Loading...
HomeMy WebLinkAboutSnow and Windload Design Specsffi Yurt Analvsis Summarv Project Reference Full Snow and Wind Yurt Diameters: L6', 20', 24', 27' & 30' To Whom lt May Concern: We are providing this lettcr to summarizc thc rcsults of thc analysis of the Full Snow and Wind Yurt with various diamcters. Referring to the truncated structural calculations, appended with this letter, the aforementioned yurts have been found to be capable of supporting the following design loads while meeting the requirements of the 2003 through the 2015 lnternational Building Codes (lBC 2003 - 2015) and the 2002 through the 2010 American Society of Civil Engineers - Minimum Design Loads for Buildings and Other Structures (ASCË 7-02, 7-05, 7-10). Design Loads: ¡ occupancy or Risk Category = ¡¡ ¡ Design Wind Speed, VuLr= 115 mph (Vo.o= 90 mph) Exposure C" "' " :' Ïlg ; iliffi¡¡d -ï,îiåff#ifffi:'* *"'i ?r1i::; "'.' Standard Features of Engineered Full Snow and Wind Yurts: . 3/16" Galvanized Aircraft Cable with a 4,20O pound Break Strength. t 2x6 (2100 Fb-1.88 MSR) Roof Rafters ¡ 2x4 (2100 Fb-1.8E MSR)WallStuds . (2) 2x4 Douglas Fir Compression Ring ¡ CORR Brackets attached to Compression Ring 1. Per ASCE 7, "snow loads acting on a sloping surface shall be assumed to act on the horizontal projection of that surface." 2. Equivalent ground snow loads may be reverse calculated from the equations given in ASCE 7. 5 otesN A full set of stamped calculations and/or drawings are available upon request Y;'5'z(þ C 5 Csc,ï P+ Snow Load Summary Table for Full Snow and Wind Yurts Yurt Diameter Number of Rafters (2100 Fh-1.8E MSR ) Maximum Sloped Roof Snow Loadl'2 30'48 45 psf 27',45 65 psf 24',42 80 psf 20'36 100 psf 16'28 115 psf %7, I ã \ Table of Contents Structural Design Assumptions........ .....P9.4 Yurt Calculations l-6'Yurt 20'Yurt 24' Yurl 27'Yurt 30'Yurt Pg. L2 Pg.28 P9.44 Pg.60 Pg.76 Pg.92M iscella neous Calculations 3 of 106 Structural Design Assumptions 4 of 106 Project 16" 20" 24',,27',, & 30',YURTS Job Ref Section Sheet no./rev. 1 Calc. by Date chk'd by Date App'd by Date wlND LOADING (ASCE7-!q) ln accordance w¡th ASCET-'|0 incorporating Errata No. I and Errata No. 2 Using the directional design method Tedds calculation version 2.0.1 5 I T Ë I I 30 30 Plan Elevation Building data Type of roof Hipped Width of building d = 30.00 ft Pitch of main slope c¿o = 30.0 deg Mean height h = 11.50 ft General wind load requirements Basic wind speed V = 115.0 mph Exponent coef (T26.6-1) K¿ = 0.85 Enclosureclass(c1.26.10) Enclosedbuildings lnt pres coef -ve O26.f 1-1) GCpin = -0.18 Gust effect factor Gr = 0.85 Length of building Height to eaves Pitch of gable slope b = 30.00 ft H=7.17 fr. aeo = 30.0 deg Risk category Exposure category (cl.26.7.3) lnt pres coef +ve 126.11-1) il c GCpip - 0.18 Topography Topo factor not significant Velocity pressure equation Velocity pressures table IGt = 1.0 q= O.OO221 x lÇ x Ka x K¿ x V2 x lpsf/mph2 z (ft)lG (Table 27.3-1)q. (psf) 