Loading...
HomeMy WebLinkAboutStructural DetailsGANEM CONSUTTING ENGINEERING c.A.31187 15805 Biscayne Blvd f 105 North Miami Beach- Florida 33160 Phone (786) 916-6546 info@ganemce.com oce PAGE il64 COVER SHEET DATE:August t7,2022 PROJECT: Warehouse Expansion ADDRESS:5rH Powerline Road Rifle, COLORADO,81650 CLIENT: DESIGN BY: AG This computation book contains manual and computerized structural calculations, certain printed manufacturer's data and Computation pages are numbered 1 thru 64. Computations were performed to the best of our knowledge according to sound and generally accepted engineering principals and Code requirements, using nationally recognized computer software and in- house developed software. Prior to commissioning into service, the in-house developed software was thoroughly checked by performing parallel manual computations. The sign and seal provided herein are meant to cover all computation sheets pages 1 through 64. AliOSkaf Disitallylsned þy Al¡oskaf Ganem Ganemosorio. Date:2022.08.19USOflO tû30s2-04'tx)' Alioskar Ganem co. P.E # 59669 ALIOSKAR GANEM P.E. CO. LIC 59669 - 15805 Biscayne Blvd # 105, North Miami Beach, FL 33160 PHO¡¡E (7 86) 9l(t-6546 - aliuskat@gartenrrrÉ.conì 59669 0 ÀR GANEM CONSULTING ENGINEERING c.A.31187 15805 Biscayne Blvd # 105 North Miami Beach- Florida 33160 Phone (786) 916-6546 info@ganemce.com GCe PAGE .i|64 INDEX DESCRIPTION PAGE Wind Analysis Snow Analysis Seismic Analysis Load Analysis Member Analysis Steel Frame Roof Truss Connection Design Roof Metal Deck OSB Analysis Foundation Design 1 20 23 29 29 4t 43 46 47 48 ALIOSI(AR GANTM P.E. CO. LIC 59669 - 15805 Biscayne Blvd # 105, Nofth Miami Beach, FL 33160 PHONE (786) 916-6546 - alioskar@ganemce.com Page I of7 1t64 MecaWind v2397 SofLware Developer: Meca Enterprises Inc.,www. meca. biz,Copyright a) 2024 Fil-e Location: ,f : \Users \Egaddo\Desktop\PRoJEcTS\24 - coLORADo - wAREH\edit\1 . VISUAL\ warehous e-container _strength_7 -1 6. wnd GeneraL wind sêfting:s Incf_LF = Include ASD Load Factor of 0.6 in Pressures DynType = Dynamic Type of Structure zg = Altitude (Ground Elevation) above Sea Level Bdist = Base Elevation of Structure SDB : Simple Diaphraqm Building Reacs : Show the Base Reactions i-n the output MütFRSType = M!ùFRS Method selected Topographic FacÈo! per I'ig 26.4't Topo = Topographic tr'eature Kzt = Topoqraphic Factor Calcufations Prepared For: Project #: 2022 Location: Exposure Cateqory Rísk Category Building Type W : lilidth Perp to Ridqe EHt : Eave Height Slope: Slope of Roof Par : Is there a Parapet Calcufations Prepared bY: Client: 0 Date: Aug '1"6, 2022 Designer: AG Description: CONT Bãsiê wi-nd Paramet€rE Wind Load Standard lvind Design Speed Structure Type Bui]"ding Inputs Roof ! Building Roof Type t : Length Alonq Ridge RE : Roof Entry Mèthod Theta: Roof Slope : ASCE 7-16: 1-15.0 mph: euilding = Monoslope = 40.000 ft = Slope = 4."16 Deg = False = Rigid = 0.000 ft = 0.000 ft - True: False =C}r27Pt-1- = None: 1.000 = Enc]-osed - 8.000 ft = 20.000 ft: L.O :I2 - False ExpoEure conatants Per Table 26.L1-1: Alpha: Table 26.11-1 Const = 9.500 At: Tabfe 26.11-1 Const = 0'105 Ãml Table 26.11--1 Const : 0.154 C: Table 26.11-1 const :0.200 ovêrhang Inputs: overhanq Location Overhang Type zg. Bt: Bm: Eps: Table TabIe Table Tabfe 26.1-l--1 Const 26.11-1 Const 26.11--1 Const 26.11-1 Const = 900.000 ft = 1.000 = 0.650 - 0.200 Overhanq !ûidth an OH_AIL oH_x OHY None Overhangr Overhanqr 0.0000 0.1600 0.1600 t*fain wi.nd E'orce Rê8isti.ng Systen (¡ánl'RS) Cålculatj.ons Pêr Ch 27 Paîë L file:lllC:lrJsers/alios/AppData/Roaming/MecaWind/OutpulWPFOutputPrinØ022.08.16.20... 8116/2022 Page2 of 7 2164 L z = Mean Roof Height aLrove grade = 15 ft 14.5't2 ml< z <Zg -->(2.O]_*(z/zg\^(2,rArpha) {Tabfe 26-LO-l}: = lopoqraphic Factor is 1 since no Topoqraphic feature specified = lfind Directionality Eactor per Table 26-6-I = Elevatlon above Sea Level- = Ground El-evati-on Factor: Ke = e^-(0.0000362*29) {Table 26.9-LI = Ref Table 26.1,3-]. for Enclosed Building: Roof Area: Load Factor based upon STRENGTH Design: (0.00256 * Kh * Kzt * Kd * Ke * V^2) * ¡P = For Negative Internal Pressure of Encfosed Building use qh*LF = For Positive fnternal Pressure of Enc]osed Buildinq use qh*LF Gust Factor Calculation B B h Kh Kzt Kd Zg Ke GCP RÀ LF qh qin qip I 20.000 fr o.902 1-.000 0. 85 0.000 ft 1- .000 +/-0.18 336.63 sq ft 1.00 25.95 psf 25.95 psf 25.95 psf Gust Gust Zm Izm Lzm o Gust Factor Factor Factor Category I Rlgid Structures - Simplified Method For Rigid Structures (Nat. Freq.>1 Hz) use 0.85 Category lI Riqj-d Structures - Complete Analysis Max(0.6 * tlt, zmin) Cc* (33 /zml, ^O.L61 L* (Zm /33) ^Eps(1 / (L + 0.63 * ((B + Htl. / Lzm\ ^0.63))^0.5 0.925* ( (1+0.7*Izm*3.4*Q) / (1+0.7*3.4*rzm) ) Used in Analysis = Lessor of G1 Or c2 = tr{indward ûûal1 Coefficient (All L/B Values) = Leward I¡lall- Coefficient using L/B: Side WalL Coefficient (Al1 L/B values) = Parapet Combined Net Pressu.re Coefficient: Parapet Conbined Net Fressure Coefficient = 0.85 : 15.000 fr: o.228 = 427 .O5'7: 0.948 = 0.898 G : 0.850 Sfope OH_Bot_-Y : OH_Top OH_Top OH_Top Roof : 20.000 fr: 20.66"t ft: 40.000 ft = 8. UUU tt:0.200 : 2 .500: 4.'76 Deg: 0.8, 0.8: -0. 18, -1 . 155 = -0.LB, -1.155 = -0.18, -1.155 = -0.18, -1.1s5 MWFRS Wind Normal to Ridge (Ref Fig 21.3-LI h : Mean Roof Height Of Buildingr RHt : Ridge Height of Roof B : Horizontal- Dimension Of Building Normal- To Wind Direction L : Horr-zontal ljr-mensaon Ot burldrng Parallel To Vland Darectr-on L/B : Ratio Of L/B used For Cp determination h/L : Ratio Of h,/L used E'or Cp determination Sl-ope of Roof Overhang Bottom -Y (Windward Face Onf**Overhang Top Coeff (0 to h/2) (0,00 **Overhânq Top Coeff (0 to h/2) (0.00 **Overhang Top Coeff (0 ta h/2) (8.16 **Roof Coeff (0 to h/2) (0.160 ft tor+lncludes Reduction Factor:0.89 For roof area, applied To Cp=-1.3 For h/t>=l c (0 To h,¡2) v)0 ft to 8,320 0 ft to 0.160 0 ft to 8.320 8.160 fr) fr)fr)fr) Cp_WI{ Cp_Llv CF-SW GCpn_w!ù CCpn*LW = 0.80 = -0.s0: -0.70= 1.50 = -1.00 (üTj-ndward Parapet) (Leehrard Parapet) Ì1a11 lvÍnd Pressurea baged on PoEitiwe Tnternal PrêEaure (+cCPi) - Norma]. to Ridgê A1L wind prêssurêa inc]-ude a Ioad facto.r of 1.0 Efev Rz Kzl qz rL Irs f GcPi ccPi Windward Leeh¡ard lilde !Íindward Leei^rard fress Prcss Prcss psf psf psf 'I'otal Minimum Press Prcssurc*psÎ psf Theta filel/lC:Nsers/alios/AppData,/Roaming/MecaWind/OutpulWPFOutputPrint2022.08.16.20... 8/16/2022 Page 3 of7 3t64 20.6'7 0.908 1.000 26.1-3 20.00 0 .902 L.000 25.95 0 0 18 18 0 0 18 18 13.10 -15-70 12.98 -15.70 -20.r7 28.80 -20 .1,1- 28 .68 L6.00 16.00 I'Iall wind plessurês baead on Negative Internal Pressure (-GCPi) - Normal to Ridge ÀJ.L wind pressures include a load factor of 1.0 El-ev Kz Kzt qz GCP1 GCpi i¡trindward LeeI^Iard Side litrindward Leehrard Press Press Press psf psf psf Total Minimum Press Pressure* psf psfftpsf 20.67 0.908 l-.000 26.13 20.00 0.902 1..000 25.95 Roof Var Start End Dist Dist ft ft -0. r-8 -0.18 -0.18 -0.18 Cp_m:in Cp_max GCPi -L0 -'t'7 28.80 -L0.71 28.68 22 .44 22.32 -6.36 -6.36 16.00 16.00 Pressure Pp_max psf NÕtes vüafl Pressures: Kz : Velocity Press Exp coeff Kzt = Topographica.l Factor qz = 0.00256*Kz*Kzt*Kd*V^2 GCPi : Internaf Press Coefficient Side = qh * c * Cp_SI¡l - qip * +GCPí ülindward:qz* G* Cp_Wf¡¡- qip * +GCPI Leeward = qh * G * cp_Luf - qip * +GcPi Total :!ÙindwardPress - LeewardPress * Mínimum Pressure: Para 2'l .1.5 no less than 16.00 psf (Incl LF) applied to lifall-s + pressures Acting TOI¡IARD Surface - Pressures Acting AWAY from Surface Roof wind prêssuËês for Positive 6 Negativê Intêrna1 Pressure (+/- GCPi) - Nor¡al- to Rj.dge A1t wind PreaEureÉt insLude a load factor of 1.0 Pressure Pressure Pressure Pn_mj-n* Pp*min* Pn_max psf psf psf OH_Bot_-Y OH_Top (-X) 0 OH_Top (-Y) 0 OH_Top (+x) 0 OH_Top (+Y) I Roof (411) 0 N/A N,/A 0.800 0.800 0.000 0.160 I .320 8.320 8.160 -0.180 -0.180 -0.180 -0.180 000 000 000 000 180 1't .65 -3.9t _? o? -3.97 -3.9'7 0.70 1-1 .65 -3.91 -3 .91 -3 .91 -3.97 -8.64 1'7 .65 -25 .48 -25 .48 -)q 4A -25 .48 -20.87 17.65 -25 .48 -25 .48 -25 .48 -t\ ^9-30.1s 000 L 320 -0. 1-80 -1 . _1 _1 _1 _1 155 0 155 0 155 0 155 0 1s5 0 000 000 l- 60 1- 60 Notes Roof Pressures¡ Start Dist = Start Dist from Windürard Edqe End Dist : End Di-st from Ûlindward Edge Cp*Max : Larqfest Coefficient Magnitude Cp_Min : Smalfest Coefficient Magnitude pp_max - qh*G*Cp_max - qip* (+GcPí) Pn_max : qh*G*Cp_max - qin* (-GCpi) pp_rruin* = qh*G*Cp*min * qip* (+GCPi) Pn_min* = qh*G*Cp_min - qin* (-GCPi) OH: Overhang X= Dir alongRidge Y= Dir Perpendcular to Ridge z =Vertical* The smalfer uplift pressures due to Cp_Min can become critical when wind is combined i^rith roof l-ive load or snoi"¡ load; 1oad combinations are given in ASCE 7 + pressures Acting TOúIARD Surface - Pressures Acting AWAY from Surface MWFRS wínd Normat to Eave (Ref E.ig 27.3-tJ h : Mean Roof Height of Building RHt : Ridge Height of Roof B = Horizontal Dimension of Buildinq Normaf To v'li-nd Direction L = Horizontal Dimension Of building Parallel To Wind Direction Ratio Of L/B used For Cp determination Ratio Of h/L used For Cp determination Sl-ope of Roof overhang Bottom +Y (Wj-ndl^rard Eace only) **Overhang Top Coeff (0 to h/2) (0.000 ft to I **overhang Top Coeff (O lo h/2) (0.000 ft to 0 **Overhang Top Coeff (O Lo b/2) (8.160 ft to I **Roof Coeff (0 to h/2) (0.160 ft to 8.160 ft) 00 ft 61 ft 00 ft 0ft 0 0 Deg 0.8 0.0 0.6 0.0 .00 .20 .50 .'7 6 .8, 0. t- 0.1 0.l- 0. 1- (0 L/B h/L Sl-ope OH_Bot_+Y = OH_Top OH_Top OH_Top Roof 8, -1.155 8, -1.155 B, -L.155 B, -1.155 Io h/2\ 320 f 160 f 320 f r) r) t) a 4 I 0 2 4 : **Incfud.es Reductíon Factor 0,89 For roof area, applied To Cp:-1.3 Eor h/L>:l & Cp_Ww Cp_LW Cp_Sw GCpn_I¡¡W GCpn_Lü¡ 0.80 -0.50 -0.70 l-.50 -1.00 : lfindward lfafl coefficient (Al-1 l,/B Vafues) : Le\"iard ü¡alf coefficlent us.inq t/B = Side V{a}f Coefficient (A1l l,/B values) = Parapet Conbined Net Pressure Coefficient (ltli-ndward Parapet) : Parapet Cornbined Net Pressure Coefficient (Lee¡{¡ard Parapet) Walt Wind pregsurês based On Positive Inte¡nal Prèssure (+GCPi) - NornâI to Eave À11 wind pressures include a load factor of 1.0 filelllC:Nsers/alios/AppData/Roaming/MecaWind/Output/WPFOutputPúnt2022.08.16.20... 8/16/2022 Page 4 of7 4t64 EIèV Kz Kz t- q2,cCP i GCP ¡ vt ì n(lwä rd T,eewa r'(,1 S i rle Wind$¿ard Leer^rard Press Press Press psf psf psf To l-af M i ¡r irrurrr Press Pressure* pof p3ffrp3f 20.00 0 .902 1,000 25.95 0.18 0.18 12.98 -t5.70 -20.11 28.68 16. 00 to ßave TÕtal Minimum Pr ess Pressllre* psf psl WaIl Wind Presslrrês base¡l on Negatlwe Internal presgure (-GCPI,) - Normal All. vtind pressur€rs include a load factor of L.0 Elev Kz Kzt ft qz psr GCPi GCPi ùlildward Leer¡rard Side W i nd.warrl Leewatd Press Press Press pst pst pst 2U. U0 0 .902 L.000 25.95 -0.18 -0.18 22.32 -6-36 -]-0 -'.77 28.68 16.00 Notes Wâl1 Pressures: Kz : Velocity Press Exp Coeff Kzt : Topographical Factor qz : 0.00256*Kz*Kzt*Kd*V^2 GCP1 : Internal Press Coefficient Side :qh * c * Cp_SW - qip * +GCPi lùindward = qz* c * Cp_WlV- qip * +GCPi l,eebrard : qh * G * CptÏrù - qip * +GCPI Tota.l :üTindwardPress - Leeì{ard Press* Minimum Pressure: Para 2'7.1.5 no fess than 16.00 psf (Incf LF) applied to Wafl-s + Pressures Acting TOWARD Surface - Pressures Acting AWAY from Surface Roof wind Pressures for Positiwe & Negative Internal Pre8sure (+/- CCPI) - Norma} to Eave AJ.J- wínd preEsrurea include a load factor of 1.0 Roof Var Start End Dist Dist fr fr Cp_min CpÌax GCPi Pressure Pressure Pressure Pressure Pn*min* Pp_min* Pn_max Pp_maï psf psf psf psf 000 000 000 000 000 t-80 11.65 -3 .91 -3 .91 -3.91 -3.97 0.70 17.65 -3 .97 -3 .97 -3.9't -8. 64 1,7 .65 -25 .48 -25 .48 -25 .48 -t \ ¿.Q -20.8L 11.65 -25.48 -25.48 -25.48 -25.48 -30. 1s 0.000 fr u.bb/ rt .000 ft 0.000 fr .000 .500 l4litEtsS Wind Paral].e]" to Ridge (Ref Fig 27.3-]-1 h : Mean Roof Height Of Buílding RHt : Ridge Height Of Roof B = Horizonta.l- Dimension Of Buildinq Normal To Wind Direction L : Horizontaf Dimension Of building Paraffel- To Wind Direction L/B : Ratio Of L,/B used For Cp determination h/L : Ratio Of h/L used For Cp determination Slope : Sfope of Roof OH_Bot_-X : Overhanq Bottom -X (!4]indÍ/ard Face Onl-y) OH_Top - Overhang Top Coeff (0 to h/2) (0.000 ft to 0.1"60 ft) OH_Top - Overhang Top Coeff (0 Lc.: lt/21 (0.160 fL Lo 10.000 fL) OH_Top : Overhanq Top Coeff (h/2 lo h) (10.000 Ît to 20.000 ft) OH Top = overhanqÍ Top Coeff (h to 2h) (20.000 ft to 40.000 ft) oH_Top : overhang'Top coeff (>2h) (>40.000 ft) OH_Top - Ove!-hang Top Coeff (>2h) (>40.160 fL) Roof : Roof Coeff (0 to h/21 (0.160 ft to 10.000 ft) Roof : Roof coeff (h/2 to h) (10.000 ft to 20.000 ft) Roof : Roof Coeff (h to 2h) (20.000 ft to 40.000 ft) Roof : Roof Coeff (>2h) (>40.000 ft) Cp,WV{ = !Íindbrard !