Loading...
HomeMy WebLinkAboutPreliminary Geotechnical Study 03.14.2008,ð 14 þ**a l'l.r'r..,r¡!l l'r',i ì ; "'r¡' -it"r' :i. rlr' ','..: ' .,,,t,, l'l ,, i i; ì i ,,. .' . ", : ' ¡ ¡: ,:" ' .'i. ,.r' i l':. I l'Ì1, 'f : 'rl,' !r'ì -i ,') I .i lJ Ë F'woi?f i-i - PÅ],ry L,*ì'd cirÛT Ë.t l-t hi i t'{t I ìr.r . ,i;ì-.!j,ri-..1:: i . i¡r:ril. ilit,j,,ti'ii¡:r''¡! l'':'ìlll GEOTECITNICAL STUDY PROPOSED TCI RANCTI SUBDIVISION HIGHWAY 82 EAST OF COUNTY ROAD lOO COUNTY, COLORADCI )B NO. 1û6 0920 ARCH 14,2008 : PS,trPARED FOR: TCI IIANE RI|NCH, LLC C/CI NOBLE DT'SIGN STUDIO ATTN: JON FRßDERICKS' ASLA 19351 HIGHWAY 82 CARBONDALE, COLORADO 81623 J{ N4 ì l i ,,!,,1;,ii', -,¡ ;irt,:'. , it' It i "' 1'r't.- '' -ìi ' ¡lil' itlr i'' ^i:' I TABLE OF CONTENTS PI.]RPOSE AND SCOPE OF.STUDY SITE CONDITIONS REGIONAL GEOLOGIC SETTING.., PROJECT SITE GEOLOGY,......,., RIVER TERRACES AND DEPOSITS EAGLE VALLEY EVAPORITE,......,,....... GEOLOGIC SITË ASSESSMENT.... RIVER FLOODING SINKHOLES ..........,..... EARTHQUAI(E CONSIDERATION S RADIATTON POTENTIAL............ IITELD EXPLORATION ....,...... SUBSURFACE CONDITIONS."-..,.... PRELIMINARY DESICN RECOMMENDA]TON S FO{JNDATIONS ......... BELOÏY GRADE CONSTRUCTION... FLOOR SLABS SIJRFACE DRAINAGE PAVEMENT SECT]ON L|MITATIONS ............. REFARENCES .............. FIGURE 1 _ PROJECT' SITE LOCATION FIGURE 2 * GEOLOGICALLY YOLING FAULTS AND LARGER I'ITSTORIC EART'I-IQUAKES FICURE 3 * WESTERN COLORADO EVAPORTTE REGICIN FIGURE 4 * PROJECT AREA GEOLOüY MAP FIGUR.E 5 - LOCATION OF EXPI.ORATORY PITS F}GURE ó_LOGS OF EXPLORATORY PITS FIGL}RE 7. LEGEND AND NOTËS FIÜURE B - SWELL-CÛNSCILIDATION TEST RESULTS FIGURES 9, IO, I1 & i? - GRADATION TEST ITESULTS TABLE I- SUMMARY OF LÂBORATOIII'TEST RESULTS ..., I - ... - I - ...-2- J 4 4 5 5 5 6 _'7 - ...... - I - ...... - I - ...-B- ...-9- ...-9- ...-9- .-10- .-10- ....... _ l0 - ......" - 12 - PTIRPOSIi ANI} SCOPE OF'SI'I.IDy This report presents the results of a ¡:reliminary geotechnical study fol the proposed residential subdivision at TCI Lane Ranch located north of the Roarfurg Folk l{iver and east of the Blue Creek Ranch Subdivision, Garfîeld Courty, Colot'aclo. The pmject site is shown on Figure l. Tlie puryose of the stucly was to evaluate the geologic antl subsurface conditions and their potential inrpact on the project. The stucly was conducted in accorclance with our proposai fôr geotechnical engineerùrg selvices to TCI Lane Ranch, LLC, clated Dece urber 2A,2007. We previously conducted percolation testing for a septic system design on the prcpeüy and presented our findings in a repoú dated Octobel 31, 2006, JobNo. 106 0920. A fielcl exploration progräm consisting of a recorïlaissance and exploratoty pits rvas conducted to obtain infbrmation on the site and subsurfbce couclitiolis. Samples of'the subsoils obtained during the fiekl exploratiorr werê lssLsrl ,it the laboratory to dctcrminc their classiûcation, compr-essibility or swell and other engineering characteristics. The lesults of the freld exploration and labolatory testing were analyzecl to cleveiop recommeudations fbl project planning ancl prelirninary clesign. This report sutlrmaLizes the clata obtained during this study and presents our conclusions atrd recomntendatiotts based on the proposec{ development and subsurface conditiolrs encounterecl. StrTE CONDITIONS Tþe TCI Lane Ilanch covers atrout i 00 acres and is located in lhe Roar:ing Fork River valley about tltree ancl one-half miles upstream of Carl¡onclale, see Figule l. The property lies to the nofth of the river and is entilely oir the nearly level valley floor. The valley tloor has an averâg€ slope erf about 2 pei'cent down to lhe west. It is made up of , -,,1,-:-,' -- l^--^1^ al^^¿ ^--- -^-^,--.