7.17 0.85 21.12 1 1.50 0.85 21.12 Peak velocity pressure for internal pressure Peak velocity pressure - int qi = 21.12 psf Pressures and forces Net pressure Net force p=qxGrxCp"-qi xGCoi f*=pxAret 5 of 106 Project 16" 20" 24"27" & 30'YURTS Job Ref. Section Sheet no./rev. 2 Calc. by Date chk'd by Date App'd by Date Roof load case I - Wind 0, GCpi 0.18, -cp" Total vertical net force Fwu = -l 1.46 kips Walls load case 1 - Wind 0, GCpi 0.18, -cpe Total horizontal net force F*,r' = 0.93 kips Overall loading Proj vertical plan area of wall Averr-w-o = 2'15.01 f( Min overall horizontal loading Fw,bralmin = 5.0 kips Leeward net force Fr = -2.7 kips Overall horizontal loading Fw,totat = 6.0 kips Roof load case 2 - Wind 0, GCpi -0.18, -0cpu Projected vert¡cal area of roof Avert-r-o = 194.86 ft2 Windward net force Fw = 2,3 kips Total vertical net force Fw,v = 0.54 kips Walls load case 2 - Wind 0, GCpi -0.18, -Ocp" Total horizontal net force F*,r' = 1.97 kips Y riPPLiID Ei\i iIRÊ !,1'IN¡]r,iARD I-1AI-F ùONSERVAÏIVEI.Y APPI.iãI) IO ENTIITE LEEWARD HALÍ-, Zone Ref height (ft) Ext pressure coeff¡c¡ent cpe Peak velocity pressure qp, (psf) pressure p (psÐ I Area A¡el (ft') Net force F* (kips) A (-ve)'t1.50 -0.20 21 ,12 -7.39 .t 259.81 -1.92 B (-ve)11.50 -0.60 21.12 114.57 259.81 -3.79 C Gve)1't.50 -0.90 21.12 -19.96 38.16 -0.76 D (-ve)11.50 -0,90 21.12 -'19.96 114.47 -2.28 E þve)11.50 -0.50 21.12 -12.78 310.31 -3.96 F Cve)11.50 -0.30 21.12 -9.19 56.67 -0.52 Zone Ref. height (ft) Ext pressure coeff¡cient cpe Peak velocity pressure qp, (psÐ Net pressure p (psf) Area A.et (ft2) Net force F' (kips) A 7.17 0.80 2',1.12 10.56 215.10 2.27 B 11.50 -0.50 21.12 -12.78 215.01 -2.75 c 11.50 -0.70 21.'t2 -16.37 215.01 -3.52 D 11.50 -0.70 21.12 -16.37 215.01 -3.52 Zone Ref. height (ft) Ext pressure coefficient cp" Peak velocity pressure qp, (psf) Net pressure p (psÐ Area Arer (ft2) Net force F* (kips) A (+ve)11.50 o.25 21.12 8.23 259.81 2.14 B (+ve)11.50 -0.60 21.12 -6.97 259.81 -1.81 c (+ve)11.50 -0.18 21.12 0.57 38.'16 o.o2 D (+ve)1 1.50 -0.'18 21.12 0.57 1',t4.47 0.07 E (+ve)11.50 -0.'t8 21.'t2 o.57 310.31 0.18 F (+ve)11.50 -0.18 21.12 0.57 56.67 0.03 Zone Ref. height (ft) Ext pressure coefficient cpe Peak velocity pressure qp, (psf) Net pressure p (ps0 Area A,ur (ft2) Net force F (kips) 6 of 106 Project 16" 20" 24" 27" & 30' YURTS Job Ref. Section Sheet no./rev 3 Celc. by Date Chk'd by Date App'd by Date Zone Ref. height (ft) Ext pressure coefficient cp. Peak velocity pressure qp, (psÐ Net pressure p (psÐ Area A*r (ft2) Net force F" (kips) A 7.17 0.80 21.12 18.'16 215.10 3.91 B 11.50 -0.50 21.12 -5.17 215.01 -1.11 c 11.50 -0.70 21.12 -8.76 215.O1 -1.88 D 1'1.50 -0.70 21,12 -8.76 215.01 -1.88 Overall loading Proj vertical plan area of wall Min overall horizontal loading Leeward net force Overall horizontal loadÍng Avert-w-o = 215.0'l tf Fw,totalmin = 5.0 kips Fr = -l.l kips Fwtotat = 7.0 kips Projected vertical area of roof Avert-r-o = 194-86 fr'? Windward net