ûalf Coefficient (Alf L/B Vafues) Oll_Bot OH_Top OH_Top OH_Top OH_Top Roof ( _tY(-x) (+Y) (+x) ( -Y) All ) N/A N,/A 0.000 8.320 00 0.160 00 I .320 60 8.320 60 I .160 0.800 0 -0.180 -1 -0.180 -1 -0.180 -1 -0.180 -1 -0.180 -1 800 155 155 155 155 155 0.0 0.0 8.1 0.1 Notcs Roof Prcssurcs: Start Dist = Start Dist frorn Windward Edge End Dist : End Dist from Windward Edge cp_Max : Larqest coefficient Magnitude Cp_Min = Smallest Coefficient Magnitude Pp_max : qh*G*Cp_max - qip* (+GCPi) Pn_max = qh*c*Cp*max - qin* (-GCpi) Pp_min* : qh*c*Cp_min - qip*(+cCPi) Pn_min* = qh*G*Cp*min - qin*(-GCPi) OH: Overhang X: Dir afong Ridge Y= Dír Perpendcular to Ridge Z =Vertical* The smaller uplift pressures due to Cp_Min can become critical when wind is combined \./ith roof live foad or snohr .Ioad; loâd combinations are qiven in ASCE 7 + Pressures Acting TOV{ARD Surface - Pressures Actinq AWAY from Surface *t =0 =0 : -0.1: -0.1 = -0.1 = -0.1 - -0.1: -0.1: -0. 1,: -0.1 6 Deg1 I 0: -0.18, 8, o, 8, 8, B, B, B, = 0.80 I -0.9 -0.9 -0.9 -0 .5_n? -0.3 -0.9 -0 .9 -0 .5 -0.3 file:lllC:Nsers/aliosiAppData/Roaming/MecaWind/Output/WPFOutputPrint2022.08.I6.20... 811612022 Page 5 of7 5t64 Cp_tvü Cp_Svt GCpn_WW GCpn t!'I ft = Lebrard ü]aff Coefficient usinq L/B : Side WalI Coefficient (Al-1 L/B values) : Parapet CoÍlbined Net Pressure Coefficient : Parapet Combined Net Pressure Coefficient (lilind$rard Parapet ) (Leeward Parapet) -o.20 -0.70 1.50 -1.00 9ta11 llind Pressureg baeed On Poaj'tive InternaL Preasurê (+eCPi) - Paxalf,el to Ridge llLL wind pressurêa incJ-ude a load factor of 1.0 Elev Kz Kzt qz GcPi ccPi vúindv¡ard Leevtard Side vÍindh¡ard teeÍ/ard Press Press Press psf psf psfpsf Total Minimum Press Pressure*psf psf 20.67 0.908 1.000 26.13 20.00 0 .902 L.000 25.95 0 .18 0. l-8 0 0 18 18 l-3.10 -9.0812.98 -9.08 -20 .1,1- 22.18 -20 -1-1 22 -06 16.00 16-00 TotaI Minirnum Press Pressure* psf psf lÍall v¡ind preasures bagêd on Negative Internal Pressure (-GCPí) - Parallel to Ridge AJ-]- vrind prêsnures incLude a load factor of 1.0 Elev Kz Kz]¿ qz ccPi cCPi Windward Leeward side I¡lindward Leeeùard Press Press Press psf psf psfftpsf 20.67 0.908 1.000 26.1-3 20. 00 0 .902 1.000 25. 95 Roof Var -0 .18 -0.18 cp_min Cp_max GCPi -J_0 .7-t 22.L8 -to -'7't 22.06 00 00 16. 16. 18 18 -0 -0 22.44 22.32 0.26 0.26 Notes hiaff Pressures: Kz = Velocity Press Exp Coeff Kzt : Topographical Factor qz = 0.00256*Kz*Kzt*Kd*V^2 GCPL : lnternaL Press Coefficient Side = qh * G * Cp_SW - qip * +GCPi Vlindward:qz* G* Cp_Wlt - qip * +GCPi Leeward =qh * c * Cp_LV{ - qip * +GCPi Total- :ülindwardPress - LeewardPress * Minimum Pressure: Para 21.L.5 no less than 16.00 psf (Incl LF) appli-ed to !\lalls + pressures Acting TOülARD Surface - Pressures Acting AüIAY from Surface Roof tlind prqssu¡eg for Posítive & Nêgative Intêrnal Pressure (+/- GCPi) - PâlalleL to Ridgê A]"]- wind prêsEures inelude a load factor of, 1.0 Start Dist ft End Dist ft Pressure Pressure Pressure Pressure Pn_min* Pp_min* Pn_max Pp_max psf psf psf psf OH_Bot_-X OH_Top (-X) OH_Top (-Y) OH_Top (+Y) OH_Top (-Y) OH Top (+Y) OH_Top (-Y) OH_Top (+Y) OH Top (-Y) OH_Top (+Y) OH_Top (+X) Roof (411) Roof (411) Roof (All) Roof (AfI) /A 00 60 60 00 00 00 40 00 40 00 40 00 40 60 40 60 10 00 20 00 40 00 40 000 000 000 000 000 000 r.60 l- 60 320 000 000 000 160 0.800 -0.180 -0.1,80 -0. l"B0 -0. 180 -0.180 -0.180 -0.180 -0.180 -0.180 -0.180 -0.180 -0. 180 -0.180 -0.180 0.800 -0.900 -0. 900 -0.900 -0.900 -0.900 -0.500 00 00 00 00 00 00 00 00 0_000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.1-80 0.180 0.180 0.1-80 -3 .97 -3 .91 -3.97 -? Õ? -8 .64 -8.64 -8.64 -8. 64 N 0 1 J- 0 0 0 0 0 0 1 1 0 0 0 N/A 0 - 160 17. 65 -3. 97 -3 .97 -3.97 -3.91 -3 .97 -3*3 -{ -3 -3 17. 65 -19. 85 -19.85 -19.85 -L9.85 -19.85 l_7. 65 -3 .91 1?.65 _1 0 ac _10 0R -1 9 .85 -19.85 -19.8s -11.03 -11.03 -6.62 -6.62 -6 .62 -24.53 -24.53 -1s .70 -7L.29 03 03 62 o¿ 62 1B t8 36 95 ñ 0 0 l_0 10 20 20 40 40 40 0 r-0 20 40 L0 1-0 20 20 9'l 91 97 ot o?91 91 97 97 9"t 70 70 70 70 0.5 0.3 0.3 0.3 0.9 0.9 0.5 0.3 -3 -3 ,1 -3 -3 0 0 0 0 -1 -1 ,1 -1 1 1 6 6 6 5 5 -6 -1 Notes Roof Pressures: Start Díst = Start Dist from ütrindward Edge End Dist = End Dist from Vüindward Edge Cp Max = Largest Coefficient Magnitude Cp_Min : Smalfest Coefficient Magnitude Pp_max : qh*G*Cp_max - gip*(+GCPi) Pn*max - qh*G*Cp-max - qin*(-Gcpi) pp_min* : qh*G*Cp_min - qip*(+GCPi) Pn_min* - qh*G*Cp_min - qin*(-GCPi) oH:overhanq X: Dir along Ridge Y= Dir Perpendcular to Ridge z =Vertical* The smaller uplift pressures due to Cp_Min can become criticaf when wind is combi.ned with roof five l-oad or snow load; l-oad combinations are given in ASCE 7 + Pressures Actíng TOWARD Surface - Pressures Acting AWAY from Surface components and Cladding (cec) calculations pêr ch 30 Pârt 4: file.lllC:llJsers/alios/AppDatå/Roaming/ÌVlecaWind/OutpulWPFOuþutPrint2022.08.16.20... 8lT6/2022 0.6h Page 6 of7 6/64 ) o h .6h Flatlïi p/Gable (0k 7 o h LF Rzt ÈAT 0.6h o.6h = Mean Roof Height = Load Factor based upon STRENGTH Desiqn: Topographic Facto¡ is 1 sj-nce no Topographic feature specified: Adjustment factor per Table 30.6-2 to Fiq 30.4-1- pressures - Ruuf Slu¡rc = Least Horizontal Dirnension: Min(8, L) = Min(0.1 * LHD, 0.4 * h) = Max(a1, 0.04 * LHD, 3 ft [0.9 m]) = Parameter used to define zone bridth: 2*a = Adjustment factor per Tabl-e 30.6-2 to Fig 30.4*1 pressures Wind Preesures for Coûponents and Cladding per F5.g 30.4-1 À11 wind preagureE inc1ude a load facto¡ of 1.0 Slupe LHD a1 a ¿d EAF Description Zone ft = 20.000 ft = 1.00: 1.000 - 4.76 Deg - 8.000 ft = 0.800 ft = 3.000 ft = 6.000 ft = I.287 ûIidth Span ft ft Area 1/3 Rule ft Ptab].ê Pos psf PtabIe psf p Pos psf p Neg psf Neg Roof Roof AREA AREA AREA AREA AREA ART:A Roof J or_s t Jor-st L0 t0 10 l-0 10 20 frame 2.000 3 I 2 3 4 5 2 2 1"0 2.0 2.0 2.0 2.0 2.O 2.0 5.0 00 00 00 00 00 00 00 00 5.000 5.000 5.000 5.000 5.000 5.000 5.000 :t 0. 000 8.000 l-0.000 8.333 1-0.000 10.000 10.000 10.000 10.000 33.33? 40.000 No Yes No No No No NO Yes No 9.70 I _70 9.70 9.'to 9.70 23. B0 23.80 8.'74 8 .5? -50.00 -68.10 -37.90 -50.00 -68.10 -25. B0 -J1. vU -44.89 -43.93 16. 00 L6.00 16.00 16.00 16.00 30.63 30. 63 .ì 6. 00 1,6.00 -64.35 -87 -64 -48.78 -64.35 -81.64.'33.20 -41.06 -5'7.'7't -qÁ \/l file/llC:Nsers/alios/AppData/Roaming/MecaWind/OuþulWPFOutputPrint2022.08.16.20...8/16/2022 PageT of7 7tu AREA Roof AREA AREA AREA 20 frame 20 20 20 YeS No Yes Yes Yes 28. 1"6.0 0 0 0 2 5 a 2 R 2 1 3 4 000 r"0.000 8.000 10.000 10.000 10.000 33 - 333 40.000 33 .333 33.333 33.333 -28 .46 -43.93 -33.93 -57 .92 -24 -O8 -36 - 62 -56.54 -43 .67 -74.55 -30.99 4L 00 00 00 4! L6 1,6 28 OB 5'l 74 74 08 22 I I I 00 00 00 00 22 Ptable = Pressure taken from Fig 30.4-1 IÍind pressure: Ptable * Lambda * Kzt * LF [Eqn 30.7-1 e Table 30.6-2 Note 5J* per para 30.2.2 the Minimum Pressure for C&C is 16.00 psf [0.766 kPa] {Includes LF} pÍessures or overhangs include Pressure from the top and bottom surface of overhal¡g file:lllC:Nsers/alios/AppData/Roaming/MecaWind/Output/WPFOUþutPúnØ022.08.16.20... 811612022 I'age I of 6 8t64 Meca?find v2397 SofLware Developer: Meca Enterprises Inc , www.meca.biz Copyright A 2020 Eile LclcaLion: J : \Users\Egaddo\Desktop\PROJECTS\24 . COLORADO - WAREH\edit\1 . VISUAL\ rnrarehouse*trusses ASD 7-l-6.wnd Calculations Prepared by: Cl-ient: 0 Date: Aug L7, 2022 Designer: AG Description: wh Baaíc 9¡ind Paramêtêra vì¡ind Load Standard Wind Design Speed Structure Type Building rnputa RoofType: Building Roof Type L : Length Along Ridge RE : Roof Entry Method Theta : Roof Slope Calculations Prepared Eor: Project *: 2022 Location: Exposure Category Risk Category Building Type : ASCE 7-16: 115.0 nph = Buil-ding : Gabled: 80.000 ft = Slope = 9.46 Deg - ff = Enclosed Gênera.I Wind Settings Inc]_LF : Tnclude ASD load Factor of 0.6 in Pressures DynType = Dynamic Type of Structure Zg = Al-titude (Ground Elevation) above Sea Levef Bdist = Base Elevation of Structure SDB = Simple Diaphragm Building Reacs = Show the Base Reactions in the output MWFRSType = MÛIFRS Method Sel-ected Topographic Factor per l'ig 26.8-L Topo = Topographic Eeature Kzt : Topographic Factor = True* Rigid: 0.000 ft = 0.000 ft = True: False =Ch27Pt = None = 1.000 ft lilidth Perp to Ridge Eave Height Slope of Roof Is there a Parapet = 60.000 ft = 20.000 ft = 2-O 2L2 = Fal-se = 900.000 ft: 1.000 = 0. 650 = 0.200 Erq)osure Constânts pêr TabLe 26.LL-t: Alpha: Table 26.1-1-1 Const : 9.500 At: Tabl-e 26.11--1 Const : 0.105 Am: Table 26.11-*1 Const = 0.154 C: Table 26.L1-1 Const = 0.200 EHt Sfope Par zgl Bt: Bm: Eps: Table 26.11--1 const Tabl-e 26.11-1 Const Tabfe 26.11-1 Const Table 26.11-1 Const Ovêrhang Inputa: Std = Overhangs on all sides are the same OHTVpe : Type of Roof v{a].l InterseÇtions Maín wind Force Reeisting System (¡'fffFRS) Calculations por Ch 21 ParE I z = True = None L B B f1Je:lllC:Nsers/alios/AppData./Roaming/lVÏecaWind/OutpulWPFOutputPrint2022.08.l7.l5... 8/17/2022 Page 2 of6 9/64 h Kh Kzt Kd zg KE GCPi RÄ LF qh qin qip = Mean Roof Heiqrht above grade = 15 fr Í4,5'12 m]< Z <Zq -->(2.01,* (Z/zg') ^ (2,¡Atpha) {Table 26.10-1}: = Topographic Factor is 1 since no Topographic feature specified = Wind Directionality Factor per Table 26.6-l = Elevation above Sea Level = Ground Efevation Factor: Ke = e^-(0.0000362*zq) {Tab1e 26.9-1} = Ref Tabl-e 26.!3-7 for Encfosed Bui].ding : Roof Area: Load Fäctor based upon ASD Design : (0.00256 * Kh * Kzt * Kd * Ke * V^2) * ¡U = !'or Neqative Interna.I Pressure of Enclosed Building use qh*LF = For Positive Interna.l Pressurê of Enclosed Building use qh*LF Ca1cu1atíon: Category I Rigid Structures - S1mpÌified Method For Riqid Structures (Nat. Freq.>1 Hz) use 0.85 Category II Rigid Structures - Complete Analysis Max(0.6 * Ht' Zmin) Cc* (33 /Zm) ^O.L61 L * (zm ,/ 33) ^ Eps (L / (L + 0.63 * ((B + Ht) / Lz¡n)^0.63))^0.5 0.925* ( (1+0.7*Izm*3.4*Q) / (1+0.7*3.4*Izm) ) Used in Analysis Lessor Of Gl Or G2 Wíndward Wafl Coefficient (Alf L/B Values) Leward WaIf Coefficient using L/B Side WalI Coefficient (411 L/B values) Parapet Conbined Net Pressure Coefficient (Windbrard Parapet) Parapet Combined Net Pressure Coefficient (teeward Parapet) 20.000 ft 0.902 1.000 0.85 0.000 ft 1.000 +/-0.r8 4866.2L sq ft 0.60 15.57 psf 15.57 psf 15.57 psf Gust Gust G1 cust ZM IzÍ\ Lzm o Gust: G Eactor Eacto.r Factor Factor = 0.85 : 15.000 fr = O.228 = 421.O51 = 0.906 = 0.875 = 0.850 M!Ù:FRS fÍind Normal to Ridge (Ref E.ig 21 .3-Ll h = Mean Roof Height Of Buifdingr RHt = Ridge Heiqht of Roof B = Horizontal Di-mension Of Buifding Norma.l To Wind Direction Ir : Horizontaf Dimension of building Paral-l-ef To !Íind Direction L/B = Ratio Ot L/B used For Cp determination h/L : Ratio of h/t used For Cp determination Slope : Sfope of Roof Roof : Roof Coeff (0 to h/21 (0'000 ft to 10.000 ft) Roof : Roof Coeff (h/2 to h) (10.000 ft to 20.000 ft) Roof : Roof Coeff (h to 2n') (20.000 ft to 30.000 ft) Roof = Roof Coeff (h to 2h) (30'000 ft to 40.000 ft) Roof = Roof Coeff (>2h) (>40.000 ft) = 20.000 ft: 25.000 fr: 80.000 fr = 60.000 ft: 0 .750: 0 .333: 9.46 Deg: -0.18, -0.9 = -0.18, -0.9 = -0.18, -0,5 = -0.18, -0.5: -0.18, -0.3 Cp_W!Í Cp_LIif Cp_S!Í GCpn_VüW GCpn_LVú = 0.80 = -0.50: -0.70= 1.50: -1.00 Vtatl Wind Pressures based On Pogitive Internal Pressurê (+GCPi) - Nornal to Ridge Al1 wind pre8sureE inc.lude a l-oad facto¡ of 0.6 Elev Kz Kzt qz GcPi Windward Press psf psf Leer^rard Press psf Side Press psf Totaf Pres s psf Minimum Pressure* psfft 20.00 0 .902 1.000 15.57 0.18 -t .7 9 -9 . 42 -12 ,07 11 .21. Total Press psf 9. 60 Minimum Pressure* psf vlal1 wind Pressures based on Negative fnternal Pressurê (-GcPi) - Normal to Ridge Al-L wind pressurês inelude a load facèor of 0.6 Elev Kz KzL qz GCPi V[indward Leeward Side Press Press Press psf psf psffrpsf 20.00 0.902 1.000 15.57 -0.18 13.39 -3.82 -6.46 71.27 9.60 Notes !Íafl Pressures: Kz : Velocíty Press Exp Coeff Kzt = Topographical- Eactor qz = 0.00256*Kz*Kzt*Kd*V^2 GCP| : Interna] Press coefficient Side : qh * G * Cp_S!ü- qip * +cCPi trùindward =qz* G* Cp_lÍl¡l- qíp * +GCPi Leebrârd : qh * G * Cp_LW- qip * +GCPi Totåf :trVindward Press - Leeward Press* Minimum Pressure: Para 27.L-5 no less than 9.60 psf (Incl LF) applied to vùalls + Pressures Acting TOWARD Surface - Pressures Acting AWAY from Surface file:lllC:lUsers/alios/AppData/RoamingiMecaWind/Output/WPFOutputPrint2022.08.l7.I5... 8/17/2022 Pagc 3 of6 l0/64 Roof glind Pressurês for Positj-vê & Negatj.ve Internal Pressure (+/- GCPI) - NorEaI to Ridqc AJ.l wind prêEsures incLude a l-oad factor of 0.6 Roof Var Start l-)ixl. ft Cp_min Cp_max cCPi Pressure Pressure Pressure Frr_rrr i r r* P¡r_rrr i.r r* prl_rììå:( psf psf psf End Dir;l ft Pressure PtrrJtìåx __t::___ Cp_W!Í Cp*Lw Cp_S!t GCpn_Wv GCpn_LW Roof Roof R00f Roof Root ft ( -Y) ( -Y)(-v) ( +Y) ( +Y) 10.000 2ü.0üû 30.000 40.00ü o.42 0 .42 () .42 0.42 u.42 -q 10 _à 10 -5.19 _Á 10 _t I u -o 1 l _o 1 1 -3.82 -3.82 -I.II L4.72 -t4.72 -9.42 -9.42 -b.ll 0.000 10.000 *0.180 -0.900 0.180 -0..r 80 -0.900 0. 180 -0.18ü -l:r.50Cr ú.180 -0.180 -0.500 0.180 -0.180 -0.300 0.180 : hlindward !üal-1 coefficient (^11 L/B Values): Leward Wall Coeffj-cient using L/B: Side v{all Coefficient (A1l L/B values): Parapet Combined Net Pressure Coefficient (!