when flammable gas at 40% of LEL is detected. All detection and monitoring equipment used at the site is listed by a Nationally Recognized Testing Laboratory (NRTL). See Appendix B. 11.2 A pneumatic fusible loop system consisting of stainless steel tubing pressurized with 40 psig instrument air, and including elements which will melt at 180"1', is provided on all hydrocarbon processing equipment per API RP 500. This system is equipped with a pressure sensor that is tied to a central monitoring system. A loss of pressure in the loop will indicate the affected enclosure and will shut down hydrocarbon flow to and from the enclosure and throughout the CPF and will initiate depressurization of the affected facilities to a dedicated flare. See Appendix A. 11.3 "Triple-infrared" fire detectors will be installed in each enclosure, and when a fire is detected, a programmable logic controller (PLC) will shut down the flow of hydrocarbons to and from the enclosure, as well as throughout the CPF. The bulk of the hydrocarbon inventories throughout the CPF will be depressured to a dedicated flare. (Some minor residual amounts of gas under pressure will still be present in some vessels and piping sections outside of the building enclosures.) Triple-infrared optical flame detectors (known as 'fire eyes' in the gas processing industry) will be installed in all H-2 occupancy buildings and will be tied to the fire alarm systems described above. 11.4 The triple-infrared open-path fire detector system is independent from and redundant with the pneumatic fusible loop system. Both of these systems are independent from the gas detection system. 11.5 Note that the types of detectors described above in Sections 11.1 through 11.3 are provided in lieu of the smoke detector system outlined in IBC Section 903.3.1.1.1. The primary reason for this is that there are no commercially available weatherproof smoke detectors that are rated for Class I, Division 1 service. 12.0 FIRE SUPPRESSION For these process enclosures, the flammable content hazard located within these enclosures is primarily pressurized natural gas. The experience within the petroleum industry is that a typical water-based sprinkler system cannot extinguish a pressurized gas fire, and in fact can create more of a hazard than it mitigates. The standard of the natural gas industry, as codified in API RP 500, is that suppression of a pressurized natural gas fire is best accomplished by immediately shutting off all incoming sources Page9/14 Title: PICEANCE FIRE PROTECTION PIDLOSOPHY Customer: Chevron Project: Piceance Basin Project Spec No: 2033-201-00-ST-0001 Date: 7 December 2008 REV: 1 Page 10of14 of fuel and venting all other inventories of fuel to a flare system. The remaining non-pressurized gas, along with any associated hydrocarbon liquid, is allowed to burn itself out. For manual suppression of small fires on a limited basis, each enclosure is equipped with hand- held 30-lb Class ABC fire extinguishers located at each door. 13.0 CODE DISCUSSION 13.1 IBC 13.1.1 IBC 2003 normally requires an automatic fire sprinkler system for all H-2 occupancies. 13.1 .2 All of the process buildings in this project are classified as H-2 due to the large volume of hazardous materials. 13.1.3 However, these buildings qualify as exempt from this requirement per IBC 903.3.1.1.1 Exempt Locations. Comments applicable to the facility under discussion are listed parenthetically following the code citation. IBC 903.3.1.1.1. Exempt Locations .... Automatic sprinklers shall not be required in the following rooms or areas where such rooms or areas are protected with an approved automatic fire detection system in accordance with Section 907.2 that will respond to visible or invisible particles of combustion. (In these facilities, an API-compliant gas detection system is installed and designed to respond to concentrations of flammable gas before any combustion takes place.) Sprinklers shall not be omitted from any room merely because it is damp, of fire- resistance-rated construction or contains electrical equipment 1. Any room where the application of water, or flame and water, constitutes a serious life or fire hazard. (This is true for these facilities. Water sprayed on a pressurized gas fire is unlikely to stop the fire, and could add an explosive hazard due to an unburned gas cloud if it did put out the fire momentarily.) 