force Fw = 3.9 kips Roof load case 3 - Wind 90, GCp¡ 0.18, -cp" Total vertical net force F*,u = -11.46 kips Walls load case 3 - Wind 90, GCpi 0.18, -cp" Total horizontal net force F*,r' = 0.93 kips Overall loading Proj vertical plan area of wall Min overall horizontal loading Leeward net force Overall horizontal loading Avert-w-eo = 215.0'l ft2 Fw,totalmin = 4,5 kips Fr = -2.7 kips Fw,ror,at = 6.0 kipS Projected vertical area of foof Avert-r-so = '1,29.90ft2 Zone Ref. height (ft) Ext pressure coefficient cpe Peak velocity pressure qp, (psf) Net pressure p (psr) Area A*r (ft2) Net force F* (kips) A Gve)11.50 -0.20 21.12 -7.39 259.81 -1.92 B (-ve)11.50 -0.60 21.12 -14.57 259.81 -3.79 C Gve)11.50 -0.90 21.12 -19.96 38.16 -0.76 D (-ve)11.50 -0.90 21.12 -19.96 114.47 -2.28 E (-ve)11.50 -0.50 21.12 -12.78 310.31 -3.96 F (-ve)1 1.50 -0.30 21.12 -9.19 56.67 -0.52 Zone Ref. height (fr) Ext pressure coefficient cpe Peak velocity pressure qp, (psf) Net pressure p (psÐ Area A*r (ft2) Net force Fw (kips) A 7.17 0.80 21.12 10.56 215.10 2.27 B 11.50 -0.50 21.12 -12,78 215.01 -2.75 c 11.50 -0.70 21.12 -16.37 215.O1 -3.52 D 11.50 -0.70 21.12 -16.37 215.O1 -3.52 Windward net force Fw = 2.3 kips 7 of 106 Proiect 16" 20" 24"27" & 30'YURTS Job Ref. SeÕtion Sheet no./rev. 4 Calc. by Date Chk'd by Date App'd by Date Roof load case 4 - Wind 90, GCpi -0.18, +çr" Total vertical net force F",u = 0.54 kips Walls load case 4 - Wind 90, GCpr -0.18, +60" Total horizontal net force Fw,¡ = 1.97 kips Overall loading Proj vertical plan area of wall Min overall horizontal loading Leeward net force Overall horizontal loading Avert-w-eo = 215.01 flz Fw,totalmin = 4.5 kips Fl = -1.1 kips Fw,totat = 7.0 kips Projected vertical area of roof Avert-r-so = 129.90 ft2 Windward net force Fw = 3.9 kips Zone Ref. height (fr) Ext pressure coefficient cpe Peak velocity pressure qp, (psÐ Net pressure p (psr) Area A*r (ft2) Net force Fw (kips) A (+ve)11.50 0.25 21,12 8.23 259.81 2.14 B (+ve)11.50 -0.60 21.12 -6.97 259.81 -1.81 c (+ve)11.50 -0.18 21.12 o.57 38.16 o.o2 D (+ve)11.50 -0.18 21.12 0.57 't14.47 0.07 E (+ve)11.50 -0.'18 21.12 o.57 310.31 0.18 F (+ve)11.50 -0.18 21.12 0.57 56.67 0.03 Zone Rel. height (fr) Ext pressure coefficient cpe Peak velocity pressure qp, (psf) Net pressure p (psO Area A*r (ft2) Net force Fw (kips) A 7.17 0.80 21.12 1 8.16 215.10 3.91 B 11.50 -0.50 21.12 -5.17 215.O1 -1.11 c 11.50 -0.70 21.12 -8.76 215.O1 -1.88 D 1 1.50 -0.70 21.12 -8.76 215.O1 -1.88 I of 106 Project 16" 20" 24',27', & 30'YURTS Job Ref Section Sheet no./rev. 5 Calc. by Date Chk'd by Date App'd by Date l i : i JÌ ï I Plãn úBw. H¡Fed rool l-30 T ñlt\ îl- Windward face g I ôl î c\ 30 ft------)]î Ir 30l- Side face Leeward face 9 of 106 { Project 16" 20" 24"27" & 30'YURTS Job Ref. Section Sheet no./rev. 6 Calc. by Date Chrd by Dete App'd by Date Side face Plånliáw- HaF€d ¡ool Irt: t e\l f* î t ñl î 30 Windward face 30 Leeward face l_¡t c.! îl-l-30 10 of 106 Yurt Calculations 11 of106 30' Diameter