ì¡indward Parapet) = Parapet Combined Net Pressure Coefficient (Leeh¡ard Parapet) 20.000 40 .000 3Cr. Cr00 60 - u00 Notes Roof Pressures: Start Dist : Start Dist from Windr^rard Edge End Dist : End Dist from W.indI,rard Edge Cp_Max : Largest Coefficient Magnj-tude Cp_Min : Smallest Coefficient Magnitude Pp_mâx : qh*G*Cp_max - qip*(+GCPi) Pn_max = qh*G*Cp_max - qin*(-GCpi) Pp*min* : qh*G*Cp*min - qip*(+GCPi) Pn_min* = qh*G*Cp_min - qin*(-GCPi) oH: overhang x: Dir along Ridge Y= Dir Perpendcu.Iar to Ridge Z = Vertical* The smaller uplift pressures due to Cp_Min can become criticaf when wind is combined with roof l-ive l-oad or snow load; foad combinations are given in ASCE 7 + Pressures Actinq TOIVARD Surface - Pressures Actinq AWAY from Surface l"l9IE?.S 9lind Paral1el to Ridge (Ref E'ig 2?.3-11 h = Mean Roof Height Of Buildingr RHt = Ridge Height Of Roof B : Horizontal Dimension of Buil,ding Normal To Wind Direction L = Horizontal Di-mension Of bui]-ding Paraffef To Wind Direction L/B = Ratio Of L/B used For Cp determlnation Yr/L : Ratio Of h/L u3ed For Cp deternrinatlon Slope : Sfope of Roof Rirof - Roof Coeff (0 lo h/2\ (0.000 ft tc, 10.000 ft) Roof : Roof Coeff (h/2 to h) (10.000 ft to 20.000 ft) Roof = Roof Coeff (h to 2}]I] (20.000 ft to 40.000 ft) Roof : Roof Coeff (>2h) (>40.000 ft) = 20.00 = 2s.00 = 60.00: 80.00 - 0 .250 = 9.46 Deg: -0. 1-8, -0 . 9: -0.18, -0.9: -0.18, -0.5: -0.18, -0.3 0.80 -0.43 -0-70 1.50 -1.00 0ft 0ft0fr0fr wa]-L wind Pressures baeed On Poeitive Internal PreEsure (+GCPi) - Parallel to Ridgè ÀLl" wind prêssures incl-ude a ]"oad f,actor of 0.6 Elev Kz Kzt. qz GCP1 Windhrard Press psf Leelrard Press psf Side Press psf Total Pres s psf Minimum Pressure* psfpsf 25.00 20. 00 0.945 0.902 1.000 1.000 16.32 15.57 0.18 0.18 -8.54 -8.54 8.30't.79 -1"2.01 16.83 -r2.01 16.33 9. 60 9. 60 llal-l vlind Preseures based on Negative Internal Pressure (-eCPi) - ParaLlel to Ridge All wind pressureÍ¡ íncJ-ude a load factor of 0.6 El-ev Kz Rzt qz cCPi !üindÍ¡ard Pres s psf Leeúrard Pres s psf Side Press psf Total Press psf 16. B3 16.33 Minimum Pressure* pslftpsf 25.00 20.00 0. 945 1.000 0 .902 l-.000 L6.32 15.57 -0. L8 -0.18 13 .90 1,3.39 -2.93 -2 -93 -6.46 -6.46 9. 60 9. 60 bloLes Wð.ll Pressures: Rz - Vclocity Press Exp Cocff Kzt qz :0.00256*Kz*Kzt*Kd*V^2 GCPi Side : qh * G * Cp_SW - qip * +GCP1 lfj-ndward : Leeward : qh * c * Cp_L!Í - qip * +GCPI Tota-L* Minimum Pressure: Para 27.1.5 no less than 9.60 psf topographica.I Factor Internaf Press Coefficient qz*G*Cp_WW-gip*+GCPi Windward Press - Leeþ¡ard Press (Inct LF) applied to Walfs file:lllC:Nsers/alios/AppData/Roaming/MecaWind/OutpulWPFOutputPrint2022.08.17.l5... 8/17/2022 Page 4 of6 't1t64 + Pressures Acting TOIÍARD Surface - Pressures Acting AWAY from Surface Roof, Wind Preagures for Poaitive É Nêgative Internal Pressure (+,/- GCPi) - Parallel to Ridge AJ-J- wind presEurês incJ-ude a load f,actor of, O.6 Roof Var Start Dist ft Cp_rûin Cp_max GCPi Pressure Pressure Pressure Pn_min* Pp_njin* Pn_maxpsf psf psf End Dast ft Pressure Pp_max psf Roof Roof Roof Roof Roof Roof Roof Roof (+Y) -Y) +Y) -Y) +y) -Y) +Y) -Y) .000 .000 .000 .000 .000 .000 .000 .000 10.000 10.000 20.000 20.000 40.000 40.000 80.000 80.000 -0 -n -0 -0 -0 -0 -0 180 180 180 180 r.8 0 180 l-80 180 1_80 180 r_80 r-8 0 180 180 0 0 10 10 20 20 40 40 -0.900 0.180 42 -0-300 0.180 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 _R 10 -5.19 -5.19 -L4.'72 -L4.'12 -14.'72 -9.42 -9 .42 - 6, '7'7 -6.11 _o 11 *9.1,1 -9.11 _o 1 1 -3.82 -J.Õ¿ -1".1-1 -L.1'7 -5. L9 -s.19 -5.19 -5.19 _q 1 0 -r4.12 -0.900 0 -0.900 0 -0.900 0 -0.500 0 -0.500 0 -0.300 0 Notes Roof Pressures: Start Dist = Start Dist from ülindì^rard Edge End Dist = End Dist from trtlindward Edge Cp_Max = Largest Coefficient Magnítude Cp_Min = Smalfest Coefficient Magnitude Pp*max = qh*G*Cp_max - qip*(+GCPi) Pn_max = qh*G*Cp_max * qin*(-Gcpi) Pp_min* = qh*G*Cp_min - qip*(+GCPi) Pn_min* : qh*G*Cp_min - qín*(-GCPi) oH:Overhang X= Dir alongRidge Y = Dir Perpendcular to Ridqe Z =Vertical* The smalfer uplift pressures due to Cp_Min can become critica.l when wind is combined with roof live load or snow load; Ioad combinations are g¡iwen in ASCE 7 + Pressures Actj-nq TOI{ARD Surface - Pressures Acting AWAY from Surface coq)onents and Cladding (c&c) calculations per Ch 30 Part 4 file/llC/rJsers/alios/AppData/Roaming/lVlecaWind/Output/WPFOUþutPrinû022.08.17.15... 8ll7/2022 h Page 5 of6 12t64 a a c¡.a Gable Roof ( 7"<O< 45") h LE Kzt EAF 0.000 ft .60 .000 .46 Deg =0 -f -a -oSlope LHD a1 a EAF : Mean Roof Height: Load Factor based upon ASD Design = Topogråplrlc Factor Is l- slnce nÕ Topoqr¿rplrlc fedLur.ë specirletl : Adjustment factor per Tabfe 30.6-2 to Fig 30.4-1 pressures : Roof Sl-ope: Least Horizontal Dimension: Min(8, L): Min(0.1 * tHD, 0.4 * h): Max(a1, 0.04 * LHD, 3 ft [0.9 tn]): ParameLer used to define zone width: 2*a: Adjustment factor per Table 30.6-2 to Fig 30.4-1 pressures = 60.000 ft: 6.000 fr: 6.000 ft = 12.000 ft C6C entríes rrj.th zonea which a¡e Not ÀpplicabLe to Ch 30 Pt 4 andlor Builcilng Sel'eotions Description l¡Iidth ft ZoI]e.Span Lenqth ft 2.000 10.000 wind Pressures for Componenta and Cladding per Fig 30.4-1 All wj.nd preEsures include a load factor of 0.6 ft AREA 20 2 Description Zone úlidth Span A,rea 1/3 Rule PtabLe Pos Ptabl-e Ncg tr PoS p Neg file:lllC:Nsers/alios/AppData/Roaming/MecaWind/Ouþut/WPFOutputPrinØ022.08.l7.15... 811712022 Page 6 of6 13t6/. ft ftftft psf psf psf psf Roof Roôf Roof Roof Roof Roof AREA AREA AREA AREA AREA AREA AREA truss truss Truss Truss Truss Truss L0 10 1_0 10 1-0 20 20 9 I 9 9 9 9 14 1-4 IA 23 23 I2 'J.2 22 aj 2e 1 3e 3r 2n 1 2e 3e 4 5 2e 3e 4 5 2.000 2.000 2.000 1.000 1".000 1.000 1.000 2-000 2 .000 2.000 2.000 2.000 2.000 2.000 2 -OôO 60.000 60.000 60.000 60.000 60.000 60.000 5.000 s.000 5.000 5.000 5.000 l-0.000 10.000 10.000 10.000 1200.000 r-200.000 r.200 - 000 1200 - 000 1200.000 r-200 _ 000 8.333 10.000 r-0.000 1_0.000 10.000 33.333 33.333 33 .333 33.333 -35.30 -13.70 -L3.70*35.30 -39.90 -35.30 -44.00 -44.00 -64. r-0 -25.80 -31.90 -36.31 -50.33 -24.08 -24.46 -33.98 -33.98 -49.50 -]-9.92 -24.63 -28.04 -38.87 -r,8.59 -21- .97 Yes YeS Yes Yes Yes Yes Yes NO No No ño Yes Yes Yeg Yes 70 '74 70 70 70 70 40 40 40 80 80 L6 16 9. 60 9. 60 9. 60 9. 60 9. 60 9.60 ]-1.L2 IT.L2 TL.L2 18.38 l-8.38 9. 60 9. 60 1"7.05 17.05 -27 .26 -10 -10 -2'1 -30 -27 58 58 26 81- 26 AREA 20 AREA 20 08 08 Ptable : Pressure taken fxom Fig 30.4-1 wind pressure: Ptable * Lânbda * Kzt * LF tEgn 30.?-1 & Table 30.6-2 Note 5I* per para 30.2.2 the Minimum Pressure for Cec is 9.60 psf [0.460 kPa] {Includes ],F} Pressures on overhangs include Pressure from the top and bottom surface of overhang file:lllClUsers/alios/AppData./Roaming/lVIecaWind/OuþuVÏVPFOuþutPri¡t2022.08.17.15... 811712022 MecaÏüind v2391 Software Developer: Meca Enterprises Inc.,www . meca . bi z Copyright O 2020 calculations Prepared For: Project #: 202t Location: Exposure Category Risk Category Building Type Page 1 of6 141ö4 = Enclosed = Fal-se: Riqid - 0.000 ft - 0.000 ft: True: Fa].se:ch27Pt1 = None: 1 .000 = 60.000 ft: 20.000 ft = Z.U ?I¿ = Fal-se File Locati-on: J : \Users \Egaddo\Desktop\PROJECTS\24 . COTORADO - I¡¡AREH\edit\l . VISUAL\ warehouse-trusses strength_7-1 6. wnd Calculatj-ons Prepared by: CIiclL: 0 Date: Aug 16, 2022 Designer: AG Description: wh Basíc VÍind Paraúâtêrs Wind toad Standard lilind Design Speed Structure Type Building Inputs RoofType: Building Roof Type L : Length Along Ridge RE : Roof Entry Method Theta : Roof Slope = ASCE 7-1,6 = 115.0 nph = Bui-ldinqr = Gabled = 80-0û0 ft = SloPe - 9.46 Deg !Íidth Perp to Ridge Eave Height Sl-ope of Roof Is there a Parapet - af General Wind Settings Incl_LF = Include ASD Load Eactor of 0.6 in Pressures DynType = Dynamic Type of Structure zq = Altitude (Ground Elevation) above Sea Level Bdist = Base Elevation of Structure SDB : Simple Diaphragm Buil-ding Reaca : Show the Base Reactj-ons in the output Mlt¡FRSType : MIÍFRS Method Selected Topoglaphic Factor per E.ig 26.8-1 Topo = Topoqraphic Feature Kzt = Topoqraphic Factor E:q)osurâ Cor¡stantE pêr Tablê 26.lL-X.: Alpha: TabIe 26.11-1 Const = 9.500 A1-: Table 26.1"1-1 Const = 0.105 Arû: Tabl-e 2 6. 11-1 Const = 0. 154 C: Table 26.11-1 Const = 0.200 Overhang Inputg: Std = Overhangs on a1l- sides are the same OHType : Type of Roof !ì¡aII fntersections Íü EHt Slope Par zqr Bt: Bm: EpS: Table 26.11-1 Table 26,11-1 Table 26.11-1 Table 26.11-1 = 900.000 ft = 1.000 = 0.650 = 0.200 Const Const Const Const = True = None l"lain Dlind Forcê Resj.stlng System (!,fffFRs) Calculations per Ch 21 ParE L L z B h file//lC:Nsers/alios/AppData/RoamingAvlecaWind/OutpuilWPFOutputPrinØ022.08.16.20... 8/16/2022 Page 2 of 6 15t64 : Mean Roof Height above grade = 15 ft 14.512 m)< Z <zg -->(2.0I*(z/zg) ^(2/Alpha) {Tabl-e 26.10-1}= = Topographic Factor is 1 since no Topographic feature specified = Vüind Directionality Factor per Table 26.6-L = El-evation above Sea Level = Ground Efevation Factor: Ke = e^-(0.0000362*zq) {Table 26.9-L} = Ref Tabfe 26-1,3*1 for Enclosed Building = Roof Area = Load Factor based upon STRENGTH Design : (0.00256 * Kh * Kzt * Kd * Ke * V^2¡ * ¡U : For Neqative fnternal Pressuxe of Enc.losed Building use qh*LF = For Positive Internal- Pressure of Enclosed Building use qh*LF cust Factor Calëulation Cateqory I Rigid Structures - Sinplified Method For Rigid Structures (Nat. Freq.>1 Hz) use 0.85 Category 1I Rigid Structures - Complete AnaJ-ysis Max(0.6 * Ht, Zmin) Cc* (33 /Zm) ^O.L61 L * (Zm ,/ 33) ^ Eps (1 / (L + 0.63 " ((B + Hr) / Lzn)^0.63))^0.5 0.925* ( (1+0.7*Izm*3 .4*Ql / (1+0.7*3.4*Izm) ) Used in Analysis h Kh RzL Kd zq Ke GCPi RA LE qh qin qip Gust G1 Gust Zm Izm Lzm a Gust G 20.000 ft 0.902 1.000 0.85 0-000 ft 1.000 = 486 = 1.0 - îR 0. 6. 0 95 95 18 21 sq ft psf psf = 25.95 psf Factor Factor Factor 5 .000 ft .228 21 .05't .906 -a=0 :0 =0 =6 =0:9 875 = Lessor of Gl Or G2 = 0.850 MWFRS !üind Norûal to Ridge (Ref Fig 27.3-Lt h : Mean Roof Heíght Of Building RHt : Ridge Hêight of Roof B : Horizontal Dimension Of Building Normal To Wind Direction L = Horizontaf Dimension Of building Para.l.Iel To trûind DirecLion L/B : Ratio of L/B used For Cp deterrnination h/L : Ratio of h/L used For cp determination Slope = Slope of Roof Roof = Roof Coeff (0 Lo h/2\ (0.000 ft to 10.000 ft) Roof : Roof Coeff (h/2 to h) (10.000 ft to 20.000 ft) Roof = Roof Coeff (h to 2h) (20.000 ft to 30.000 ft) Roof = Roof Coeff (h to 2h) (30.000 ft to 40.000 ft) Roof = Roof Coeff (>2h) (>40.000 ft) 0.000 fr 5.000 ft 0.000 ft 0.000 ft .750 ??? .46 Deg = -0.18, = -0.18, = _0. l"g, = -0.18, = _0.19, -0.9 -n o -0.5 -0 .5 -0 .3 : 0.80: -0.50: -0.70 = l-.50: -1.00 Cp_WW Cp_LW Cp_SW GCpn_WW GCpn_LW ft = Windward Wa1l Coefficient (AI1 L/B Values) : Lehrard I¡Ial1 Coefficient using L/B : Side Wall CoefficienL (Al-1 t/B vafues) : Parapet Combined Net Pressure Coefficìent (üIì-ndward Parapet) : Parapet CoÍLbined Net Pressure Coefficient (Leeward Parapet) Vfall- Wind PressureE based On Positivê Internal Pressure (+GCPi) - Nornal to Ridge Al"1 r*ind preasureE include a load factor of 1.0 Efev Kz Kzt qz cCPi üIindward Leer,rard Side Press Press Press psf psf psf Totaf Pres s psf Minimum Pressure* psfpsf 20. 00 0.902 1.000 25 -95 0.18 L2 .98 -15 . 70 -20 .7't 28.68 16.00 - Normâl to Ridgêglalf Wind Pi.eEsures based on Negative Inte¡nal Pressure (-CCP1) .â11 lrínd pressurês inc.lude a load faetor of 1.0 EIev Kz Rzt qz cCPi ûtrindward Leer^rard Side Press Press Press psf psf psf Total Press psf Minimum Pressure* psfftpsf 20.00 0 -902 1.000 25.95 -0.18 22.32 -6.36 -10.'77 28 -68 16.00 Notes Wall Pressures: Kz = Velocity Press Exp Coeff KzL : Topographica.l Factor qz : 0.00256*Kz*Kzt*Kd*V^2 GCPi = Internal Press Coefficient Side : qh * G * Cp_Stù- qip * +GCPi lÍindward =qz* G* Cp_Wlil- qip * +GCPi Leeward : qh * c * Cp_LvÍ- qip n +GCPi Total =lvindwardPress - LeebtardPress* Minimum Pressure: Para 2'1.1,.5 no.Iess than 16.00 psf (fnc1 LF) applied to Walls + Pressures Acting TOúIARD Surface - Pressures Acting AüIAY fro{t Surface file.l/lC:l[Jsers/alios/AppData/Roaming/MecaWind/OutpulWPFOutputPrint2022.08.16.20... 8l16/2022 Page 3 of6 16/& Roof, wind Pressures fo! Positivê 6 Negative fnternal PrêsBure (+/- GCPi) - Norma]. to À11 wind pressur€s ,"1ïÍ31 a r-Õad ractor or l-.0 Roof Var Start uist ft Cp_rnin Cp_max cCPi Pressure Pressure Pressure ln_min* I'p_nin+ t'n_mûx psf psf psf End uist ft Pressure I,p_mûr{ psf Roof Roof Roof Roof Root ( -Y) ( -Y) ( -r) (+Y ) 1+y ) 0 l-0 20 30 4U 000 000 000 000 UUU 1-0 20 JU 40 bU 000 000 000 000 úüu 0.180 -0.180 -0.l-80 -0.1,80 -ü. 1Bü -0 -0 -0 -0 -ü 900 0.180 900 0.180 500 0-180 500 0.180 30ü u. t80 0.70 0.70 0.70 0.70 ú,7t:, -8. 64 -8 .64 -8. 64 -8.64 -8. 64 -1-5.18 -15.18 -6.J6 -6.36 -l_.95 -24.53 -24 -53 -15.70 -L5.70 _1 1 îO Nol-es Roof Pressures: Start Dist : starL Dist from lilindward Edge End Dist : End Dist from !