2. Any room or space where sprinklers are considered undesirable because of the nature of the contents, when approved by the building official. (This is true for these facilities. Because of the nature of the contents - pressurized natural gas -the petroleum industry standard for safety is to mitigate the risk with an API-RPSOO compliant gas detection & emergency shutdown system.) 3. Generator or transformer room ... Not Applicable 4. In rooms or areas that are of noncombustible construction with wholly noncombustible contents. Page10/14 Title: PICEANCE FIRE PROTECTION PHILOSOPHY Customer: Chevron Project: Piceance Basin Project Spec No: 2033-201-00-ST-0001 Date: 7 December 2008 REV: 1 Page 11 of14 (This exemption is partially true of the operating buildings in discussion. The buildings are of noncombustible construction, although the hydrocarbon contents within the process piping and vessels are combustible. However, upon detection of fire, the process equipment is depressured and all flammable gases are vented to the flare except for trace amounts remaining in the pipes at atmospheric pressure. Although some vessels may remain pressurized, none of these vessels are inside of building enclosures.) 13.1.4 IBC Discussion 13.2 IMC In summary, it is believed the buildings proposed for the Chevron CPF are exactly the type of facility envisioned by the code writers when developing this exemption. There is no question that these facilities contain hazardous flammable materials, but application of a water-based sprinkler system would be counterproductive, and would create more safety hazards than it would solve. A far more desirable solution is the substitution of a fire and gas-hazard detection and emergency shutdown system specifically developed for this industry by the API. With the concurrence of the Building Official and Fire Marshall of Garfield County regarding this exemption, the proposed facilities will be in total compliance with the intent and with the specific language incorporated into the IBC, IFC and related International codes. Each of the process equipment enclosures includes either fixed or manually operable louvers which make the use of non-water (gaseous, dry chemical, carbon dioxide, foam, etc.) fire suppression systems problematic. Louvers are provided in compliance with the IMC, which mandates adequate ventilation for rooms containing hazardous materials. Additionally, standard practice in the gas processing industry is to provide such ventilation to allow flammable gases to disperse, ideally before hazardous accumulations of the gases accumulate within the building. The reasoning within our industry, as codified in API documents, is that ventilating the gas is much safer than trying to contain it within the building. 13.3 API The Chevron CPF is designed in its entirety to be in total compliance with applicable standards of the American Petroleum Institute. 13.3.1 API RP 500, as detailed above, provides the design standards and details for a gas detection system specifically designed to prevent the accumulation of hazardous levels of flammable and explosive gases as applicable to our industry. 13.3.2 API RP 14G Section 5.7.d "Automatic Fire Control Systems -Enclosed Machinery Areas" indicates "Gas compressors, hydrocarbon pumps, and generators in adequately ventilated enclosed areas are normally not protected by automatic fire control systems." 