Yurt 76of106 Envelope Only Solution30'.FULL SNOW & WlND.r3d30' FULL SNOW & WINDBASIC MODELCO YURT COMPANY M23It450^r60lJtloooooN=FENIoNosoEnvelope Only Solutiono=NsNaN30'.FULL SNOW & WlND.r3d30' FULL SNOW & WINDMEMBER LABELSCO YURT COMPANY (obqN@6@@@@oo@@@óoó@@o€Member Length (in) DisplayedEnvelope Only Solut¡on30'.FULL SNOW & \MND.r3d30' FULL SNOW & WINDMEMBER LENGTHS (INCHES)CO YURT COMPANY rF[Fè¡<¡Øfa>>>lm r¡-rvrCZ ı=roio@ q=i9i,0 qgPl' i eiHã ã,m6o3'ncrt-Øzoã9o€zIoCLG)c?'1lØcmFol-{ a)ãzvaì6ãmeo-rãzUxNmaooEooaU'oc+of- -sT,uDS^\/*,\ln ..STUDS^\/^%\ü;STUDS^\/^!//\!/ÞTUQS^\/^-/\"'STUDS^\/^-/\-STUDS^\/^ STUDS^\/^ STUDS!//\!i^\/^ STUDSv'l\ui^\,^ STUDSv//'\v,^\/^ sruDsu,/\u,^\l^''l\"'^\/^-/\-o!/^-,\-^\/^ç7ru;sIvP,gSTUDSSTUDSsr-uDq,^\/^!//\!/STUD'ss\/^9TUDS6-\/n-,\",s-!-uD9. s_TuPsoocÐ-loo1lz 6'6'$xNfxNsxNxNxNsxN$xNEnvelope Only Solution@xNo30'.FULL SNOW & WND.r3d30' FULL SNOW & WINDMEMBER SHAPESCO YURT COMPANY MSROO Fb - 1.8E MSR2100 Fh - 1.8E MSRFb12100 Fb - 1 .8E MSR002100 Fb - 1.8E MSRMSR002100 Fb - 1.8E MSR2100 Fb - 1m5ooEoof(t9.*o2100 Fb - 1 .8E MSRIgo,t4sR1.88Fb2100(j3-Ttcf-rU'zoãFÉzIoCLooCÐ-looTz 30'.FULL SNOW & WlND.r3dw7SM27330' FULL SNOW & WINDCOMPRESSION RING MEMBER LABELS/si\io=18M112M106MICO YURT COMPANYz.xt_Ë-.\Envelope Only'Solutiono NNx30'.FULL SNOW&WND.r3d2-2X42-2x4TX2-ù<42-2X430' FULL SNOW & WNDCOMPRESSION RING MEMBER SHAPES,xi-{l"l zxEnvelopeCO YURT COMPANY 30'.FULL SNOW & WND.r3dNoo30' FULL SNOW & WINDCOMPRESSION RING MEMBER MATERIALSCO YURT COMPANY1xl"J .,r.at irsn2100=aFFb- 1.8EEnvelope Onþéolution -76.2676.2631bt11-76.26-76.263tb/ft-76.2631btfl-76^2631,76.2631bfi1-76,2631Loads: LC 1, SL BALEnvelope Only Solution30'.FULL SNOW & WlND.r3d30' FULL SNOW & WINDSLOPED ROOF SNOW LOADCO YURT COMPANY 132tb,{8'132tb/f88.'1 32lb/ft-JO tJ I-38.1 32lblft-)0-tJt-JÕ IJ I-ló_ I-38.1Loads: LC 2, SL UNBALEnvelope Only Solut¡on30'.FULL SNOW & WlND.r3d30' FULL SNOW & WINDUNBALANCED SLOPED ROOF SNOW LOADCO YURT COMPANY i.lr 3.6å3Ð11 .9715 8383Loads: LC 3. WALL WLEnvelope Only Solution30'.FULL SNOW & WlND.r3d30' FULL SNOW & WNDWALL WIND LOADSCO YURT COMPANY 28Loads: LC 4, ROOF WLEnvelope Only Solution30'.FULL SNOW & WND.r3d30' FULL SNOW & WINDROOF WIND LOADSCO YURT COMPANY ilþmber Code Checks Displayed (Enveloped)Envelope Only Solution30'.FULL SNOW & WND.r3d30' FULL SNOW & WINDENVELOPE CODE CHECK (BEND|NG)CO YURT COMPANY .00Member Shear Checks Displayed (Enveloped)Envelope Only Solution30'.FULL SNOW & WND.r3d30' FULL SNOW & WINDENVELOPE CODE CHECK (SHEAR)CO YURT COMPANY M¡scella neous Calculations 92 of '106 Lattice Yurt Lateral.r3dLATERAL LATTICEBASIC MODELCO. YURT COMPANY Lattice Yurt Lateral.r3dLATERAL LATTICEMEMBER LABELSCO. YURT COMPANY MembeÍ Length (¡n) D¡splayedLattice Yurt Lateral.r3dLATERAL LATTICEMEMBER LENGTHS (INCHES)CO. YURT COMPANY Lattice Yurt Lateral.r3dLATERAL LATTICEMEMBER SHAPESCO. YURT COMPANY Lattice Yurt Lateral.r3dLATERAL LATTICEMEMBER MATERIALSxYCO. YURT COMPANY Loads: BLC 1, LateralLattice Yurt Lateral.r3dLATERAL