Íindward Edge Cp_Max : Largest Coefficient Magnitude Cp_Min : Smaltest Coefficient Magnítude Pp*max : qh*G*Cp_max - qip*(+GCPi) Pn_max = qh*G*Cp_max - qin*(-Gcpi) Pp_min* = qh*G*Cp_nrin - qip*(+GCPi) Pn_min* : qh*G*Cp_min - qin*(-GCPi) OH=Overhang X: Dir along Rìdge Y = Dir Perpendcular to Ridge Z =Vertical* The smaller uplift pressures due to Cp_Min can become critical when wind is combined with roof live foad or snow load; load combinations are given in ASCE 7 + Pressures Actinq TOWARD Surface - Pressures Acting AvìlAY from Surface MglERg ÌYind Parall-eL to Ridgê (Ref l,ig 27.3-LI h : Mean Roof Height Of Building RHt : Ridge Height of Roof B = Horizontal, Dimension Of Building Normal To V{inrì llirectìon L = Horizontal- Dimension Of building ParafleL To ülind Direction L/B : RatiÕ Of L/B used For Cp determination h/L : Ratio Of h/L uaed For Cp determination Slope = Slope of Roof Roof = Roof Coeff (0 to h/2) (0.000 ft to 10.000 ft) Roof = Roof Coeff (h/2 to h) (10.000 ft to 20.000 ft) Roof = Roof Coeff (h to 2h) (20.000 ft to 40.000 ft) Roof : Roof Coeff (>2h) (>40.000 ft) = 20.000 ft: 25.000 fr: 60.000 fr-: 80.000 ft - 1 aa) : 0 .250: 9.46 Deg: -0.18, -0.9: -0.18, -0.9 * ^ 10 _^ q = -0.18, -0.3 Cp_ï/ü!Í Cp-LW Cp_slÍ GCpn_WW GCpn_LW = 0.80: -0.43: -0.70: 1.50: -1.00 - !ûindward wal-l Coefficient (Al-1 l,/B Values) = Levrard WaIl Coefficient using L/B = Side !ùall Coefficient (Alf L/B values) = Parapet Conbined Net Pressure Coefficient (!üindward Parapet): Parapet combined Net Pressure Coefficient (Leeward Parapet) Wa11 Wind P!êssures based On Positive lr¡ternal PreEsurê (+GCPi) - Parallel to Ridge À11 wind prêEsurês i¡c1ude a l.oad f,åctor of 1.0 Kzt qz GCPi llindward Press psf Leev.¡ard Press psf Side Press psf Totaf Press psf Minimum Pres sure* psfftpsf 2s.00 0.945 1.000 27 .20 0.18 20.00 0.902 1.000 25.95 0.18 wall wind Pressurês based on Negative InternaL Preasure (-GCÞi) - Paral1êl to Ridge All wiad preEsures ínclude a load facto! of 1.0 13. 83 L2.98 -1,4.23 -14 -23 -20.1.L -20.L-J" Side Press psf 28.06 21 .2L ToLaf Press psf 16. 00 1_6. 00 Elev Kz Kzt qz GCPi ütindward Press psf 23.L7 tt ?) Leehrard Press psf Minimum Pressure* ft psf 25.00 0.945 1.000 20. 00 0 .902 1.000 -4.89 -4 .89 28.06 2'7.2r )1 añ 25.95 00 00 16 t6 -0.18 -0. t_8 -LO.77 -1_0.17 Notes tr{afl- Pressures : Kz = Vefocity Press Exp Coeff KzL = Topographical Factor qz : 0-00256*Kz*Kzt*Kd*V^2 GCP| = Internaf Press Coeffj-cient Side =qh * G * cp_Sw- qip * +GCPi !{indward =qz* G * CpwW - qip * +GCPi Leeward =qh * G* Cp*LW- qip * +GCPi Total =Windward Press - LeewardPress* Minimum Pressure: Para 27.I.5 no less than 16.00 psf (Inc1 LF) applied to WaI-Ls file:lllC:lUsersialios/AppData,/Roaming/MecaWind/OutpullVPFOutputPrint2022.08.16.20... 8/16/2022 Page 4 of6 17164 + Pressures Acting TOWARD Surface - Pressures Acting AWAY from Surface Roof, Vtind Presaurês for Poeitive & Negative Inte¡nal Prêssure (+/- GCPi) - ParellêJ- to Rídge AJ-J- wind prêasurês include a l-oad factor of 1.0 Roof Var Start Dístft Cp_rn:in Cp_max GCPi Pressure Pressure Pn_rnin* Pp_min* psf psf End Dist ft Pressure Pn_max psf Pressure Pp_max psf Roof Roof Roof Roof Roof Roof ROOI Roof 1+y) ( -Y) (+Y) ( -Y) 1+y) ( -Y) (+Y) ( -Y) 0.000 L0.000 10.000 20.000 20 .000 40.000 40.000 .180 .180 .180 .180 .180 .180 -0.900 -0 . 900 -0.900 -0 . 900 -0. s00 -0 . s00 -0 .300 -0.300 0.180 0.1-80 0. 1"80 0.180 0.180 0.l-80 0. r"80 0.180 -24.53 -24.53 -24.53 -24.53 -15.70 -15.70 -7r.29 -1 1 )0 0.000 10.000 -0.l-80 00 -0.180 0.70 0.70 -L5.l-B -15 . L8 -6.36 -6.36 -1.9s -1.95 -8. 64 -8.64 -B .64*8. 64 -8. 64 -8. 64 -8. 64 -8 .64 -15.18 -1-5.18 0 .70 0.70 0.70 0.70 0.70 0 .70 00 -0 00 -0 00 -0 00 -0 00 -0 00 -0 10.0 20.0 20.0 40.0 40.0 80.0 80.0 Notes Roof Pressures: start Dist = Start Dist from Windv,rard Edge End Dist : End Dist from Windward Edge Cp_Max : Largest Coefficient Magnitude Cp_Min = Smal-lest Coefficient Magnitude Pp_max - qh*G*Cp*max - qip*(+GCPi) Pn_max : qh*G*Cp_max - qin*(-Gcpi) Pp_min* = qh*G*Cp_min - qip*(+GCPi) Pn_rnin* : qh*G*Cp_min - qin*(-GCPi) oH = overhanq X = Dir alongRidge Y= Dir Perpendcular toRidge z:Vertical* The srnaffer uplift pressures due to Cp_Min can become criticaf when wind is combined r^ri-th roof live load or snow l-oad; load combinations are qiven in ASCE 7 + Pressures Actj-ng TOhIARD Surface - Pressures Acting AVTAY from Surface coryonents a¡rd cladding (c6c) calculationa Per Ch 30 Part 4: file:lllC:l[Jsers/alios/AppData/Roaming/MecaWind/OutpulWPFOutputPrint2022.08.16.20... 8l16/2022 h Page 5 of6 18iti4 a a l\çt a Gable Roof ( 7"<O< 45") h LF KzE EAF = Mean Roof Height = Load Factor based upon STRENGTH Design = Topographlc Factor is 1 slnce no Topographic feature specifie<l = Adjustment factor per Tabl-e 30.6-2 to Fig 30.4-L pressures : Roof Sl-ope = Least Horizontal- Dimensionr Min(8, 1,): Min(0.1 * LHD, 0.4 * h): Max(41, 0.04 * LHD, 3 ft [0.9 n]): Parameter used to define zone width: 2*a: Adjustment factor per Table 30.6-2 to Fig 30.4-1 pressures : 20.000 fr = 1.00 = 1.000: r.287: 9.46 Deg = 60.000 ft = 6.000 ft: 6.000 ft = 12.000 ft Sl-ope LHD a EAF CtC entries with Zones rshj.ch are Not ÀppficabJ.e to Ch 30 Pt 4 and/or Building Se.Iectionô Description ft AREA 20 Zone !ùidth ft 2.000 Span Length ft 1-0.0002 VÍind Pressures for CorDponents ar¡d Cladding pêrf F'ig 30.4-1 A1I Ìrind pregaures include a load f,actor of 1.0 Description zone !üidth Span Area 1/3 Rule Ptabfe Pos Ptable Neg Pos Neq pp file:lllC:Nsers/alios/AppData/Roaming/\4ecaWind/OutpulWPFOutputPrinØ022.08.l6.20... 811612022 Page 6 of6 19164 ft frf,r ft psf psf psf psf Roof Roof Roof Roof Roof RoÕf AREA ARËA AREA AREA AREA AREA AREA AREA AREA truss trus6 Truss Truss Truss Truss 10 1-0 1_0 l_0 10 20 20 20 20 2r 2e 1 3e 3r 2n 1 2e 3e 4 5 2e 2e 4 5 2.000 2.000 2.000 1.000 1.000 1.000 L.000 2.000 2.000 2 .000 2.000 2.000 2.000 2.000 2.000 60.000 60.000 60 .000 60.000 60.000 60.000 5 .000 5.000 5.000 5.000 5.000 r-0.000 10.000 10.000 10.000 1-200.000 1200.000 r.200.000 L200.000 1200.000 1200.000 I .333 10.000 10.000 r.0.000 10.000 33 .333 33 .333 33 .333 33.333 -3s.30 -13 - 70 -13.70 -35 .30 -39.90 -3s.30 -44.00 -44.00 -64. r-0 -2s.80 -31.90 -36 - 31 -36.31- -24 -08 -28 -46 16.00 16.00 16.00 L6.00 16.00 16.00 L8.53 18 .53 18.53 30.63 30. 63 16.00 16.00 28.41 2B .41" -45 .43 -r't .63 -17. 63 -45 .43 -51.3s -45 .43 -56. 63 -s6.63 -82.50 -33.20 -4L.06 -46.73 -46,73 -30.99 -36.62 Yes Yes Yes Yes Yes Yes Yes No No NO No Yes Yes Yes Yes 70 70 70 70 70 70 40 40 40 80 80 t6 16 08 08 o 9 9 9 9 9 14 L4 14 23 23 12 22 22 Ptable = Pressure taken from Fig 30.4-1 lfind pressure: ptable * T,arnbda * Kzt * LF [Egn 30.7-]" e Table 30.6-2 Note 5l * per para 30.2.2 the Minimum Pressure for C&C is 16.00 psf t0.766 kPal {Incl-udes LE} pressures on overhangs include Pressure froil the top and bottom surface of overhangf file:lllC/TJsers/alios/AppData/Roaming/MecaWind/Output/WPFOuþutPrinØ022.08.16.20... 8/16/2022 trt GÀlttt{ cot$uutilG ¡mffi nm ttr lü¡qrRùñId&4Êsro ãt{,ü|fsi¡ SNOW LOADING ANALYSIS PeTASGE 7.16. Struturc Typo; GABLE ROOFGCelh¡¡âinß Job Name:Subiect. Job Number:Orioinator:Chêcker: INPUT DATA BASIC GROUND SNOW LOAD Snow Ëxposure Factor Thermal Factor lmportance Factor Sliding Factor Structure lnformation .- Roof Slope .- Height,H1 = Pg= Roof Ce= Ct= ls= Cs= Roof $= 19.0 2 (f¡9. 7-1, pg 34) 7-2, pg 30) 7-3, pg 30) 1.5-1/2, 7.3.3, ps 52) 12 38.0 ft 20t6/ (wind from north) (read) l¡mits Ps reduced Pu (total) Ps réduced .- Vertical d¡stance between the edge of h¡gher & lower ad.iacent roof .- Length of the roof upw¡nd of the drift = windward Dr¡fr = = leeward Drift = .- Horizontal d¡stance from eave to r¡dge (unbalanced load calculation) .- Separation between Frames = .- Separation between Purlins = The roof has a rafter-ridge beam system Surcharge, casel Surcharge, case2 lower Slope(upper) : 9.5 o a/rgles rb within Unbalanced Roof Snow Load must be cons¡dercd not Apply Ridge Beam system or W=2Ott, Apply Case lower = w¡ndward = = leeward = = w¡ndward = Sl'w = S{,1 = S2,w = H2= h= Lu1= Lu2= w= sf= sp= 0.0 38,0 ÆÞ+ I N\Notes: L No oveftìang considered 2. See poirìt I for analysis limitationsLEEWAROWNT)WARD tlL !-ætim l-ect¡dn+ WPIGAL FRAME PLAN VIEW 2 1 ir DESIGN ANALYSIS Roof 1 . FLAT ROOF SNOW LOAD, Pf = 0.70(Ce x Ct x ls) x Pg Pf = 2. SLOPED ROOF SNOW LOAD, Ps = (Cs) x Pf Ps = 3. MINIMUM SNOW LOAD FOR LOW-SLOPE ROOF, Pm = ts x m¡n (Pg; 20 pso Pm = Lower - - - Slope angle = 9.5 o <15", Pm Should be considered, but ¡t is < Ps Upper --- Slopeangle= 9.5o <lS",PmShouldbeconsidercd,but¡tis<Ps Pm is a separate un¡form load case. psf psf psf loads lower Lower - - - Slope lim¡t angle - Lul/50 = 0.8 o Pg >= zopsf, Rain Sureharge is nol rcEtirerí lo he applied Upper - - - Slope limit angle = Lu2l50 = 0.8 o Pg >- 20psf, Rain Surcharge is not requ¡red to be applied Rain on Snow applies only to sloped roof (balanced) load câse Not need to be used in combination with drift, slid¡ng, unbalanced, min¡mum, or part¡al loads 5. UNBALANCËD ROOF SNOW LOAD (SURCHARGE) This ¡s only considered for North W¡nd. For South Wind, the Dr¡ft on Lower Roof is consÌdered (if apply) Slope limit angles Not need to be used in determining or in combination with drift, sliding, unbalanced, minimum, or 4. RA¡N ON SNOW (SURCHARGE) Roof Surcharge Sr,!B max = 30.2 o min = 2.4 o =lsxPg = 0.30 x Ps,u upper 0.9 ._.""."..fl, "..'' lower 0.9 1.2 1.2 0.8 0.8 II 2 19.0 A 24 24 16 ?A t6 0 0 0 32 7 1of 3 811712022 3:00 PM 21t64 =hdxy/(SX1/2) =leeward= Calculating the snow density "T" y = 0.13 Pg + 14 <- 30pcf Calculating the width of snow dr¡ft'\M" w=(8/3)xhdx(S)^(1/2) Calculat¡ng the he¡ght of snow dr¡ft "hd" hd = 0.a3((vi¡)^(1/3)x(Pg + 10r(1/4) -1.5 6. DRIFTS ON LOWER ROOF (SURCHARGE) s2,r =Pu (surcharge) Roof Height of balanced snow load hb = Ps /T hb = 1.26 ft Height above of balanced snow hc = h - hb (>= 0.00) hc = 0'00 ft hc / hb = 0.00 Dr¡ft Loads are not required to be applied = teeward Drift = hd = 0.43((Lu2)^(1/3)x(Pg + 10)^(1/4)) -1.5 hd = 2.34 ft = windward Drift = hd = 0.75(0.43((Lu1)^(1/3)x(Pg+10f(1/4)-1-5) hd = 1.76 ft hd/hc= 0.0 Calculating the w¡dth of snow drift'\lv" w=4xhd w= 0.00 ft surcharge Pd=hdxï Pd= t----.0"*-,io" 7. PARTIAL LOADING Frames == Because the frames are just a section or are s¡mply supported, Partial Loading ¡s not required to be applied Purlins == Because the purlins are continuos (supported on frames), Partial Loading must be cons¡dered Roof lower Banlaced Load, BL = Ps x sp = Half BanlacÆd Load, BU2: Ps x sP / 2 = 8. OTHER ANALYSIS s.1 SLIDING SNOW (isolated building) 8.2 PONDING INSTABILITY 8,3 EXISTING ROOFS 8.4 ROOF PROJECTIONS AND PARAPETS 8.5 EAVE ICE DAM PROVISIONS These analyzes do not apply to the structural configurat¡on under study 12 FINAL SNOVì¡ LOADS load distribut¡on cAsÉ MIÑIIVIUITII SNOW LOAD & SLOPED ROOF SNOW LOAD + RAIN ON SNOW LOAD UNIFORM LOAD DISTRIBUTED THROUGHOUT THE ROOF SECTION CASES: (SLOPED ROOF SNOW LOAD) + UNBALANCED ROOF LOAD lsPg =6e l: Ps(|rytr)=ææÈ lor Ps "redrced (çps¡ l¡l¡ NA LEÉWARD WIIüWARD 12>Þ 12yll- (SLOPED ROOF SNOW LOAD) + DRIFTS ON LOWER ROOF Pd (srcñrge) Ps (lqtr) Ps(u!06) N\ LEEWARD WIüWARD SOUTH wlND 12 << vl r-- I hd= 19.2 15.31 2.34 pcf ft ft ' .' '...;lower i1 controls x 18 = loâdload x 2of3 811712022 3:00 PM CASE:  I sp. - I "o --] 22t64 Pm(lower)< Ps+Srs(lower), so it ¡s not req to be Pn(upper)< Ps+Sts(upper), so ¡t ¡s not req to be appl¡ed Pm ,Â. t A J 3p 3p Roof lower uoDer Pm 18 t6 \¿1 \¿\¿ Roof lower upper BL 24 24 BU2 't2 12 PARTIAL LOADINGCASE: BL BU2 AA I BLN BU2 A I A I + ALL POSSIBLE COMBINATIONS OF CASE I BU2 tbrft tbrft CASE 2 BL CASE 3A BL CASE 38 BLI2 BALANCED SNOW LOAD ON ANY TWO ADJACENT SPANS AND HALF THE BATANCED SNOW LOAD ON ALL OTHER SPANS (CASE 3C, CASE 3D, . . . ) Roof lower UDDET Ps 24 24 Srs 0 0 Ps+Srs 24 24 SLOPED ROOF SNOW LOAD + RAIN ON SNOW LOADCASE: Ps+Srs  A 6   (SLOPED ROOF SNOW LOAD) + UNBALANCED ROOF LOAD Ps+surcharse fT-TT-ff * Apply on purlins located w¡thin the 'w' distance fron the r¡dge = 15.31 ft * Apply on purl¡ns located beyond the \¡v' d¡stance (fron r¡dge) to the eave Roof lower uDoef w¡nward 7 leeward 43 leeward 24 CASE: A    ¡\ (sLoPED ROOF SNOW LOAD) + DRTFTS ON LOWER ROOF * Max Load (ML), located at ridge. Load on intermediate purlins (between ridge & "w" d¡stance): ML-(ML-mI).X = X (distance from r¡dge to analiz€d Purlin: ** Min Load (ml), Apply on purl¡ns located beyond the'1,ü'distance = 0-00 ft Roof lower UDDET winward 0 leèwârd 0 lo€ward 0 lbrft lbrft tb/ft  oA ^  CASE: Ps+Surcharge 1.00 ft (from ridge) to the eave 3of3 811712022 3:00 PM sEcïtot{ r6f3EAF¡HAüÀKE LÓÀDg ¡3rfn.t scor. ¡¡sÉ 18 ofASCE 7. æapF¡rdrê, Thà$ùffie&¡ c@oryftr asør*re isperrùèdòobÞdet€{¡r*Éd kr ffidsEe r}ifr Sêdiü| t6t3üASCE7.Exælihor;l8€tsdBdæadþro-{ar*sdsdÐlcs,ãEÈiøedtògMÊDewÕ6úEeæABtrC^úloøled*hælhefiaÈêd*þrt{sfud3ædralrwælerdû.S".bkothm0.4o.r Thå sâboh ùrøæküng syitsnto3 Ag{kúhtrslsttr{Ê Crud@trârkfft br h€idstd lMe oË¡pðay.svürfrËs. burtgd u{&y ÌËånd flts{r appwiênåm ild ild€f r€ãctüs.s. ffieffirüû¡AstE? b Qr4Er t{$dtB6ù*df. ereEotæspðcåe*ï atù€dl¡nfr¡S€*nb gfrt*d modôn vduræ shâ| fÞ d€þmiæd ¡Ì âc6dæ sith üds 6aoÍoû.t!t3¿,! ¡Foaa *crdo !.rrùa ISeffiË ooegn Csle$ryAÀ)atd)à ASCE 7 HAZARD TOOLþJÐS ÊO'eilft.cdoldb. CoftûJo, "5g{l ft wüh r6w tСlolh Arft n@€1èudånVedcåi Oåtüm ûf 1988 (¡¡Ä{0 881L.r: 39 53325Lmg: "107.78331Slè¡dsrd: ASû€,/SËù7-¿iÊi*IÐ8tê!úry.