13.3.3 API RP14G Section 5.6.c "Manual Fire Control Systems-Enclosed Machinery Areas" recommends dry chemical fire extinguishers and these are provided in each enclosure. Page 11/14 Title: PICEANCE FIRE PROTECTION PHILOSOPHY Customer: Chevron Project: Piceance Basin Project Spec No: 2033-201-00-ST-0001 Date: 7 December 2008 REV: 1 Page 12 of14 13.3.4 API RP2030 specifically discusses the hazards of attempting to suppress a flammable liquid or gas fire with water in two sections: 6.4 EXTINGUISHMENT .... Extinguishment by water spray is generally most effective where the fuel is a combustible solid, water-soluble liquid or high flash point liquid. However, the risks associated with extinguishing certain fires should be carefully evaluated. If significant quantities of flammable gases or vapors are released a more hazardous condition with potential for explosive re-ignition can be created by extinguishing such fires instead of allowing them to burn at a controlled rate with appropriate surveillance and protection of surrounding equipment. 7.2.3 Extinguishment. Extinguishment is seldom the primary purpose of water spray system installations in the petroleum industry ... It should be noted that extinguishment of low flash point hydrocarbon liquids with water spray is seldom possible and not necessarily desirable. A key question during hazard analysis is "If the material is extinguished while still generating vapor, is there a risk of vapor cloud re-ignition?" (The answer is yes at this facility.) 13.3.5 API Publication 2510A is primarily geared towards the liquefied Petroleum gas industry, but has relevant information for fighting pressurized gas fires. Per Table 5 -Water -Application Methods: .. One disadvantage of water deluge and water sprays is that they ... may not be effective for jet (torch) fires. Also Section 5.5 Detection Systems gives general guidance on hydrocarbon vapor detectors, heat detectors and flame detectors. This facility includes all three systems, and complies with the guidance of this document. 13.3.6 Fire fighting and suppression standards in the oil and gas industry vary from standard industrial, high rise, and low rise practices. The engineering standards employed in the design of hydrocarbon equipment are conservative and attempt to contain hydrocarbon inventories within the equipment. However, in the event of a leak, the design of the external areas surrounding the equipment are designed to quickly isolate the leak, depressure the equipment, prevent the spread of the hydrocarbon leak, minimize the propagation of any fire event, maintain mechanical integrity through inventory liquidation without catastrophic failure, and minimize exposure to personnel and environment. Chevron SOPs require facility personnel to not engage in fire fighting beyond the incipient stage. The facility and the enclosures have been designed within these parameters. Page 12/14 Title: PICEANCE FIRE PROTECTION PHILOSOPHY Customer: Chevron Project: Piceance Basiu Project Spec No: 2033-201-00-ST-0001 Date: 7 December 2008 Appendix A 1.0 GAS DETECTION SYSTEM OPERATING DETAILS REV: 1 Page 13 of 14 1.1 Each equipment enclosure is provided with a combustible gas detection system listed by a Nationally Recognized Testing Laboratory (NRTL) which exceeds the requirements of API Recommended Practice RP14C. The gas detection sensor is wired to the facility Emergency Shutdown System (ESS). 1.2 When the gas detector in an equipment enclosure detects the presence of gas at 20% Lower Explosive Limit (LEL), it performs the following functions: • Indicates on the Human-Machine Interface (HMI) video screens in the Control Room • Indicates on the HMI on the nine (9) outdoor Local Control Panels • Activates a dedicated alarm on the audible alarm system • The 24VDC control system on the skid remains energized, and the skid remains in operation. 