^.^-1 l^,,l^.., ^^ã,ìr..rr1aôñ+ô 'l-lro o¡nnrrrmêrlfc qtês(jvçl¿ll ltvtil tç¡I¿lçc -ltivti¡s ul¿11 alg SrJlJdr¿tLçrr uy rL,w çrrd¡lJ¡¡¡w¡¡Lo' ¡ rrL vrvu^t/ typically about 6 to 20 fèet high and lrave slnpes of about 50 to 70 Fercent. llhe teruace or,,-fì¡oo lia hotrr¡earr <¡k¡rrrf 1- t'¡ á"Á fppt nhnr¡e the tiver The Ft'¿rntaçte Road ltlr I-IishWaV B2 is locatecl along tlre northeln ¡troperty line. Pafis of the southern property line are in Jotr No. 106 0920 ceötech 2- t¡e Roaring Fol.k l{ver.chan¡el. The Blue Creek Subdivision borders the ptlrperty on the west ancl rural homes and agricultural land are located on the pïopeîties to tlie east. At the tiure of this stucly several houses ancl r¿¡nch buildings wete located in the east-central pafi of the TCI Ranch. Much of the ranch is imgatect hay fìelds and pasture which are located ly on the higher terîaco suffüces. Cottotlwood lrees, other trees and brush are typical of vegetatioll on the lower terraces. Poorly drained wetlands are also plesent on t]te wet ten'aces PROPOSED DEVELOPMtr]NT' pment at the TCI Lane Ranch wìll be mostly a resiclential development faciiities will füclude a network of streets, a comnunity park and other ity làcilities. jplans change significantly fiorn those described, rve shoulci be notifìerl to tecomlnendations presentecl in this lepoÉ' REGIONAL GEOLOGIC SI'TTING Tire ploject is in the Southern Rocky Moutttains to the west of the Rio Grande rift ancl to the east of coloracJo Plateau, see Figure 2. The site is in the western colol'ado and is in the Carbonclale collapse center, see Figure 3. Thc Carbollclaleevaporite The proposeci subdivision as parl of the undevelop proposed. ed If developtnent le-evaluate the colla¡rse ceitter Colorado. It is vicinity of the r"egions on Figure 4. A piant ntu'sery will be located in the northwestetl Tlie lowest tet.races along the rivel rvill not be developecl and will lemain along Llighway 82. Eiglrty-nine residential lots are the western of tr.vo |egional evaporite collapse cellters in rvestern irregular-shaped, nor"thwest trencling region between the Wllite River lram and others, 2002i. The or¡aporite is nrostly in tlie Ëagle Valley uplil1 antl basin. It covcrs about 460 square miies. As lriuch as 4,000 feet i¡f regional subsid is believecl to have occurted during the past i 0 mìllion years in the ale as a |csult of dissolution and flowage of evaporite fi'ombeneath Evalrorite witl"i in rhe Eagle valley Foruratio¡r. The Eagle vailey Evaporite is tlre ileal stlrfacc roclc belorry the sur:ficial soil cleposits at the pr"Ûject site' It crcps .lob No. 106 0920 Gäbtech -J- out on the steep valley side to the south ofthe river, see.[,igure 4. Much of t¡e evaporite related subsidence in the Cal:bondale collapse center appears to have occurred within the past 3 rnillion years which also conesponds to high incision rates along the Roaring For.k, Colorado and Eagle Rivels (I(unk and others, 2002). This indicates thät long*ten* subsiclence fates have been very slow, between about 0.5 and 1.6 inches per 100 years. It is uncertain if regional evaporite sutrsidence is still occurring or if it is curen¡y inactive. If still active these regiotral dsfornmtions because of their very slow rates should ¡ot have a significant impact on the propose tleveropme,nt at trre TCI La'e Ra¡rch. Geologically young faults related to erraporite tectonics are presed i' t¡e Carbonclaie colla¡:se center btrt consiclering tlie nature of evapolite tectonics, these fault are not consiclereci ca¡:atrle 0f generating large earthquakes. The closest geologically youug faults that are less than about 15,000 years old ancl considered capable of generating large eafihquakes ate located in the Rio Graude rift to the east of tire pr-oject site, see Figure 2. 