LATTICEWALL WIND LOADSCO. YURT COMPANY Lattice Yurt Lateral. r3dLATERAL LATTICEÌY,_[,J .,CO. YURT COMPANY-36.442.361.90a.200000"'1-.1-.14.2249.1Results for LC 1, Load Case 1Member z Bending Moments (lb-in) Client:Project; Job Number:- By Date:Pase: of drús Ii{i :r3 ii I ri i il I Iil Client:Project: Job Number:- By:Date:Pase: of Ciient:Project: Job Number:By Date:Pase: of Design Method Connection Typ Fastener Typ Loading Allowable Stress V Lateral loading V Wood Screw V Single Shear V D = 0.216 in. V V V V V V V V V v t4 12 Steel 2 in. Mnin Member Main Member Thickness Main Member: Àngle Load to Grain Side Member Side Member Thickness Side Member: Angle Load to Grain Wood Screw Nu Length Load Duration Facto Wet Service Facto End Grain Temperature 3.5 in. las Fir-Larch = 1.0 = 1.0 = 1.0 = 1.0 Gonnection Yield Modes Im 537 lbs. Is 359lbs. II IIIm 245 lbs IIIs 147 lbs IV 201 lbs Adjusted ASD Capacity 147 lbs._ '71 - f..- . Wood Screw bending yield strength of 80000 psi is assumed. . Dowel bearing strengths for wood screws with nominal diameter gre ater than I 14 in. are calculated and rounded to the nearest 50 psi in accordance with NDS Table 11.3.2. . Length oftapered tip is assumed to be two times the nominal wood screw diameter for calculating dowel bearing length in the main member. . ASTM 436 Steel is assumed for steel side members 1/4 in. thick, and ASTM 4653 Grade 33 Steel is assumed for steel side members less than 1/4 in. thick. While every effort has been made to insure the accuracy ofthe information presented, and special effort has been made to assure that the information reflects the state-oÊthe-art, neither the American Wood Council nor its members assume any responsibility for any particular design prepared from this on-line Connection Calculator. Those using this on- line Connection Calculator assume all liability from its use. 105 of 106 Design Meth Allowable Stress VASD Connection Withdrawal loadi V Fastener Wood Screw V Loading S A V 2in V C-D = 1.0 V = 1.0 V Vc_t = 1.0 Adjusted ASD Capacity IIZOS lUs.= W'p . The Adjusted ASD Capacity does not apply forwood screws installed in the end grain ofwood members. . The Adjusted ASD Capacity only applies to withdrawal of the fastener from the main member. It does g,! address head pull-through capacity of the fastener in the side member. V/hile every effor1 has been made to ìnsure the accuracy ofthe information presented, and special effort has been made to assure that the information reflects the state-oÊthe-art, neither the American Wood Council nor its members assume any responsibility for any particular design prepared from this on-line Connection Calculator. Those using this on- line Connection Calculator assume all liability from its use. The Connection Calculatorwas designed and created by Cameron Knudson, Michael Dodson and David Pollock at Washington State University. Support for development of the Connection Calculatorwas provided by American Wood Council. 106 of 106