1.3 When the gas detector in an enclosure detects the presence of gas at 40% LEL, it performs the following functions: • Indicates on the HMI video screens in the Control Room • Indicates on the HMI on the nine (9) outdoor Local Control Panels • Activates a dedicated alarm on the audible alarm system • Trips off the AC power feed to that enclosure's explosion-proof panel board at its source in the Electrical Building. • Shuts off all hydrocarbon flow to the enclosure from the source outside of the enclosure • Shutdown valves which shut off hydrocarbon flow are fail-safe, pneumatically operated, and will also close upon safety system failure or loss of air pressure to the fusible loop system. o The 24VDC control system on the skid remains energized, but the skid remains shut off from hydrocarbon flow until the shutdown is manually reset by the Control Room operator. 1.4 The gas detection system shall be tested and recalibrated every 3 months in accordance with 30 CFR Chapter II Part 250.804 "Production safety-system testing and records." The gas detection system that is proposed will be certified by an NRTL to fully comply with this standard and with the system design details contained within API RP 500. Page13/14 Title: PICEANCE FIRE PROTECTION PHILOSOPHY Customer: Chevron Project: Piceance Basin Project Spec No: 2033-201-00-ST-0001 Date: 7 December 2008 Appendix B REV: 1 Page 14 of14 1.0 EQUIPMENT ENCLOSURE FIRE DETECTION SYSTEM OPERATING DETAILS 1.1 Each equipment enclosure is provided with a pneumatic fusible plug loop fire detection system which exceeds the requirements of API Recommended Practice RP14C. A pressure transmitter, wired to the facility Emergency Shutdown System (ESS), monitors the fusible loop's pneumatic pressure. 1.2 When a fusible plug inside of the equipment enclosure melts in the presence of a fire, the pressure transmitter detects the loss of air pressure in the fusible loop system and signals the ESS which performs the following functions: • Indicates on the HMI video screens in the Control Room • Indicates on the HMI on the nine (9) outdoor Local Control Panels • Activates a dedicated alarm on the audible alarm system • Trips off the AC power feed to that enclosure's explosion-proof panelboard at its source in the Electrical Building. • Shuts off all hydrocarbon flow to the entire facility • Shutdown valves which shut off hydrocarbon flow are fail-safe, pneumatically operated, and will also close upon safety system failure or loss of air pressure to the fusible loop system. • The 24VDC control system on the skid remains energized, but the skid remains shut off from hydrocarbon flow until the shutdown is manually reset by the Control Room operator. • Depressures the bulk of the natural gas process lines and vessels within the facility to the flare. (Some sections of piping and vessels outside of the building enclosures, such as the glycol reboiler, may have minor amounts of residual gas under pressure.) 1.3 Each of the enclosures rated for H-2 occupancy will also be equipped with triple infrared flame detectors ("fire eyes") per section 8.3 and pneumatic fusible loop system per section 8.2. 1.4 Because the enclosures are exposed to ambient weather and Class I, Division I conditions, and because there are no commercially available weatherproof smoke detectors rated for Class I, Division I service, smoke detection systems will not be installed in this facility. Instead, our design philosophy is to use gas detection to detect the presence of a potentially dangerous atmospheric hazard and, in parallel, to use two different technologies (triple infrared flame detection and pneumatic fusible heat detection.) We propose the API-RP500 methodology of detecting the gases and shutting down the plant upon detection of dangerous levels of flammable gas. Page 14/14 Parcel Detail Garfield County Assessor/Treasurer Parcel Detail Information Page I of 5 Assessor/T reasurer}rr:lj:JBrty SJrnreh I Ass.