$a;l C¡4s. O . Sììtt So¡lr:1úþr"f Cl"'Rl6t( €å€qtry rlSÈr6lc D€lgñ)Í)Sr e3S6 0.23Vs ?60& 005aSùr 0079Ssc 0.3¡114S¡r ( lZÞG& 1._r8t,Ð*,-.,1p4fot'n4'"j-e*¡.rn* srd H$ôù;lJ flMühiP€riod Design Spectrumi \€ Lt-{5ôs.(s) vÉ l{s)Multi-Period MCÉÊ Sp¿sìrumÊËÁpHSrÉ¡ñblûl C¿r@"y llT"f'Ï'til"il"îte. *' '''r?:+r*-r'/d'* jlrr¡0350.300.?00. t50100.05I.."{6t*¡yegsre R ¡¡rs¡ 'F!'!!',*.?')¡,/*àøvqg.g-r! -*àb'ù'4'4h10ft¡û{j¡rÊ¡râ,{u(jH MFSdr¡hit._ !'Nsct)å 25t64 ASCE ASCE 7 Hazards Report AIIHûqN SOCIEÍYOF CN& ENGINffi Address: Rifle Colorado, Standard: ASCE/SEI7-22 Risk Gategory: ll Soil Glass: D - Stiff Soil Elevation: 5341.57 ft (NAVD 88) Latitude: 39.53325 Longitude; -107.78331 L irlñSl r ,¡ù s; {? 'a E¡ú5r Ê {t¡ âl ë*ç' E . F- 3ti 5l E i¡d s! ^^,,;¡ zg 'ì<ÞÂsl'so î + d < ô:--' ; ¿z- È: {¡l¡tü i?' Swftrt 11 ,* j --n? .- r nr.¡r;:4 ¡,lr '' f ,F J¡T¡ Iì i:Õ 1J ? ã/l¡h s¡ d¡Éç ä 5 = ¡¿*k*t**q.g ì tl¿ ¡ ".:¡if 1J r"!È Ét :1: ùói.:t .o ro; i:4araJs Jt¿a¡!s ': i *ê: - . ,Eàgfr.ÉÊpt :' ,: Bß]f:t{ }f q htlos://asceThazardtool.onllne/Page I of4 Fri Dec $2021 26t64 A[ffitAt{ s00ËfY0Foìll floNms Seismic $ite Soil Gleas: Resulb: M 0_st} 0_4s ft-4t¡ û"s 0.30 s_25 8.20 å"15 tt-tû s-06 {t.35 0_3s $.25 {¡,20 {t {5 s-10 û.û5 0.18 0.34 o.12 0.23 0.079 Multi-Period MGEn Spectrum 0.054 Multi-Period Design Spec{rum Tr: Ssl Sr: Soc Vs¡o PGA Sus Sur Sos Sor 4 0.3 260 {¡.3â 0.3t! ,0"¡5 g-20 0.15 0"10 t_s5 Two-Period MCE nSpectrum 24 Sr(g) vs T(s) 1ã S"(g) vs T(s) ô 3 I 4 ı 3 I ,f 10 5 't0 0-?5 s-20 s-f5 û.1{¡ û.{t5 5 24 S"(g) vs T(s) tl S"(g) vs T(s) TwePe¡iod Design Spectrum MCR Vertical Ræponse Spec{rum Vertical ground motion data has not yet been made available by USGS. Design Vertical Response Spec{rum Vertical ground motion data has not yet been made available by USGS. httoe :/ascoThazardtoolonllne/Page 2 of4 Fri Dec 10?0/i21 27tMsI6¡ AMNßAN sOOIEff OF SVIT INGINBS DataAcçeesed: Fri Dec 102021 Date Source: USGS Seismic Design tlaps based on ASGEISÊI7-A2 and ASGE/SEl7-zzTable 1.5-2. Add¡tional data for sitecpecific ground motion procedures in accoldance with ASCE SEI 7-22Ch.21 a¡e available fiom USGS. httos :llascoThazarüool.onli ne,Page 3 of4 Frl ttêc 102021 28t64 Alrffi C,AN S013lEfY 0FCl\ût [NGlt'¡ElS The ASCE 7 Hazard Tool ls provlded for your convenience, for infolmatlonal puryose!¡ only, and is provlded "as 18" and without warrant¡cr of rny kind. The location data lncluded hereln has bsen obtåln€d ñom information developed, praduced, and maintained by third party providers; or has been extrapolated from mape incorporated in the ASGE 7 standard. While ASGE has made every effort to use dda obtalned from ¡ellable ¡ource¡ or methodologlc¡, ASGE doe¡ not m¡ke ¡ny representatlona or warrãntle¡ a¡ to thê accuracy, complctene¡s, rcllabilit!¡, cunency, or quality of any data provldcd herein. Any third.party links provided by thlr lool should nol be construed as an endolsoment, afflllallon, rclatlonshlp, or rponsorshlp of such thlrd.partl¡ content by or from ASCE, ASGE does not intcnd, nor should ¡nyone ¡nterpret, the ¡eeulte provlded by thie Tool to rcplece the sound judgmont of e competent prolessional, hav¡ng knowledge and expeñencê in the appropriate lield(s) of practice, nor to subst¡tute for thê standard of care rêquired of such profiessionals ¡n ¡nterprêtlng and applylng the contents of thla Tool or the ASCE 7 standard. In using this Tool, you expressly assume all rlsks assoclated wlth your u¡e. Under no cl¡cumstancos shall ASCE or lts officers, dlrector:s, employees, membelr, afflllates, or agents be llable to you or any other percon for any dlrect, lndlrect, epeclal, incldental, or consequential damages arielng from or r€lated to your use of, or rcllance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agr6e to release and hold harmless ASGE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASGE 7 Hazard Tool. httpe ://asceThazardtool.on ll ne/Page 4 of4 Fri Dec 102021 rü(iCe GAI¡IM CONSUIÍ lilG Et'l6lt€tlll{G ttc lÐnarsãr*W ¡ffitrmMRglð ¡x{¡6Ìrlú{5'6 NrcECÁÑEMCECOM 25164 Project: WAREHOUSE: COLORADO Design By: AG STRUCTURAT ANATYSIS 1. Load Analysis For analysis, Force: Load (psf) x S (ft) Ground 1st Level Dead (D): 20 psf Live (L): 125 psf Roof Level Dead - Terrace (D): 15 psf Live (L): 20 psf (truss) & analysis over container 300 Ib (maintenance) For analysis, Force: Load (psf)x S (ft) 2. Members Analysis Steel Frame Container Structure' Provide Steel Reinforcement lrl GAf{tit co¡H[üF $t6tüfl t¡G ttc rß¡Sgþ.tñ !H, l.!úr L- &dr FL t¡l$ ¡llÐH¡¡¡Í nF@ôarrü¿coMoce 30/64 Prolect: WAREHOUSE: COTORADO L,esign By: AG ß ,Òè Member ld ¿ I 9 !. s tPÊ Member Propert¡es r.ï!GAr{tM CoilsutTl¡¡G tiElilf tntllc Ltc tÐSgsrjm w {ffi gd &*tr FL l¡t@ fH {t6l9tótlld ¡flFO@6AflEMCECOMGCe 31t64 Project: WAREHOUSE: COTORADO Design By: AG Member ld (container - floor -tYP) Container - Wall thickness & Material !? Plj ?:: 3 Dead Load:20 psf @ ground & 1st level;15 psf@ roof (I5x4 x2'=l20lb' 15'x34'x2'=IO20lbl Deslgn By: AG lrt -'32t6/i tilgl0HntHcEilGilErfiËMr-þtEg{.mEEbEil¡ nlil#¡¡tt rc^¡trcEcoM Project: WARËHOUSE: COTORADO cce Llve Load: 125 psf @ ground & lst level Live roof Load: 300 lb (maintenance) @ roof (30O / 2= 150 lb) lrl sånßt0il$frt6$ffiffmGür ffi¡Ë.lFet mgEãtE Sr ñr(úp¡¡ri N@A¡IrcECOMoce 33/64 Project: WAREHOUSE: COIORADO Deslgn By: AG l I it l l g F¡ q¡ * FI .T ;n å FIT Snow Load: 40 p si (40 x 34' x 2' = 272O lb, 4O x 4 x 2' = 32O lbl Wind Load (x):20 psf lrl Gâ¡üllt$tnffH6tm¡nnßrc flfrnb¡¡ÉtGCe il4/64 Projerr: WAREHOUSE: COLORADO Design By: AG Wìnd Load (+z):28 psf Wind Load (-z):28 psf ITT 6AmM ()$Uütt'lc ¡l¡61¡€Ínil6 ltf rskæffilúffiklrEilto Hflsln¡¡ts 1rc6ÂìEtcÊcoMoce 35t64 Project: WAREHOUSE: COTORADO Design By: AG Wlnd Load (-y):30 psf @ conta¡ner (30 x 4' = 12O lblft) & 24 psf @ trusses (24x34' x2' = 1632 lb) Design - Ratio < 1.00 ok! r.T GAI'¡EM C0NSUtïl¡lG tl¡Glf'lttßl t¡G ttCtgåhåFwxÛ&ñM[!1ø rH i¡t6l9l¡¡ta¿ I¡fO@6ANEMCECOMGCe 36/64 Project: WAREHOUSE; COIORADO Des¡gn By: AG HHaaf¡aår¡a¡fftu Jtr¡lI lrIå¡taaaIllIriÍaItlallI¡r¡tt Group ld E)êsigñ Group Rêsults Þ-sieñ ¡€rcup: FLOORJOISTp€rAlSC ASÞ (zoaO) Þé6¡gñèd aê: chann-r 4 76 t o.1aa x 1.75 x o 1g€. Merê.¡ãr: \s¡e@¡1ÀgTr¿ a24al¿êñÞrr¡ñc¡ùdêd<7Ê) emxôoz-cag, e6xao2-cla. Bñxoo2-c17. Bñxo02-c1e BÉxoo2-c15.eñxoo2-è1¿- Bmxoo2'c13. Bñxooz-cl2- emxooz-ca 1, ê¡rxoo2-€10, Þmxoo?-*4. €¡îxoo2-c39.ór.!XOO!-LSå. èrr¡^OÔ!-d3- 6r!iìúôè-éö- Þr.r^Oo2-LJ1 , g¡r.^eu¿-4r- Þr¡.^ùo¿-L:A- å¡r¡^ùd2-éù-BnrXOOz-*g, EñXOO2-cS. EñXO0â-æ4. èoXOO2-€O. BñXOO2-É1. BmXOO2-€3- ÉÃìXOO2-C32.Bn¡XOO2-cð. ÊrnXOOz-cZ, B¡,lùOO2-cg- èñXOO2-cå. êmXOû2-€. êñXOO2-e¿ BfrXOO2-dO. Br,l*OO2-€í,Édxooz-€o. Eñxoo2-é3. e!-doo2-ø4. Bmxoo2-c42. Éñxoo2-c41- Bñxoo2-â+ca23. Þt1ùoo2-2è-c1æ.BñXOO2-2ê-è121, BñXOO2-æ-c120. eñXOO2-2e-caae. êñXOO2-æ-eA1â- Émxooz-ze-ca1?.ârìxoo2-2e-ê1a 6- Èñxoo2-æ-cr t5. Þñxoo2-2a-c11 4_ Bñx0o2-æ-cl 1 g êdìxoo2-2a-c11c.BdùO62-2A-e1a1. e6XOO2-æ-C110. ênXOO2-2A-c109_ êilùooz-æ-clOA_ BñXOO2-2ê,C107.BmXOO2-24-c1OA, êmXOO2-æ-c1O5- BñXOO2-âg-ci04. êdXOO2-æ-caø3, ÊñXOO2-24-.102,BfrxOOz-28-c1O1. EñrxOO¿-æ-clOO. ÊmXOO2-24-cæ- BñXOO2-24æ2. tnrXOO2-æ-€6. E¡'üOO2-29-cê5.B-XOO2-29-çæ" BñXOO2-2eæ9. êñXÔO2-æ-ê9a. Êltxoo2-æ-cga" Br1uOO2-2ê-c93- BñXOO2-2&c92.BmXOO2-2e-eS" êmxooz-2+ces, ÊñXOO2-æ-ê9A. Bdæ2-æ cg7. B.ÌüOO2-2A-c99 lTr cAr*M coHsuflltc ¡t¡Glt¡f¡mr6 ttcrsæirrMmE*ælt R3¡t@ tf(¡¡ól{¡¿ts l¡@6ÄtrEMCËCOM(iCe 37t64 Project: WAREHOUSE: COLORADO Design By: AG Þ-tiglln Group: FLO()R-EI)GE Þ.r AISC ASD {2OrO) f)esign€{r As: HSS2-11¿x2-"lr4x'1t8. M ateraðl: lSteÊl\AS:fM 4242 Mem-bers rnctud€d(36i): ËñìZOO3-¿, Ê}mZûO}3. BmZOö4-3. ElmZOO4-4, AmZOO4-?. AmZOO4-6, E'mZOO3-7. BmZOO3-6. ÊtñZOû3-É. EtnZOû3-S, Ê¡rÈOO¿-8, É}TRZOO4-g, E}mXOO2-2e-c231. ÉmXOO2-24-c23O. ÉrñXOO2-zA-c2æ, Btytl{:OÛ2-2'E-c?2A- BmxOO2-2Ê-c227, EImXOû2-29-C226. E'mXOO2-æ'ë25. BrùOOZ-24-c224, BmXOO2-29-c223. BmXOO2-29{222 Êñ]{OA2-2S-C221, Ëm)(OOz-æ-c2?O' ËlñXOO2-2Ê-c219. Bñxoo2-28-c218" Bmxoo2-28-c217, E'mXOo2-24-c216, Ctmxoo2-24-c215' BmXOO2-28-c214' BmxOO2-24-c21 3. Êmxoo2-28-c212, BnÐ(oo2-24-c21 1 ' Bmxoo2-æ-121Û' ãmXOO2-24-c2o9. gmXOS2-2e-czoS .-"-:ð..-.-...-.-.-..-....- i{V..*f. X... -.---... -...... ..'-r.x.-...-.....,-.,......I + 6r^r+Sl '+X>+X ITT GArüfit c0r6t[Imc f t{6ll[t&r¡6 llt rffiþ¡n¡BbndHRs¡ ñt{,¡F¡ó¡t¡ ümA¡lw¿çoMoce 38/64 Project: WAREHOUSE: COLORADO Design By: AG Þ..¡gn GEUÞ: TOP FIAIL Þ-rAtSç ASD (zOtO) Þssþne<t As: Hss2-1/4r(e-tÁx1r8, lrlat€Ìlat: \St€ét\ S:fì¡ A242 M êmbôfs lnc¡uda<t (9o): eimxoo2-27. Et.yìxoo2-32, Brnxoo2-56. Brrrxoo2-56. Bmxo02-54, ctn¡xo(,2-53,€lñìXOO2-32. ÈrrrXO()2-ã l. l¡rr|XOO2-5O. E'Í¡XOO2-49, BmXOO2-{8. gmXOO2-¿17. êmXOO2-¡*6. êmXOO2-43.BmXO('2-29, BnìXOO2-4O. BfiìXOO2-3g, B¡r¡)(('()2-96. BrrrXOO2-37. elrrù(OO2-3G, Él*rXOO2-S¿t, 6r¡IXOO2-34.€¡mX6O2-â3, ttmXOO2-3O. DmXOO2-14. AmXOO2-17. €tm)(OO2-15. gm}(OO2-2O, E¡ñXOO2-5S, E'n](OO2-5.BrnXO02-6, E ñXOO2-7. C¡mXOO2-9, BmXOO2-c't-1Ê, E'mXOO2-c1-15. BrnXOO2-c1-.t7, BmXOO2-c1-11,€¡mxoo2-cl-1? €rñxOO?-c1-t1" F qù(Ooz-cr{O. E mxoo2-ci-39. CIñù<OO2{1-42. BryrXOö2<t-43,Flñxoo2-c1-lf¡. Rñxon?-.1-?1" ,ìftxlJo?-c1-?7. ctmy_oo)2-Ê1-?6i, E frrx_oo2-c.t-?6;, È,mrtoo?,c1-?4,€tmxoo2-c1-f 8. Ê,mx(x)2-c1-33, BñXOO2-G1-22, Bñù(OO2{1-32, €tfrû(OO2-e1-31, E¡mXOO2-c1-24,E¡mXOo2-c1-23 Ctmxoo2-c1-3O. E rú(O02-cl -20, Elmxo02-c'l-2€, Clrrù(Oo2-c1-27. EtmXOoz.c't-26,€¡mxoo2al-26, E¡mxooz-ct-19, E¡rù(oo2.G1-20, E¡mxoo2.c1.4?, B.nxoo2.cl.44, ClñIXOO2"c1,45.E'ñXOO2-59. €ldoo2€l-4a. Elm,(O02-6O. E mXOO2-c1-{9, E'mXOO2-ci-5a}, E mXOO2-c1-5 E¡mXOOz-c1-'l4,BmXOO2-8, E drxooz-c1-7, E,drxoo2-cl-9. E rù<Oo2-cl-g^ Ê'mZOOI-6. C¡mZOOI-9. E}m.zOO't-4. E¡mZoOl-3,EImZOO'|-g. EmZOOl-7, E¡mZOO2-3. Elrnz.Oo24, Ê'mZOO2-7, GrmZOO2-6. E,rrìZOOz-8. ElrZOtEl-s Mmbcr Ë.r=r. ã_1ã_.... -x r.T GAfltM Coi¡lutïNc ff'¡61i8€Rlt¡G tlt rffircrre&¿¡ffiffig*ùÉslp PltlE$r$¿rþ IN'OOGANEM€ÈCOMGCe 39/64 Project: WAREHOUSE: COLORADO Design By: AG Ít-s¡gn GEUÞ: FLoOFI-MAIN t'Gra{lsc AsÞ (2olol f)€sk¡ngd Ás: cllânñel6 x o-186 ¡ 1.75 x o-188. Mateñâ¡:lstee¡\ASTM 4242 À.|emrærs tnctu{tÊd(16al): E|ñXOO3-1O, EIÉXOO3-12' E¡mXOO3-2O, E ñù{tO3-34, E ñXOO3-3}. E¡mXOO3-2ô. crmxoo3-24, Elmxoo3-3. EIñXOO3-32 E¡mXOO3-2A. E'ñXOO3-44. BñXOO3-s. Êlmxto3-3ê. Bfi¡XOO3-4o, E¡ñXûO3-36. E'øXOO3-4. BmXOO3-46. E ñXOO3-44, E mXOO3-42, gñXOO3-66, Elf¡XOO3-64, E,ñXOO3-50. BÉXOo3-64, Étmxoo3-76, gmxoo3-54. Bmxoo3-s. BmxOO3-74. Crñxoo3-74. E'ûXoo3-72 E mxoa3-6Ù. E¡mXOO3-?2. EtmXûO3-1e, E mXOO3-56, €tm)(OO3-?O. BmXOO3-14, €rñù(OO3-16, ÉlmXOO3-A€. BñXOO3-SI, BmXOO3-6. E,mXAO3-52, Ë¡mXOO3-6¿ ÉmXOO3-5¿. BñXO12-1, €lmXO12-2, E tdo12-3. ErmXOl.a-4. Ë|nXO12-ã, É'ñXO1Z-6, E mXOí2-7, ÞmXOf 2-8. E ñXOl2-9, Clû¡XOl2-'lO, Ê]lüO12-'11, €lmXO13-'1. BmXO13-2, E mXOl3-3. E¡mxor3-4, eñxol3-5. Émxo13-€, ElñXol3-7, Elmxo13-4. Elmxg13-9, qrrù(g13-1orBmðo14:1.9m¡91,q-2. Bmxo14-3: Bdofa-4: E mxûr4-5. BmxO14-6. BmxO14-7. Bñxo14-4, É'mxo14-9, E ñxol4-1o. Elmxois-1. BmXOI5;-2, É}ñXO15-3. ErmXO't5-4. E mxols-5, em)<OjS-€. E,mXO15-7. E¡mXt15-9, E mxol5-g, E mxo,l5-io. E ñXOi5-1,r, Flû]{oO2'28-C2O7, E|ñXûO2-24-G¿O6. BtdOO2-24-c2O5. ElmXOO2-2eôc2O4. BmXt¡O2-24-c2O3. BñXott2-2S-c2O2. ÊmXOO2-24-c2Ol. E,mXOO2-28-C2OO. ElmXOO2-28<195, gñXOO2-24-c194, E mXOO2-28-c197, E'ñXOO2-2È-C19ê" BúXOO2-28-C195. tñXOO2-2€-c194, BmXOO2-29-ç1S3, Ermxoo2-29-c192. Bñxoo2-2Ê-c19'1. ElmXOo2-2€-c'19o, Bñxoo2-24-c149. E mxoo2-29-c1aa, E¡ñxoo2-2É-c147. E'mxoo2-24-c186, Bñxoo2-28€185, Bmxoo2-24-c184. Ëtmxoo2-2€-c143' Êlf¡XOû2-2S-clA2, Ê¡ñ)<OO2-28-c141, €tmXOO2-28-c18O. E ñXOO2-23€179, qñXOO2-29-c174, Elmxoo2-29-c177,8ñ)(o02-æ-c176, ÊmXOO2-28-c1?5. ElmXOO2-28-c'174. BñXOO2-28-C173^ BñXÒO2-2e-c172. Att:{.OO2-æ-c'!71. BmxOO2-28-c17O, Êmxoo2-28-c1ı9. ElmXOO2-24-c164, ÉlmXOOz-28-eí67, BûxOO2-æ-c166. E¡ñXOO2-2S-C165. €¡mXOO2-2Ê-c16¿' ElmXOO2-28-c163, G¡mXOO2-28-c1ô2. €rmXOO2-2€-c161. €tñr'<OO2-28-c160, €¡hXOO2-2Ê-€159, ElñXOÕ2-24-c154. BmxOO2-29-c157, Ê¡mxgo2-26+1ã6. ErmXOO2-28{155, €¡mxoo2-29-c154. BmXOo2-28-ei53. clrr¡xoo2-2s-c152. g3ñ)(OO?-æ-C151, êm,(OO2-2€-c15Ó. BôXOÛ2-28-C149, gmXOO2-24-c149, Bmx002-28-c1.¡17. ElmXOO2-24-c1¿6, EmXOO2-28-e145. BÍñXOô2-2e-c144, E mXOO2-28-ct¿3. E ñxOO2-?€'-c142. êñXOOz-æ-G141. BñXOÓ2-2ê-C14O. E'ñXOO2-28-G139. BmJ<OO2-24-ca3e. E ñXOO2-28-c137, eñx.OÛz-æ-c136, ÊtmXOO2-28-c135. ÊIñXOO2-24-C134, ËtmXOO2-28-c133. ÊrñXOO2-2e-c132. Añ'XOO2-æ-C-|31, BmXOO2-24-C13O. E'mxOO2-24-ci29. BmXOO2-24-c128, BmXOO2-28-c127. gJmxgo2-æ-c1 26, €]ñXOO2-2a-Ê125. BñXOO2-26-c'l 24 ITT GAI{IM C0NSUTT|NG ¡r¡61!&Elnc uCrm&stfr e& mkkñ FL illÉ fir0sl9t¡{5¡å IÈFOP6ÁùÊMCECOM(ìCe 40t64 Project: WAREHOUSE: COLORADO Design By: AG Þc¡lgn GÞup: TOPFlA'lL lÐrAlSC ASE (2O1l') Oe3¡gnqd ås: HgSz-1 t1r2-1 l4xltÉ. Halèdal: \Sl€èlHSru 4242Mcñb.rg lncludèd(49): Bñaxoo2-2a, gñxoo2-31, Bnùoo2-,4. E¡n*ooz-æ, Bn*oo2-4¿ E nìxoo2-41.amxoo2-24-c84, E]ñxoo2-2ê-f33. BñOO2-æ-æ2.E'mXOO2-æ-CAO, E mXOO2-20-c79. BñXOO2-2e-c78,B{út Ð2-24-c'r:7. E}ldoo2-2k75. E mXOO2-2É}-.73.Êmxoo2-æ-cza-eñXOA2-2Ê'c71. €}doo2-2èe7a.Ê¡ñxto2-24-c69- êmxoo2-24-c€4. €¡mxoo2-28-c67- Bdoo2-æ-c66. ctdoo2-2a-c65. €Ðxoo2-2&.c64.Elmxoo2-24-c63. Bñxoo2-28-c62. ÊtñXOO2-æ-c61. BldOO2-2A-c60. BmXOO2-2e-ég. BmXOO2-2ge5A,gtdoo2-2e-c57. Erøxoo2-2€-c56, Êtmxoo2-æ-css. È¡doo2-2a-64. gmxoo2-24-É3- C'tüoo2^2e-ú2,BmXOO2-2e-c51, €rmxoo2-2&éo. amxoo2-28-.A9, amXOAz-æ-d8, Bmxoô2-2a-c47, Bnxoo2-2(l-ê46,BñXOO2-29-6. Bmxoo2-28-c44. Ejñxoo2-æ-ø3- ElñxOO2-28-c42 €¡ñxoo2-29-c41. Bmxoo?