[~_~or Subset U_YJll'Y I Ass~~_sor Sales Seargh Clerk H Record!ir Receptionjearch Basj~ Building Clu:Jracteristicl'; I Tax lnform~JJion Par~~.llletail I y_gj_ue Detail I Sales Det~JjJ I ResidenJiai/Commerr;iallmnroveme~tDeJail Land Detail I Photoge~JPh:?. I Mill Lev.v_Revenues D_~Jilil IT ax Area II Account Number II Parcel Number II2DD7 Mill levy I I D2S II R2SD444 II 213SIB3DDOI4 II 28.87 I llwner Name and Mailing Address jCHEVRDN USA INC jC/0 CHEVRON TEXACO PROPERTY TAX IP 0 BOX 285 jHOUSTON, TX 77001 Assessor's Parcel Description (Not to be used as a legal description) ISECT.TWN,RNG:IB-5-88 DESC: SEC.7: jTHAT PT OF LOTS 12.14 AND NESENE jLYING DESC: BELOW THE ESCARPMENT j(NET 14.2DAC) ALSO THAT PT DF DESC: /TRS. 50.51 AND 58 LYING BELOW THE jESCARPMENT (NET DESC: 175.17). ISEC.8: THAT PT DF LOTS 2.4.7.8, http:/ I www.garcoact.com/ assessor I parcel. asp? Parce1Number=213SI S30 0014 I I I I I I I I I I I 12/IS/2008 Parcel Detail Page 2 of 5 ISWNE. NW, OESC: NI/2SW. WI/2SE, I IL YING BELOW THE ESCARPMENT (NET I IDESC: 222.84AC). SEC.I7: THAT PT OT II ILDTS 1(23.10). 3( OESC: 8.57). 4 I 1(8.60). 5(11.84). 6(15.00), 7 I 103.64). OESC: (80.81 TOTAL/73.0 I I NET) lYING BELOW THE ESCARPMENT I IDESC: All OF TRACKS 80(160 AC), I 1110(110 AC). 111(100 AC) OESC: AND I !THOSE PARTS OF THE FOllOWING TRS I IL YING BELOW DESC: THE ESCARPMENT. I ITRS. 57(117). 60(35). 62(46), 84( I IDESC: 118), 83(80). 81(120), 82 I 1(24). 87(46). 79(73). 88( OESC: I 145). 90(58), 77(103). 91(53), 76 I 1(118). 75(116). DESC: 92(52). 93 I 1(76), 94(121), 113(121). 112(137). I IDESC: 6-98 TR. 41(160), AND THAT I IPART OF TR. 109(106), OESC: lYING I !BELOW THE ESCARPMENT AKA: LUCKY I !STRIKE #9 DESC: GLEN BEULAH. GEN. I !JOFFRE #3 a 4 AND THOSE PARTS OF I IDESC: THE FOllOWING lYING BELOW THE I !ESCARPMENT: GEN. DESC: JOFFRE 2.5-I 114. LUCKY STRIKE 4-8. 10-14. AND I !GEN. DESC: PERSHING I a 2. I ISUC:R290037 BK:0472 PG:0361 BK:0445 I IPG:0360 BK:I655 PG:I78 RECPT:666845 I IBK:0858 PG:0942 I http:! I www.garcoact.coml assessor I parcel.asp? Parcel Number= 213916300 014 1211812008 Parcel Detail Page 3 of 5 Location I Physical Address: IITWN 5 RGE 88 SEC 16 I I Subdivision: I I land Acres: 112840.21 I I land Sq Ft: liD I I Section II Township II Range I I IS II 5 II 88 I 2DDB Property Tax Valuation Information II Actual Value II Assessed Value I I land: II S0.3DDII 17.4801 I Improvements: II oil ol I Total: II BD.3DD!i 17.4801 Most Recent Sale Basic Building Characteristics Number of Residential lo I' Buildings: Number of Comm/lnd lo I Buildings: No Building Records Found http:/ I www.garcoact.com/ assessor I parcel.asp?ParceiNumber= 21381630 0014 12/1612008 Parcel Detail Page 4 of 5 Tax Information Tax Year II Transaction Type II Amount I 2007 II Tax Payment: Second Half II ($252.4Bll 2007 II Tax Payment: First Half II ($252.4Bll 2007 II Tax Amount II $504.821 200B II Tax Payment: Second Half II ($23B.20ll 200B II Tax Payment: First Half II ($23B.20ll 200B II Tax Amount II $472.401 2005 II Tax Payment: Second Half II ($300.88)1 I 2005 I Tax Payment: First Half II ($300.88)1 I 2005 Tax Amount II $BOI.88I I 2004 I Tax Payment: Second Half II ($343.88)j I 2004 II Tax Payment: First Half II ($343.8Bll I 2004 II Tax Amount II $B87.8Bj I 2003 II Tax Payment: Second Half II ($420.50)1 I 2003 II Tax Payment: First Half II ($420.50)1 I 2003 II Tax Amount II $841.001 I 2002 II Tax Payment: Second Half II ($422.10)1 I 2002 II Tax Payment: First Half II ($422.10)1 I 2002 II Tax Amount II $844.201 I 2001 II Tax Payment: Whole II ($837.02)1 I 2001 II Tax Amount II $837.021 I 2000 II Tax Payment: Whole II ($871.8Bll I 2000 II Tax Amount II $871.8BI I 1888 II Tax Payment: Whole II ($1.080.2Bll I 1888 II Tax Amount II $1.080.2BI http:/ I www.garcoact.coml assessor I parcel.asp? ParceiNumber= 213816300 014 12116/2008