-z*do |Tr GÂr¡ÍM Cot¡swr¡G ¡t{61¡f illtff trc t&kleAld, Mh&È EfiS f'Í(¡ñ19r6¡Lå ItæaflfMcÈcoM(iCe 41t64 Project: WAREHOUSE: COIORADO Design By: AG Düsil'l.l Gtor¡p: COL - FIETNF PtrA|SC ASt' {2O{O} Êach meßÈg an tlì€ qlouÞ ¡9 c'lecked ãccord¡nll lo ifs agm('êled shâú¡€- Materiât: \Stêel\ASTM ASOO Grãd€ B {Fy = 46ks1)ueá¡ers ¡nctuced{13}: COLOOI, Cot-oot-cl, CoLOOI-cz, E ñX(,O2-2Ë-c234' BmxOO2-2a-c233. BñxOO2-2S-c232. BmXOO2-æ-c339. BmXOO2-24-c339. E¡mxoo2-æ'ç?37. BmXOO2-29-c336. E¡mxoo2'24-ca4o. BmxOOS, E¡mxOOG C¡Eck cfeck Ct€ck Dcslgn (iroup: ElEAit - FIEII\F prrA|SC ASD (ZO{O} f)esioñe<t As: HSS6x3x1r¿¿, Mater¿al: \St€elìASTM ASOO Grä<l€ B (Fy = 46ksi) Metr-ærs lnclucfedl4): C¡mXOOT. E¡r¡XOOÊ. BmXOO9. E}mXOIO öä""-"'."""' o-32 0K (}_56 0K !¡um Roof Truss - T1 Nodal Number a cornblæd check /lx¡el check Âxlal Chêck Co Axtal Checr<E3-2FÊ H-t-1þ Ht-1b -7\ s Meruber Slrape & Material r.î GÀ!¡tM C0it$utls¡G å{G[$tR[s uc oce pfl{tü}$a{s$ 42t64 Projed: WAREHOUSE: COIORADO Design By: AG Dead Load: 10 psf + 5 psf :: 10 x 1.33' = 13.33 lblft & 5 x 1.33' = 6.66 lb/ft Live Load: 20 psf :: 20 x 1.33' =26.66lblft Snow Load:43 psf :: 43 x 1.33' = 57 lb/ft Wind Load (-y):45 psf :: 45 x 1.33' = 60 lblft Ratio Design frl 6AMtì' OIFUUn¡G ¡f{6ff[tnlil6 Ur rûæjËw¡ffiMÞdrÉHÕ lllldlll¡456 t[@6ailEMC¿COMcce 43t64 Project: WAREHOUSE: COTORADO Design By: AG ¡ I t Reactions & Axial Force: L/C: D + 0.75 (L+S) Displacement (Y direction) L/C: D+S Dy allowable: L/24O2 6O'x!21240: 3.0O in ::: Dy < Dy allowable (ok) 3. Connectlons Design TEKS"s.tr-t!¡¡use Produrt Irto. 02701 ¡lry lffi t@k-ñl hh.Él hhkl SelÊcl{$ Grr¡ds R**% % '¡6lr¡JÞ *rhhfrds¡ w:'s. "rc¡ltffiimrrjs !Þâd ltileüÐ-lbË fûÈll tx ; È t'v2' 5¡84 t- lryt{t{tHls{ l*H t¡t2,7 ì¿,2 '2t? t3ç.ræ -dF_tæ.o*-rgÌ,t*"fiÍ -aÞ-rm-tË--1ü -¡0ã,é5.r!5 _¡ü5.15 -G5 to.m lû.ü)l{lm b#¡ frelrrÉ- R6id¡r¡t¡al sdl frðmsldtrE in-. Tra¿l(Þsãd.- l.|d ¿lunri€a ts lud,- Sftd sptEir¡g! 12-l¡ ¡ rrHüG3 d . Cfpı, únl sEfle bfÈl l¡6 tr@Ëtoforlt.núlg.J3t3ß ,3g t3t3tf t3tl t3 :?5vr-ots,r 7tt*-1* stÊ_1?È_û*,t7ç "lúHffi ùJ P&HTI{&d Tttt,vz l&t6r3¡f FelGtËr Yf,' &dfçtËrtF lHlxtefÉr s lgli 1&ï6 t1ù16 il&t6r lÞ16 rlÈl6rlGtÉ r t54{mE*ffiItmtffiIStm Tgflxl!t224Xt¡IruOM ËATXE !1¿tÍoo I t¿8ü¡ttæ .9*.tt\æ-1?5 -t¿5¡¡5 rnbr¡û@ R6isr¡tre: FllrÀC ÂFñcdtG" ftt:flf rñtÐ ¡æ 115 ,lrtç.t t5ætB ll* l¿3 qüÌ LCOß t"{m 'ïwff "ltrHtBl6r :U¡' lC-tÉX H- f#ltìarlPLl ¿a tãl ? l1?{ ta TEd---Ï--T-Ï-r4*-n.r6F-=-rìtii- l\¡o,t2 ta t6 l¡¡o x2 t r05"-o7s",'ð¡,-Æ19:.ot6".Ðw -û21'.{r8"DÉ¡nd É{i¡ir¡ddr rlr H¡s fiqÞd se r¡tus ffi adùtæd udef b¡otr¡qy wú¡*ffiüd sdybriltds ruE duÊd 6ffi üaf. aprop* slsyt¡trs $nrH be ¡pnå€d b Ëæ wùÉ h deJif Frpos¡r. ITT GANTM tot¡tum¡¡G ffi[tEËR[¡c ltcrÐèMlÈ thü mH&ä Flslð pfi(¡tp!ó¡t5 NrcOGÀilEKECOMcce 44t64 Project: WAREHOUSE: COLORADO Des¡gn By: AG Allowablc Pullout =3901b14 = Allowable Shear = 1018 lb/4 = 98 lb zss lb Allowable force (lbl #screwà L 2 3 4 5 6 7 I 9 10 Pullout 75 150 225 300 375 450 525 600 675 750 Shear 255 510 765 1020 1275 1530 1785 2040 2295 2550 I Based on ühe admn[ss[b[e va[ues, ühe mumnber @llscmflls requ[red ln eadh c@mnecü@m b presented Model: simply supported. Horizontal displacement (dx=0.05" " 0 ¡n) in the bottom chord is allowed L/C: D + 0.75 (L+S) Truss - Anchorage Design: From the C&C wind analysis (lrlF= 0.6, wind for zone 3, considering an area of 10ft2); W tension: -49.0 psf From the MWFRS wind analysis IL/F= 0.6,: W lateral: 12 psf (approx force) Tributary with (TW): 1.33' Tributary length (TL): 38' Area - tension: 1.33'x38': 50.0 ft2 Number of bolts: 4 BoltdTz" ¡6 = (ll2l"2 pi/4 = O.L9 in?, Tension Analvsis: Tension Force (PF): a9.0psf(50.0 ft2): -2a50 lb Tension Force/bolt (TFlb) :-1a50p sf / 2-1225 lb (conservative) AV tension: 0.19 in2 x (45000 psi /2 ) :4275\b > TFlb (ok) & > Tension support load (extreme supports) CapaciW Analvsis: Shear Force (SF): 12psfx (50.0):600 lb Shear Force (SF/b): 600 Ib / 4 = 150 lb AV shear: 0.19 in2 x (27000 psi 12): 2565 lb > Av (ok) trl 6tûütt c0ilsuulr{6 ¡l&llEt¡ne rc ffigþjñffiþhH¡ÉÈló Hfñlslr¡95 NrcæAì€MCÉCOMoce 45t64 Project: WAREHOUSE: COTORADO Design By: AG F'nt = 1.3 (45) - 2x (45/27) x (0.15/0.19) = 58'5 - 4.0 = 58.80 ksi R',nr = 55.80 (0.19 in) = 10.61 kip > 1.23 k¡p (1225 lb) Strength of the Roof (according to ISO) = 669 lb (punctual load) ok! (conservative, without D load) f t/C:0.60D+0.60W(-y) â L/C:D+0.75(S+L) Pullout Force (PF): -t254lb Pullout Force/screw (PFls):-1254psf /2:'627 lb < 660 lb ok! FT Gllltlrl Ol6t l$rc $¡GfrEtßt¡cttt lS !6dtÉ mú brt- ¡-4 ßL lltl ¡ra(¡üÞli¡e5 NrcÊrcÂfl€MCECOMGCe 46,t64- Proiect: WAREHOUSE: COTORADO Des¡gn By: AG Roof .Metgl Deck I KUGHII' [r I ilrrrl 'roluoo F^srÍxERs s+lçclú. üûda flodfi 02rtt 'ir z'*. .;ø v, '¿,. '.1 PÈ¡lomHnce Ðâia fXù a 24 þ a)I s 1tt 252 3æ {1 il 12 ts 271 Ito ¡m 6S t¡flm t2¡2m 1?7ffi :?ñm lffim Hnff lffi m ü¿",M &.& t,mG¡ût tll--0r8 s.m ttm6dd .012-i* l.mt.¡Ío 1.ilffi i12-.04$ 1.tG?2S0 1.5ü *lrrtCl5rl!øgl5 r ?iø Sl5¡r Hpıghd 12-ll ! 3fì2Ìü)tfrlì{ffi ¡12--$t {.t0 ' *rrqddF.É ¡í?-ffi frz-.ffi 62-.W _0r¿-.0¡8 dr- M _5G1.!s0 Lml.m r m?29 &.str?{ ¡2smt 1ötfr10 qlSr?' iM IM IF{ rt ¡m,m È15¡2lal m*l5rr HIH ffi ffi ffi 2mt.sr.ü[ lãt r l' ¡/f Æ Hìlt{IÀl0rtJU ûf f M Pd@¡ffib fed GAgah lnfffi 1A gf 3þ" 2t fi6' 2&315- 3 _0r2' From the C&C wind analysis (L/F= 0.6, wind for zone 3, considering en erea of L0ft2): W tension: -49.0 psf From the MWFRS wind analysis (L/F= 0.6,: W lateral: 21.0 psf (approx force) Tributary with (TW): 5" Spacing:2' Area - tension : 2'x(5" lL?l:0.83 ft2 Number of screwsl 1 Screw type: wood - to - metal Screw:9-15x1 " Allowable Value (AV): Table Value/SF Pullout Analvsls: Pullout Force (PF): -a9psf(0.83 ft2): -41 lb Pullout Force/screw (PFls):'4lpsf/l:-41 lb Steel Gauge (track): 20 AV pullout: 3281b14182lb > PFls (ok) CapaciW Analvsis: AV tension: 18001b/4: 450.0 lb AV shear: L20Ûlbl4:300.0 lb47 17-:=-- *:=== = 0.15 < 1.0 (ok)450.0 ' 300.0 Metal Deck as Roof Sheäthing FF'50 PANEL P'IOFILE FFs-FF5 3 I)ETÀIL A 5æ: 1f ro 7¡- @.a103æoì covGRÆGale å 10."¡ 7¡ c¡trÉaesR ìf ¡Õ 14-:r/tr-¡#oTo37!.r!cæ&æ r:r{þrb$}åf,¡ ¡ r-' rr.'æ¡'a4aÉler *:*Rv å *1f ¡r3r sl L 3¡ r ùarÉîÁ¡ uM* 63rf æFÕx¿ ¿L¡!RÊar€Ê adrERsÂnEaldo*o wrH .rre Þ¡Æ!r P^Æ! rs $rM wîr crÞRÉUÊÈ ÈELSË €ÑAæÊ.¡ ouèâEÉsl¡NÊ ¡drtd FT(ice 6At{[M COl¡SU[l]¡lG ¡f'l6ll{ttßlNG ttC rflåsÞrgFû xúrtrk*l!Ê¡¡lð Pll(?sþlMl6 Itrc@GANEMCËCOM 47t64 Project: WAREHOUSE: COTORADO Design By: AG 4. OSB analysis ROOF rECO Design antl Application Guitle SHEATHING SPAN Spacing: L6" Nominal Panel thck: L/2" Allowable[+D:60+10: 180 psf D + S (considered): 60 psf < allowable, ok. Wind (zone 3):49 psf < allowable, ok. Tablc lt. Ållaçable tilifotu Roof Lh'c l-o¿d fsr SEEåTHDÍG S?..lli ¡ud ILOOR 5P.{\ Pn¡eb çith $trengtb Àris Prpruditnlar to Srryportsr SHEAIHIT¡G SPAN FLTÕRSPAN Sggitr: I i!.ù=::.åûg; lpf=t?$Pr L P¡sl¡.l¡llte ¿¡d¡iæ ¡f !* ixbtrit : Tù¡¡lhs&e+eræ&æbrdnil¡ribdiodoil6pr{.lftlråndlcrdødrtüpfthü¡litrlrdù¡llhn¡üs¡t x<sdilg¡t ,b¡ssuå {8iü}üE.dEFhùrr snL\![oIfI]L{l ?T*IEL tdtc¡i!ítss {i¡.b) lLt[,6fill]¡æå¡t l¡Etåt ttJ{îA!ûl ¡¡ME lrX{tr {¡x4 TIÈ rd!å ¿r¡ferC çl¡rr dËr 3rl?dr h.rirÊ !f !+Fû r¡cfilaür {is!ft} æ lt Ð.r r¡¡!¡t ¡t 5¡ıll Ìû,s rj¡t, 11,3t 1û uû lð 3+.t¡1ü ã t9ü ¡00 6û t$ :{:16 ?r:ð :4 l+:9ü !00 6t 4{ l2;¡6 ¡1rl:¿:n 18 r$û ¡30 s ,10. 0 1S,3t, 18 {û l3 lVl t$ú0 ï +&x1 3J,1!. i4 ,t8 lú 1T3 9!{1 }J :{.ç:;r't, I t4 {0 ¡3¡¡t!11 ii d4?:"8.I û0 4{rtt tÐû ?û t!lr ó$'lt ?,!" !, r-:,t ıù It<It 10 It 5EåI¡ ßÅTI!{G l¡olflh'tt ?¡{EL TEICÞ'ESÊ i¡¡rù) t¡Ål$rLuÍPAll firúsl åL¡¡ltffialüL$]ftoåE: ûè W¡td!. :rygcr! fdbûr .dË. ¡TFrl Ðsilg .f :Wff È {{dü¡¿{rq¡fr liE!.rJ ü 1C 19:7t ¡!,t0 .tt $¡& 16r 39,1!. J,r 1{:{¡!J l0s fJ ,t{ l0x lt.3l 13, !r4 tÌ l::t0 !ls r{ç &JI :t*Ì1_,1! ?.1 {t 3G ]{O t&tiq t0 :,1 3!x 1ê .t0 lSt t8t ¡s0 g¿43 4€*:-¡r-8, t-li4 6È {$190 ¡{a lûü 6t :û .lc n GÀrüfit 0r6uril6 $sr{Esr{o ltc ¡{ff$¡r¡úGCe 4Ufr4 Project WAREHOUSE: COLORADO Design By: AG Screw Connection TEKS'woourmqm sE .rh¡$ Frsrm fr$rdåbn çüfuþlims .l Âffi @ge*¡ddrg*lærbö ¡, (MlirtrE rEah¡'qrc*¡ÊrafEliü{hrÉdb¡É.ll* tq€¡d*s¡ãturclF iþrdütrH*st![ dt$ ùer rÉimdf dçr iú tæm nf,¡ L mtæs c¡¿¡æ hú h t¡dsb& a Èd{cd[{518. irEttr*¡Èdrñ¡. ' Êoúd Repct ¡o.02?06 sðlodü ËxdÉ { $ P¡rlofln$rce tels ^ ¡4drÞ sE|g¡nmdÁþbFoFût øh I fnmøferriÊlnçrbn ùrEÉed. a. lE bdËE dr =*d GtLH6lr$üù.útu -. ¡a tlo dü*WEf G ñ Þ ù€r irr. dih¡td6ü€rhÉ! -, ll tr{ ¡d rl2 ffi .ìlhcol' 6 É ùo rtiãiÈ ¡ntiM C lf *á h Flqlû ùö!f h q¡ m¡t6ú! "rfr m( l!ðlhtûf hhElq¡|d'ærc.Igsg Fe@ssñh¡ùil Þ-rFr-iûErtsùE¿ ü 5hkð hËF.hÈ¡ tff ı¡ 1221 3166 uú 150 M w zm t8 @EEEE From the C&C wind analys¡s ({F= 0.6, wind for zone 3, considering an area of 10ft2): W tension: 49.0 psf From the MWFRS wind analysis (L,/F= 0.6,: W lateral: 21.0 psf (approx force) Tributarywith (TW): 6" Spacing:2' Area - tension : 2'x16" ltZl:. L.O ft2 Number of screws: 1 Screw type: wood - to - metal Screw: 1;ù24xt71t6" Allowable Value (AV): Table Value/SF Pullout Analvsis: Pullout Force (PF): 49.0psf(1.0 ft2): 49 lb Pullout Force/screw ( PFls) :a9psf/1:49 lb Steel Gauge (truss): 20 AV pullour: 334lbl4:83 lb > PFls (ok) Shear Analvsis: Shear Force (SF): 21psf(2'x0.5'): -21 lb AV shear: 728lbla:. 182 lb > PFls (ok) CapaciW Analvsis: AV tension: 193db/a: a8 lb AV shear: 14001b/a: 350 lb49 12 +e4 + 3S0 : 0.15 < 1.0 (ok) 5. FOUNDATION DESIGN Node ld m 6AmM CoNSUTTI¡IG lt{GllEtnlttc LIC tffissålmaF¿ Ëmf,frsd B lðo Pr'lfn6l9r6{!rË INFOEGAN€MC¿COilGCe 49t64 Project: WAREHOUSE: COLORADO Design By: AG me NOdãt H -....æ -____*---_------ı - .- --Ë ------------ã -'-.-.-..-:É - -..:l -----=IE:T-----:ÃI[ ---::!-"--ñÍÃ: ñri4ö-- - -'! -1 :..._".--___-- q -..--.--...-:12------------:ıi 1¿----------uã_-..-.-.----.o.8 -_-_53-----------:?t -=--=i¡ ------------:TiÍî See Foundation and Anchorage Design Project Title: Engineer: Proiect lD: Project Descr: TOWN HOUSES A.G.50/64 Beam on Elastic Foundation Flle û. vâfl0È_tvârôh0us0,00ö Sdware @pydsm ENERCALC, lNC. 198$æ20, Bulld:12.20.8,24 enqineerinqqanem co DESCRIPTION: Axis A CODEREFEREÍVCES Calculations per ACI 31 8-1 1 , IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : ASCE 7-16 Material 4.0 ksi 474.342psi 145.0 pcf 1.0 3,122.0ksi Soil Subgrade Modulus Load Combination ASCE 7-16 250.0 psi/ (inch deflection) fy - Main Rebar = 60.0 ksi Fy - Stinups E - Main Rebar = 29,000.0 ksi E - Stinups Stinup Bar Size # Number of Resisting Legs Per Stinup Beam is supoorted on an elastic foundation. lrt= ,."' . ,.uo = V Density = )' Lt Wt Factor = Elastic Modulus = D(7 -7) Lr(2.5) L(1 $ Phi Values 0r Flexure Shear 0.90 0.750 0.850 = ksi =29,000.0 ksi-#3 1.0 ) s(3rb0a¿û[1*€).2) sqüw(1t) L(3 s(1p(p(€.ex1)L(1 s(3.6) w(11.S) Cross Section & Reinforcing Details Rectangular Section, Width = 28.0 in, Height = 10.0 in Span #1 Reinforcing.... 345 at 3.0 in from Bottom, from 0.0 to 44.0 fr in this span Applied Loads 1#5 at 3.0 in from Top, from 0.0 to 44.0 ft in this span Service loads entered. Load Factors will be applied for calculations. Point Load Point Load Point Load Point Load Point Load D=7.70, Lr=2.50, L= 13.0, S =3.60, W= 11.90k@2.0ft D=2.10, Lr=1.0, L=5.20, S=1.0, W=1.0k@12.0fr D=1.0, Lr=1.0, L=3.70, S=1.0, W=-3.20k@22.0ft D=2.10, Lr=1.0, L=5.20, S=1.0, W=1.0k@32.0ft D=7.70, Lr= 2.50, L= 13.0, S = 3.60, W= 11.90 k @42.0ft DES'GA' SUMMARY Máximum Bending Stress Rãtio ; Section used for this span Mu : Applied Mn*Phi :Allowable Loâd Combination Location of maximum on span Span # where maximum occurs Maximum Soil Pressure = Allowable Soil Pressure = 0.720:1 TypicalSection -14.508 k-ft 20.140 k-ft +1.200+L+0.50S+W 6.212 ft Span # 1 Maximum Deflection Max Downward L+Lr+S Deflect¡on Max Upward L+Lr+S Deflection Max Downward Total Deflec{ion Max Upward 'lotal Deflection 0.000 in 0.000 in 0.079 in -0.005 in 44.00ft LdComb: +D+0.750L+0,7505+0.41 Shear Stirrup Requirements Entire Beam Span Length : Vu < Phivc/2, Req'd Vs = Not Reqd, use stinups spaced at 0.000 in Maximum Forces & Stresses for Load Combinations 2.833 ksf at 3.0 ksf OK Load Combination sesmenrLensh span#'Îf8;:Jo)Mu : Max philVlnx Sbess Ratio Design OK MAXimum Bending Envelope Span # I +1.40D 41.929 r6.30 31.30 0.52 Project Title: Engineer: Project lD: Project Descr: TOWN HOUSES A.G.51t64 Beam on Elastic Foundation DESCRIPTION: AxisA Load Combination Segment Lengtr Span # Softrare a. lNC. 1 98&2020, Bulld:12.20.8.24 Bending StressResults (k-ft) Location (ft) in Span Mu: Max phi*Mnx Slress Ratio ganem cons3692 Span #'l 1 41.929 4.88 +1 .20D+0.501r+1.601Span#1 1 41.929 14.07 +1.200*í.601+0.50SSpan#l 1 41.929 14.33 +1.20D+l.60Lr+LSpan#1 1 41.929 11.81 +1 .20D+1.601r+0.50WSpan#1 1 41.929 8.71 +1.20D+L+1.605Span#l 1 41.929 12.62 +1.20D+1.60S+0.50WSpan#î 1 41.929 9.53 +1.20D+0.501r+L+WSpan#1 1 41.929 16.04 +1.20D+L+0.50S+WSpan#f 1 41.929 16.30 +().g0DrilSpan#1 1 41.929 8.61 +1.20D+L+0.20SSpan#1 1 41.S29 10.34 +0.90D Span # 'l 1 41.929 3,14 Overall Maximum Deflections - Unfactored Loads 31.30 31.30 31.30 31.30 31.30 31.30 31.30 31.30 31.30 31.30 3l,30 31.30 0.16 0.45 0.46 0.38 0.28 0.40 0.30 0.51 0.52 0.27 0.33 0.10 Load Combination Span Max. "-" Defl Localion in Span Load Combination Max.'+'Defl Localion in Span Span I Detailed Shear lnformation 0.0787 44.000 0.0000 0.000 Load Combination Span Distance 'd' Number (ft) (in) Vu (k) Ac0al Desþn Mu ß-r) d{y'u/Mu PhiYc Phi¡/s Spacing (in) Req'd Suggest Comment ß)(k) +1.20D+L{.50S+W +1.20D+L+O.50S+W *1.20D+L+0.50S+W +1.200+i-+0.50S+W +1.200+L+0.50S+W +1.20D+L+0.50S+W +1.200+t+0.50S+W +1.20D+L+0.50S+W +1.20D+L+0.50S+W +1.20D+L+0.50S+W *1.20D+L+O.50S*W +1.200+L+0.50S+W +1.20D+L+0.50S+W +l.20D+L+0.50S+W +1.20D+L+0.50S+W +1.20D+L+0.50S+W +1,20D+L+0.50S+W +1.20D+1.601+0.50S +1.200+1.601+0.50S +1.20D+1.601+0.50S *1.20D+1.601+0.50S +1.20D+1.601+0.50S +1.20D+1.601+0.50S +1.20D*1.601*0.50S +1.20D+0.501r+1.601 +1,20D+0.501r+1.ô01 +1.20D+0.501r+1.601 +1.200+0,501r+1.601 +1.200+0.501r+1.601 +1.200+0.501r+1.601 Vu < PhiVc/2 Vu < PhiVc/2 PhiVc/2 < Vu <= PhiVd2 < Vu <= PhiVc/2 < Vu <= PhiVc/2 < Vu <= PhiVc/2 < Vu <= Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVcP Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVd2 Vu < PhiVcl2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVcl2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Not Reqd Not Reqd Not Reqd I Not Reqd 1 Not Reqd 1 Not Reqd 1 Not Reqd I Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd 0.00 0.52 1.04 1.55 2.07 2.59 3.11 3.62 4.14 4.66 5.18 5.69 6.21 6.73 7.25 7.76 8.28 8.80 9.32 9.84 10.35 10.87 I 1.39 1 1.91 12.42 12.94 13.46 13.98 14.49 15.01 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7,00 2.44 7.06 11.41 15.47 -16.72 -13.33 -10.32 -7.69 -5.43 -3.51 -1.91 -0.59 0.49 1.37 2.09 2.69 3.r9 3.65 4.15 4.66 5.19 5.75 6.33 6.93 -3.84 -3.27 -2.73 -2.22 -1.75 -1.32 2.M 7.06 't1.41 15.47 16.72 13.33 10.32 7.69 5.43 3.51 1.91 0.59 0.49 1.37 2.09 2.69 3.19 3.65 4.15 4.66 5.19 5.75 6.33 ô.93 3.84 3.27 2.73 2.22 1.75 1.32 0.00 1.26 4.92 10.83 16.30 7.64 0.74 4.60 8.58 1 1.39 13.21 14.20 14.51 14.25 13.55 12.46 11.07 8.54 6.65 4.50 2.09 0.60 3.58 6.85 5.67 3.68 1.99 0.58 0.58 1.48 1.00 1.00 1.00 1.00 r.00 1.00 1.00 r.00 1.00 r.00 1.00 0.42 0.34 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 r.00 1.00 19.99 19.99 19.99 19.99 19.99 '19.99 't9.99 19.99 19.99 19.99 19.99 18.64 18.45 19.90 19.99 19.99 19.99 19.99 19.99 19.99 19.99 19.99 19.9S 19.99 19.99 r9.99 r9.99 19.99 19.99 19.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Project Title: Engineer: Project lD: Project Descr: TOWN HOUSES A.G.52tG4 Beam on Elastic Foundation Soft¡rare lNC. 198$2020, Euildf 2.20.824 a, 9âtìafft oùnau3692 DESCRIPTION: Axis A Detailed Shear lnformation SPan Load Combination Number ß)Mu d{úu/Mu PhiTc Actral Desþn (k-t)(k)ß) Vu'd' (in) Distance Phi'tl/s Spacing (in) Req'd SuggestComment(ft) +1.200+0.501r+1.601 +1.20D+0.501r+1.601 +1.20D+0.501r+L+W +1.20D+1.601+0.50S +1.200+1.601+0.50S +1.20D+1.601+0.50S *1.200+0.501r+1.601 +1.20D+0.501r+l.601 +1.200+0.501r+1.601 +1.20D+0.501r+1.60L +1.200+0.501r+1.ô01 +1.200+0.501r+1.601 +1.20D+0.501r+1.601 +1.20D+0.501r+1.601 +1.200+0.501r+1.601 +1 .20D+0.501r+1.601 +1.200+0.501r+1.601 +1.20D+0.501r+1.601 +1,20D+0.501r+1.601 +1.20D+1.601+0.50S +1.20D+1.601+0.50S +1.20D+1.601+0.505 +1.20D+0.501r+L+W +1.200+0.501r+1.601 +1.20D+0.501r+1.601 +1.20D+0.501r+1.ô01 +1.20D+0.501r+1.601 +1.20D+0.501r+1.601 +1 ,20D+0.501r+1.ô01 +1.20D+0.501r+1.601 +1.20D+0.501r+1.601 +1.20D+0.501r+1.601 +1.20D+1.601+0.50S +1.20D+1.601+0.50S +1.20D+1.601+0.50S +1.20D+1.601+0.50S +1.20D+1.601+0.50S +1.20D+l.601+0.50S +1.200+L*0.50S+W +1.200+L+0.50S+W +1.20D"L*0.50S*W *1.200*1.+0.50S+W +1.20D+L+O.50S+W +1.200d"0.50S"W +1.200+l-+0.50S+W "1.200+L*0,50S*W +1.20D+|+0.50S+W +1.20D+L+0.50S+W +1.20D+L+0.50S+W +1.20D+l-+0.50S+W +1.20D+l-+0.50S+W +1.200+l-+0.50S+W +1.200+L+0.50S+W +1.200+l-+0.50S+W 15.53 16.05 1ô.56 17.08 17.60 18.12 18.64 19.15 19.67 20.19 20.71 21.22 21.74 22.26 22.78 23.29 23.81 24.33 24.t5 25.36 25.88 26.40 26.92 27.44 27.95 28.47 28.99 29.51 30.02 30.54 31.06 31,58 32.09 32.8t 33.13 33.65 34.16 34.68 35.20 35.72 30.24 36.7s 37.27 37.79 38.31 38.82 39.34 39.86 40.38 40.89 41.41 41.93 42.45 42.96 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7,00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 2.17 2.65 1.49 3.02 2.94 2.69 2.27 1.65 0.83 0.19 1.43 2.51 4.63 4.63 2.91 1.43 0.19 0.83 '1.65 2.26 2.69 2.W 1.60 2.93 2.65 2.17 1.48 0.58 0.58 1.99 3.68 5,67 6.85 3.58 0.60 2.09 4.50 6.ô5 9.42 11.07 12.46 13.55 14.25 14.51 14.20 13.21 1 1.39 8.58 4.60 0.74 7.64 16.30 10.83 4.92 1.00 r.00 1.00 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 't.00 1.00 1.00 0,51 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1,00 1.00 t.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.34 0.41 1.00 1.00 r.00 1.00 r.00 1.00 1.00 1.00 1.00 1.00 1S.9S 1S.99 19.99 18.83 19.99 19.99 19.99 19.99 19.99 19.99 19.99 r9.99 r9.99 19.99 19.99 19.9S 19.99 19.99 19.99 19.99 19.S9 18.86 19.99 19.99 19.99 19.99 19.99 19.99 19.99 19.99 19.99 19,99 19.99 r9.99 19.99 19.99 19.99 19,99 19.99 19.99 't9.99 19.99 18.46 18.61 19.99 r9.00 19.99 19.99 19.99 19.99 19.99 19.99 19.99 't9.9S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 -0.92 0.92 -0.55 0.55 -0.21 0.21 0.15 0.15 0.49 0.49 0.84 0.84 1.20 1.20 't.57 1.57 1.97 1.97 2.44 2.40 2.85 2.85 3.32 3.32 3.81 3.81 -3.32 3.32 -2.85 2.85-240 2.40 -1.97 1.97 -1.57 1.57 -1.20 't.2tJ -0.84 0.84 -0.49 0.49 -0.15 0.15 0.21 0.21 0.55 0.55 0.92 0.92 1.32 1.32 1.75 1.75 2.22 2.22 2.73 2.73 3.27 3.27 3.84 3.84 4.44 4,44 -6.33 6.33 -5.75 5.75 -5.19 5.19 4.66 4.66 4.15 4.15 -3.65 3.65 -3.19 3.19 -2.ô9 2.69 -2.09 2.09 -'t.37 1.37 -0.49 0.49 0.59 0.59 1.91 1.91 3.51 3.51 5.43 5.43 7.ô9 7.69 10.32 10.32 13.33 13.33 16.72 16.72 20.47 20.47 -11.41 11.41 -7,06 7.06 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVcJ2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVci2 Vu < PhiVci2 Vu < PhiVcl2 Vu < PhiVc/2 Vu < PhiVc/Z Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc2 Vu < PhiVcl2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < Phlvc/2 Vu < PhiVc/2 Vu < PhiVcl2 Vu < PhiVcf2 Vu < PhiVc/2 Vu < PhiVci2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVcP Vu < PhiVd2 Vu < PhiVc/2 Vu < PhiVc2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVd2 Vu < PhiVc/2 Vu < PhiVcJ2 Vu < PhiVc/2 Vu < PhiVci2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc2 Vu < PhiVc/2 PhiVc/2 < Vu <= PhiVc./2 < Vu <= PhiVd2 < Vu <= Vu > PhiVc PhiVc/2 < Vu <= Vu < PhiVci2 Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Nût Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd 1 Not Reqd 1 Not Reqd 1 0.4783 Not REd 1 Not Reqd Projecl Title: TOWN HOUSESEngineer: A.G. Project lD: Project Descr: 53164 ganemLic. #3692 DESCRIPTION: AxisA Detailed Shear lnformation Load Combination Span Distanæ 'd' Number (fr) (in) Vu Achal (k) Design Mu (k-ft) dqúu/î¡lu Phi'Vc (k) commenr ti',i' -S,;"S,,1?* +t.¿uu+L+t .ouù+vv 1 43.48 7.00 -2.44 2.44 1.26 1.00 19.99 vu < Phivcf2 Not Reqd 0.00 0.00 Project Title: Engineer; Proiect lD: Project Descr: TOWN HOUSES A.G.54t64 Beam on Elastic Foundation rNc. 3692 qatrertr corrsultirrq enqitteerintl DESCRIPT¡ON: Axis B CODEREFEREA'CES Calculations per ACI 318-1 1 , IBC 2012, CBC 2013, ASCE 7-1 0 Load Combinations Used : ASCE 7-16 Material Properties fc = 4.0 ksi fr= flc''t * 7.so = 474.342psi Y DensitY = 145.0 Pcf l, Lt Wt Factor = 1.0 Elastic Modulus = 3,122.0ksi Soil Subgrade Modulus = Load Combination ASCE 7-16 $ PhiValues Êr Flexure Shear 0.90 0.750 0.850 250.0 psi/ (inch deflection) fy - Main Rebar = 60.0 ksi Fy - Stirrups E - Main Rebar = 29,000.0 ksi E - Sthrups Stinup Bar Size # Number of Resisting Legs Per Stirrup Beam is supported on an elastic foundation. D(6.2) Lr(1) L(5 .3 E¡(E_ã)E (E3tIl-W(sË{r)syw.FI sp(6-a)w({,s(8.s) w(11.26.> = ksi =29,000.0 ksi-#3 1.0 Cross Section & Reinforcing Details -Rectangular Section, Width = 24.0 in, Height = 10.0 in Span #1 Reinforcing.... 3#5 at 3.0 in from Bottom, lrom 0.0 to '14.0 ft in this span Applied Loads 1#5 at 3.0 in from Top, from 0.0 to 44.0 ft in this span Service loads entered. Load Factors will be applied for calculations Point LoacJ : D = 6.20, Lr = Point Load : D = 7.70, Lr = Point Load : D = 8.10, Lr = Point Load : D = 7.70, Lr = Point Load : D = 6.20, Lr = ÐESIGN SUûNMARY Maximum Bending Stress Ráäo = Section used for this span Mu : Applied Mn*Ph¡ ;Allowable Load Conrbination Location of maximum on span Span # where maximum occurs Maximum Soil Pressure = Allowalrle Soil Pressure = 1.0, L=5.30, S = 8.50, W= 11 260 k @l 2llft 1.40, L=9.50, S = 13.40, W=-10.150k@ 12.0ft 1.50, L= 10.20, S= 13.90, W=-10.80k@22.0ft 1.50, L= 9.60, S = 13.50, W=10.20 k@ 32.0ft 1.0, L=5.30, S =8.50, W= 11,260 k@42.0ft 0.983: 1 TypicalSection 30.419 k-ft 30.936 k-ft +1.20D+L+1.605 32.094 ft Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection Max Upward L+Lr+S Deflection Max Downward Total Deflection Max Upward Totâl Deflection 0.000 in 0.000 in 0.074 in -0 020 in 0.00ft LdComb: +D+0.750L+0.7505+0.4{ Shear Stinup Requirements EntireBeamspanlength:VucPhiVc/2, Req'dVs=NotReqd, uae¡ürupsspacedat 0.000¡n --- ftlaximum Forces & Stresses for Load Combinations 2.662 ksf at 3.0 ksf OK Load0ombination r^^di^ñ/{r\ BendingStressResulb (k-ft) sesmentLensth span#'îru;!jo) ffi MAX|mum Bending Envelope Span # I +1.40D nOKDes 32.094 30.42 30.94 0.98 Project Title: Engineer: Project lD: Project Descr: TOWN HOUSES A.G.55/64 Beam on Elast¡c Foundation ENERCALC, lNC. 198$2020, Build:1220.8.24 a. #: KW-06013692 ganem DESCRIPTION: Axis B Load Combination Segment Lengttt Span # Bending StressResults (k-ft) Location (ft) in Span Mu : Max phi-Mnx SÍess Ratio Span # 1 +1.20D+0.501r+1.601 11.906 I .96 3U.94 30.94 30.94 30.94 30.94 30.94 30.94 30.94 30.94 30.94 30.94 30.94 0.26 0.62 0.76 0.51 0.21 0.98 0.37 0.36 0.40 0.26 0,52 0.17 Span#1 1 32.094 19.04 +1.20D+1.601+0.505Span#1 I 32.094 23'58 +1.20D"1.601rtSpan#1 1 32.094 15.92 +1.20D+1.601r+0.50WSpan#1 1 41.929 6.56 +1.20D+L+1.605Span#1 1 32.094 30.42 +1.20D+1.605+0.50WSpan#l 1 41,929 1'1.41 +1.200+0.50Lr+L+WSpan#l 1 41.929 11.01 +l.20D{+0.50S+W Span # 1 'l 41.929 12.52 {0.900+WSpan#1 1 41.929 7.92 +1.20D+L+0,20SSpan#l 1 32.094 16.15 +0.90DSpan#1 1 11.906 512 Overall Maximum Deflections - Unfactored Loads Load Combination Span Max. "-" Defl Location in Span Load Combination Max.'{ Defl Localion in Span Span 1 Detailed $hear lnformation 0.0739 0,000 0.000 Span Number (ff) 'd' (in)Acbal Design (k)VuDistance Mu düt/u/þlu Phi"Vc (k-ft) ß) Phi'Vs Spacing (in) Req'd Suggest Comment Load Comb¡nalion ß) +1.20Dt+0.sU$+W +1.20DrL*0.50S+W +1.200+L+0,50S+W +1.200+{-+0.50S+W +1.20D+L+0.50S+W +1.20D+L+1.605 +'l.20Dt+1.605 +1.200d+1.605 +1.20Dt+1.ô0S +1.200d+1,605 +1.20D+L+1.605 +1.200+L+1.605 +1.200+L+0.50S+W +1.20D+L+1.605 +1.20D+L+1.605 +1.20D+L+í.605 +1.20D+L+1.605 +1.200d+1.605 +1.200+L+1.605 +1.20D+L+1.605 *1.200+L+1.605 +1.20D+L+1.603 "1.20D*L+1.605 +l.20D+L+1.605 +1.20D+L+1.605 +1.200d+1.605 +1.20Dd+1.605 +1.200d+1.605 +1.20Dd+1,60S +1.20D+L+1.605 Vu < PhiVc/2 Vu < PhiVci2 PhiVcJ2 < Vu <= PhiVc/2 < Vu <= PhiVc/2 < Vu <= PhiVc/2 < Vu <= PhiVcJ2 < Vu <= Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVcl2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc2 Vu < PhiVc/2 PhiVd2 < Vu <= PhiVc/2 < Vu <= PhiVc/2 < Vu <= PhiVc/2 < Vu <= Vu > PhiVc Vu > PhiVc PhiVd2 < Vu <= PhiVci2 < Vu <= PhiVc/2 < Vu <= PhiVd2 < Vu <= Vu < PhiVc/2 Vu < PhiVc/2 Not Reqd Not Reqd Not Reqd I Not Reqd 1 Not Reqd 1 Not Reqd 1 Not Reqd 1 Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd 1 Not Reqd 1 Not Reqd 1 Not Reqd 1 0.6857 3.225 Not REd 1 Not Reqd 1 Not Reqd 1 Not Reqd 1 Not Reqd Not Reqd 5.18 0.00 0.52 1.M 1.55 2.07 2.59 3.11 3.62 4.14 4.66 5.69 6.21 6.73 7.25 7.76 8.28 8.80 9.32 9.84 10.35 10.87 1 1.39 r 1.91 12.42 12.94 13.46 13.98 14.49 15.01 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 1.88 5.44 8.80 fi.94 -13.41 -1 1.01 -8.87 -6.94 -5.21 -3.66 -2.24 -0.92 0.36 1.61 2.90 4.27 5.76 7.39 9.19 11.18 13.35 15.69 18.15 20.69 -16.96 -14.50 -12.15 -9.94 -7.88 -5.94 1.88 5.44 8.80 11.94 13.4'l 11.01 8.87 6.94 5.21 3.66 2.24 0.92 0.36 1.61 2.90 4.27 5.76 7.39 9.19 1 1.18 13.35 15.69 18.15 20.69 16.96 14.50 12.15 9.94 7.88 5.94 0.00 0.97 3.79 8.34 12.53 3.80 1.90 6.49 10.08 12,78 14.68 r5.83 12.75 16.13 15.30 13.80 I 1.59 8.61 4.78 0.02 5.76 12.67 20.79 30.19 23.88 15.10 7.60 1.31 3.84 7.91 1.00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 0.58 0.29 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 '17.47 't7.47 17.47 16.49 15.80 17.46 17.47 't7.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Project Title: Engineer: Proiect lD: Project Descr: TOWN HOUSES A.G.56/64 Beam on Elastic Foundation Filêi A. Vâri0rtt -W8ftth0Ute.eî,ti Sofrvrare copynìoht ENERCÀLC. lNC. 198&2020, Buildf 2.20.8.24 ng engqanem DESCRIPTION: Axis B Detailed Shear lnformation Load Combination Span Distance 'd' Number (ft) (in) Vu (k) Actual Design Mu d{úu/Mu ß-fr) Phi*Vc (k) Phi*VsComment Spacing (in) Req'd Suggestß) +1.200+l+1.60S +1.20D+L+1.605 +1.20D+L+1.605 +1.20D+L+1.60S +1.20D+L+1.605 +1.20D+L+'1.605 *1.20D+L+1.ô0S +'1.20D+L+1.605 +1.200+L+1.605 +1.200+L+1.605 +1.20D+L+1.605 +1.200+L+1,605 +1.20D+L+1.605 +'1.20D+L+1.605 +1.20Dd+1.605 +1.20D+L+1.605 +1.20D+L+1.605 +1.20Dd+1.605 +1.20Dd+{.605 +1.20Dd+l.605 +1.20D+L+1.605 +1.200+L+1.605 +1.20D*L+1.605 +1.20Dd+1.603 +1.200+L+1.605 +1.200+L+1.605 +1.20D+L+1.605 +1.20D+L+1.605 +1.20Dd+1.605 +'l.20Dd+l.605 +1.200d+1.60S +1.200+L+1,605 +1.20D+L+1.605 +1.20D+L+l.605 +1.20D+L+1.605 +1.20D+L+1.605 +1.20D+L+1.605 +1.200+L+1.605 +1.200+L+1.605 +1.20D*L+1.605 +1.200d+1.00S +1.200d+1.605 +1.20Dd+0.50S+W +1.200d+1.605 +1.20D+L+1.605 +1.200+L+1.ô0S +1.200+L+1.605 +1.20D+L+1.ô0S +1.20Dd+1.605 +,l.200+L+1.605 +1.200+L+0.50S+W +1,20D+L+0.50S+W +|.200+L+0.50S+W +1.200+L+0.50S+W Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVcJ2 PhiVc/2 < Vu <= PhiVc/2 < Vu <= PhiVc/2 < Vu <= Vu > PhiVc Vu > PhiVc Vu > PhiVc PhiVc/2 < Vu <= PhiVd2 < Vu <= PhiVcJ2 < Vu <= Vu < PhiVci2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVcJ2 Vu < PhiVc/2 PhiVc/2 < Vu <= PhiVcJ2 < Vu <= PhiVc/2 < Vu <= PhiVc/2 < Vu <= Vu > PhiVc Vu > PhiVc PhiVc/2 < Vu <= PhiVc/2 < Vu <= PhiVc/2 < Vu <= PhiVc/2 < Vu <= Vu < PhiVcl2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVci2 Vu < PhiVc/2 Vu < PhiVcl2 Vu < PhiVc/2 Vu < PhiVc/2 Vu < PhiVcå PhiVc/2 < Vu <= PhiVcJ2 < Vu <= PhiVcJ2 < Vu <= PhiVc/2 < Vu <= PhiVd2 < Vu <= Vu < PhiVc/2 Not Rcqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd 1 Not Reqd 1 Not Reqd I 0.8747 3.606 0.8907 Not Reqd I Not Reqd 1 Not Reqd I Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd 1 Not Reqd 1 Not Reqd 1 Not Reqd I ? 1Ãg 0.8028 Not Reqd 1 Not Reqd 1 Not REd 1 Not Reqd 1 Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd Not Reqd 1 Not Reqd 1 Not Reqd 1 Not Reqd 1 Not Reqd 1 Not Reqd 15.53 16.05 16.56 17.08 17.60 18.12 18.64 19.15 19.67 20.19 20.71 21.22 21.74 22.26 22.78 23,29 23.81 24.33 24.85 25.36 25.88 26.40 26.92 27.44 27.95 28.47 28.99 29.51 30.02 30.54 31.06 3l.58 32.09 32.61 33.13 33.65 34.16 34.68 35.20 35.72 36.24 36.75 37.27 37.79 38.31 38.82 39.34 39.86 40.38 40.09 41.41 41.93 42.45 42.96 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 /.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7,00 7,00 7.00 7.00 7.00 10.99 13.12 14.U 14.68 14.15 12.71 10.33 6.97 2.53 3.05 9.86 17.98 27.47 27.47 17.96 9.84 3.02 2.57 7.0'l 10.38 12.76 14.20 't4.73 14.39 13.15 11.01 7.92 3.82 1,36 7.69 15.24 ?4.n7 30.42 20.96 5.84 0.02 4.77 8.62 11.61 13.83 15.34 12.58 16.36 r5,88 14.72 12.82 10.11 6.51 1.92 5.58 12.52 8.34 3.79 1.00 1.00 0.46 0.71 1.00 1.00 1.00 r.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 r.00 1.00 0.73 0.45 1.00 1.00 '1.00 1.00 1.00 1.00 1.00 1.00 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.29 0.56 1,00 1.00 f .00 1.00 r.00 1.00 1.00 1.00 1.00 1.00 17.41 17.47 16.21 16.79 17.47 17.47 17.47 17.41 17.47 17.47 17.47 17.47 17.47 17.47 't7.47 17.47 17.47 17.47 17.47 17.47 17.47 16.84 16.20 17.47 17.47 17.47 17.47 17.47 17,47 17.47 17.47 17 47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 't7.47 17.47 17.47 15.81 16.45 17.47 17.47 't7.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 oft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0 lì0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 4j1 4.11 -2.36 2.36 -0.66 0.6ô 1.04 1.04 2.78 2.78 4.59 4.59 6.51 6.51 8.56 8.5ô 10.78 10.78 13.15 13.15 15.68 15.68 18.34 18.34 21.07 21.07 -18.36 18.36 -15.70 15.70 -13.11 13.17 -10.79 10.79 -8.58 8.58 -6.52 6.52 4.59 4.5S -2.78 2.78 -1.04 r.04 0.67 0.67 2.38 2.38 414 4.14 5.97 5.97 7.92 7.92 10.00 10.00 12.23 12.23 14.59 14.59 17.06 17.06 19.61 19 ñ1 -18.27 18.27 -15.79 15.79 -13.43 13.43 -11.25 11.2s -9.25 9.25 -7.43 7.43 -5.79 5.79 4.29 4.29 -2.91 2.91 -1.61 1.61 -0.36 0.36 0.92 0.92 2.25 2.25 3.67 3.67 5.22 5.22 6.95 6.95 8.88 8.88 11.02 11.02 13.41 13.41 16.31 16.31 -8.79 8.79 -5.M 5.44 12.79 Project Title: TOWN HOUSESEngineer: A.G. Project lD; Project Descr: 57t64 ganem DESCRIPTION: Axis B Detailed Shear lnformation Load Combination Span Di6tance 'd' Number (fr) (in) Vu Actual (k) Desþn Comment Phi-VsMu dYu/Mu Phi{úc(k-fr) (k)(k) Spacing (in) Req'd Suggæt +1.2UIJ+L+U.bU5+W 1 43.48 7.00 -1.88 1.88 0.97 1.00 '17,47 vu < Phivc/2 Not Reqd 0.00 0.00 58/ö4 H¡lt¡ PROFIS Engineering 3.0.79 wr¡w.hlltl.com Company: Address: Phone I Fax: Design: Fastening point: I Concrete - pú.tg 12,2022 Page: Specifier: E-Mail: Date:8t12t2022 Specifietns comments: 1 lnput data Anchor type and diamete¡: Item number: Effective embedment depth: Material: Evaluation Service Report: lssued lValid: Proof: Stand-off installation: Anchor plateR : Profile: Base materlal: Reinforcement: Seismic loads (cat. C, D, E, or F) no R - The anchor calculation is based on a rigid anchor plate assumption. Geometry [in.] & Loading [b, in.lbl x Hex Head ASTM F 1554 cR. 36 5/8 not available h"¡= 4.724in. ASTM F.1554 Hifti Technical Data -t- Design Method ACI 318{8 / CIP er, = 0^000 in. (no stand-off); t = 0.500 in. I, x l, x t - 14.000 in. x 12.000 in. x 0.500 in.; (Recommended plate lhickness: not calculated) Square HSS (AISC), HSS4X4X.25; (L x Wx T) = 4.000 in. x 4.000 in. x 0.250 in. cracked concrete, 2500, f"'= 2,500 psi; h = 420.000 in. tension: condition B, shear: condition B; edge reinforcemenl; none or < No. 4 bar ,+ f¡ð I I C;;' t- \ hPut data and r€sullS musl be cfied(ed lor confom¡ty w¡th the ex¡sting coftdit¡orls and tur plaus¡bility! PROFIS Engineering ( o ) 2003"2022 Hilti AO, FL-9494 Schaan Hilü ¡s I reg¡stersd Trademårk of H¡lti Ac, Sctìåån 1 -I-59t64 H¡¡t¡ PROFIS Engineering 3.0.79 www.hilti.com Company: Address: Phone I Fax: Design: Fastening point: Page: Specifìer: E-Mail: Date: 2 I Concrete - Aug 12,2022 8t12t2022 1.1 Design results Case Description Forces übl / Moments [in.lb]Seismic Max. Util. Anchor [o/ol Combination 1 2 Load case/Resulting anchor forces Anchor react¡ons flbl Tension force: (+Tension, -Compression) Anchor Tension force Shearforce Shearforcex Shearforcey 2,550 2,550 2,550 max. concrete compressive slrain: - t96"1 max. concrete e¡mpressive stress: - lps¡l resulting tension force in (x/y)=(0.000/0.000): 7,650 [lb] resulting compression force in (x/y)=(0.000/0.000): 0 [lb] Anchor forces are calculated based on the assumption of a rigid anchor plate. 3 Tension load Load N"" [b]capacity 0 t't" ¡u¡ Utilization Fru = Nu"to Nn Status N-7,650; \,l"=0; Vr=0; M*=0;Mr=0;M.=0; no v O1 6o Tens¡on 60 0 0 0 0 0 0 0 0 0 1 2 3 Steel Strength* Pullout Strength* Concrete Breakout Failure"" Concrete Side-Face Blowout, direction * 2,550 2,550 7,650 N/A 9,831 6,356 12,959 N/A 26 41 60 N/A OK OK OK N/A * h¡ghest loaded anchor **anchorgroup (anchors in tension) lnput data and results must be checked for confom¡ty with the êxisting cond¡tions and for plausib¡lityl PROFIS Engineering ( c ) 2003-2022 Hilt¡ AG, FL-9494 Schaan Hill¡ is ã r€g¡stered Trådemark of Hilti AG, Schaan 2 I t-60/64 H¡lt¡ PROFIS Engineering 3.0.79 www.hlltl.com Company: Address: Phone I Fax: Design: Fastcning poinl: Concrete -Au112,2022 Page: Specrtrer: E-Mail: Date:8t12t2022 3.1 Steel Strength Nr" = 4"",t¡ futa o N.,>N* Variables A". " [¡n.21 Acl318-08 Eq. (D-3) ACI 318-08 Eq. (D-1) fr, [Psi] 0,23 Galculations N." ftbl 58,000 0 13,108 Results N* tlbl steel 0 N"" [b]N,, ilbl 13,108 3.2 Pullout Strength Npl.¡ =V",pNp Np =84'si 0 NpN > Nu" Variables U'' c,p 0.750 9,831 ACI 318-08 Eq. (D-14) Acl 318-08 Eq. (D-15) ACI 318-08 Eq. (D-1) Ao. ¡in.2l f" lpsil 1.000 Calculations Ne ftbl 0.45 0.n"*" 2,500 ô Non [b] 2,550 N," ilbl 9,080 Results No" [b] 9,080 0.700 6,356 2,550 3 lnput data ånd results must be chscked for ænfomity w¡l.h the existing ænd¡tions ånd for plausibility! PROFIS Englnooring ( c ) 2003-2022 Hilü AO, FL-9494 Sctìaan H¡lti ¡s a reg¡sterÈd TEdemark of llilti AG, ScñâBn 3 61/64l{tL¡rl H¡lt¡ PROFIS Engineering 3.0.79 www.hilti.com Company: Address: Phone I Fax: Design: Fastening point: Page: Specifier: E-Mail: Date: 4 I Concrete -Aug12,2022 8t12t2022 3.3 Concrete Breakout Failure N"¡s = (t) \, ec,¡¡ veo,ru vc,r vcp,r,r N¡ 0 N"¡n ¿ Nu" 4"" see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b) A*"0 = t hÍr (,+)=,'V "c,N = ACl318-08 Eq. (D-5) ACl318-08 Eq. (D-1) ACl318{8 Eq. (D-6) ACl318-08 Eq. (D-9) Acl318{8 Eq. (D-11) Acl 318-08 Eq. (D-13) ACl318-08 Eq. (D-7) v e¿,,., = 0.7 + 0.3 (åft) . t o (*,*)=,0 {nli V ç,¡ = MAX Nb =k" I Variables h"r [in.]e", " [in.]e", " [in.]cr.r,n lin.l v ",ru 4.724 0.000 0.000 6.000 f" [psi] 1.000 c"" [in.l kc T 124 2,500 Galculations 4"" Iin.1 A"r tin.1 V ect,N Vu.z,t't Ved,N Vcp,t,¡No [b] 316.35 Results Nó" [b] 200.88 1.000 1.000 lÞ *n",4"0 N."" flbl N,, ilbl 0.954 1.000 12,323 't8,513 0.700 12,959 7,650 lnput data and rosults must be chscked for confoÍnity with the ex¡sting PROFIS Engineering ( c ) 2003-2022 H¡lti AG, FL-9494 Scfìaan Hilti is sond¡tions and for plausibility! a registêr6d Trademark of Hilt¡ AG, Schaan 4 I - l-b¿t64 Hilt¡ PROFIS Engineering 3.0.79 u,ww.hlltl.com Company: Address: Phone I Fax: Design: Fastening point: I Concrete -Au112,2022 Page: Specifier: E-Mail: Date: Gapacity 0 v" 1n¡ Uülization Êy = V*/0 Vn Status 5 8t1A2422 4 Shear load Load V"a flbl Steel Strength* N/A Steel failure (with lever arm)* N/A Pryout Strength- N/A Concrete edge failure in direclion * N/A * highest loaded anchor *anchorgroup (relevant anchors) N/A N/A N/A N/A NIA N/A N/A N/A N/A N/A N/A N/A 5 Warnings . The anchor design methods in PROFIS Engineering require rigid anchor plates per olnent regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the des¡gn loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. fhe proof if the rigid anchor plate assumpt¡on is valid is not carried out by PROFIS Engineering. lnput data and results must be checked for agreement with the existing conditions and for plausibilityl ' Condition A applies wherc thc potential concrete failure surfaces are crosged by supplementary reinforcement proportioned to t¡e the potentisl concrete failure prism into the slructural member. Cond¡tion B applies where sucfr supplementary re¡nforcement ¡s not provided, or where pullout or pryout strength govems. ' For addit¡onal ¡nformation about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFlSAnchorDesignGuide/ Fastening meets the design criteria! lnpul data ånd resulb must bê cfì€cked for confom¡ty w¡th the sxist¡ng PROFIS Eng¡nooring ( c ) 2003-2022 Hilt¡ AO, FL-9494 6cùìaån H¡tti ¡s ændit¡ons s¡d for plàus¡b¡lity! I r€gistered Trådsmark of tlilti AG, gcfiaan 5 63/64t{tL¡rrl H¡lt¡ PROFIS Engineering 3.0.79 www.hilti.com Company: Address: Phone I Fax: Design: Fastening point: Page: Specifier: E-Mail: Date: 6 I Concrete - Aug 12,2022 8t12t2022 Hilti Hex Head headed stud anchor with 4]24409 in embedment, 5/8, Steel galvanized, installation per instruction for use 7.000 7.000 6lnstallation data Profile: Square HSS (AISC), HSS4X4X.25; (L x W x T) = 4.000 in' x 4.000 in. x 0.250 in. Hole diameter in the fixture: dr = 0.687 in. Plate thickness (input): 0.500 in. Recommended plate thickness: not cãlculated Anchortype and diameter: Hex Head ASTM F 1554 GR. 36 s/8 Item number: not available Maximum installation torque: - Hole diameter in the base material: - in. Hole depth in the base material: 4.724in. Minimum thickness of the base material: 5.646 in. X v Goordinates Anchor [in.] Anchor x y C-x G+x G-v G.u 1 2 3 -5.000 0.000 5.000 -0.000 -0.000 -0.000 6.000 6.000 6_000 input data and r€sults must be checked for confomity with th€ existing condit¡ons and for plausìbility! PROFIS Engìnesring ( c ) 2003-2022 H¡lt¡ Ac, FL-9494 Schaan H¡lti ¡s a reg¡stered Trademark of Hilti AG, Schaan ooq (o ooq (Õ ooq (o oog (o 1 5.000 2.0002.000 5.000 6 I I-64t64 H¡lt¡ PROFIS Engineering 3.0.79 wwwhilti.conr Company: Address: Phone I Fax: Design: Fastening po¡nt: I Concrete - Aug 12,2022 Page: Specifier: E Mail: Date:8t1212022 7 Remarks; Your Cooperation Duties . Any and all ¡nformation and data contained in the Softruare concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical d¡rections and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average fìgures, and therefore use-specif¡c tests are to be conducted prior to using the relevant Hilti product. The results of the calculations canied out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of enors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation drecked and cleared by an expert, particularly w¡th regard to compliance with applicable norms and permits, pr¡or to using them for your spec¡f¡c fac¡lity. The Sofrr¡vare serves only as an aid to ¡nterpret norms and permits without any guarantee as to the absence of errors, the conectness and the relevance of the results or suitability for a specific application. ' You must take all necessary and reasonable steps to prevent or l¡m¡t damage caused by the Software. ln part¡cular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Softr¡vare offered by Hilti on a regular basis. lf you do not use the Autoupdate function of the Sofiware, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you. lnput datâ and re8ults must be ch€cked for ænfom¡ty with tho existing PROFIS Engineering ( c ) 2003-2022 Hilti AG, FL-9494 Sciaan Hilti ¡s ænd¡tions and for plsusiþil¡ty! a râgi8tered Trademark of H¡lti AG, Scfìaan 7