'flte noúhetn scction ofthe Williams Fork h¡fountains fault zone e50 is locared about 60 rÏiles to thc nofiheast ancl tlre southern section of the Sawatch tàult zone e56b is locatecl about 60 miles to the southeast. At these distances large earthquakçs o¡l these two geologically youlig {ault zones shoukl not produce stlong ground shaking at the proiect site that is greater than the ground slialcing shown on the Li. S. Geological Survey 2002 National seisrnic Flazards Maps (Þ'ra'kel a'd otliers, 2002). PROJECT SITE GEOLOGY Tlte geology irr tire project ¿r'ea is shown on Fìgure 4. This map is based on our field obsenations a¡rd ìs a modifìcation of the r.egional geology rnap by lfirkham ancl Widmann (1997)' Near surtirce ibrmation rock is the middle Pennsylvanian-agg Eagle Valley Evaporite. This legional roch folmatiou was deposited in the centrai Coloraclo ttough during the Ancestt'ai Rocky Mountain oïogeny about 300 million year.s ago. At the prnject site the evaporite is covered by a ser ies of Roaring Fork Riyer telraces and dcposits tlrat are associated with cyclic 1:eriocls of deposition ancl erosion relatecl to glacial attd interglacial clirnatic tluctuations clur:ing about the past 35 thousand years. Job No. 106 092i,G€òtech 4 RTVEIT'I'IRRACES AND DEPOSITS Remnants of seven t'iver terace levels (Qtl tllnugli Qt7) are prcsent at tlie project site. The loweÏ four temaces are prnbably related to post-Pinedale climatic fluctuations clur.ilg the past 15 thousand years. Tetrace Qt1 lies within 4 ftet of the river. Tenace et2 lies about 6 feet above the river, tenace Qt3 lies about l2 feet above the river and te¡.ace et4 is about 22 feet alrove the river. The Qtl terlaces are surall river 6ank tenaces a¡d channel bar cleposits. The Qt2 telraces are olct alranclonecl river channels that lie bel.,,v the Qt3 tetrace surface. The tliree higher ten'¿ìces are ¡rrobably associatecl with the late Pleistocene-age' Pineclale glaciations between about l5 ancl 35 thousaud yeal-s ago. Tenace Qt5 lies about 38 lèet above the liver, tenace Qr6 lies nbout 40 fbet above the tiver and teüace Qt 7 lies about 46 &et above the river. our exploratory pits show that the alluvial cieposits below terrace leveis et3 tluough et7 ¿fe similar. They consìst of a thin, less than i -foot thiclc to 3-1bot thick, tgpsoil for.mccl ir¡ solì' silty clay over-bauk cleposits. The over*b¿urk cleposifs overlie river aliur¡ium that consists of rouncled gravel- to boulcler'-size rocks iu a relatively clean sand matrix. The river alluvitlm extenrlecl to the bottom of the exploratory pìts tlrat were excavatecl to depths of around 9 feet. JLulging li'om water well rec¡lds in the Coloraclo State Engineer's dafa base the rivct'alluvium is probably in the range o{'40 to 50 lèet deep i¡ thc project arrea. ËAGLE VALLEY EVi\PORII-E The Eagle Valley Fvaporite uncleriies the Roaring Fork Rivel alluviun iu the project area ancl as cliscussed above tnav extertd to depths of'40 to 50 feet trelorry the teflace surià.ces. The Eagle Valley Et'al:orite is a sequence of evaporite rocks consisti¡g olurassive to laminated gypstllll' anhl'cirite, anil halite interbeddecl with light-colorecl uruclstoue, fìne- grairiecl sanclstone, thin limestone and dolomite beds a¡rcl black shale (lfirkharn ancl Widmalur, 1997)' The $'aporite minerals are relatively soluble in circulating grouncl wâter anci subsurlàce.solution r¡oicls ancl relatecl surfhce sinkholes are locally present irr tJtese rocks tluougltorrt fhe u'esteur Coioraclo eva¡:orite region rvliere the eva¡:orite is near Jotr No. l0(r (ll)2(l cåFtecl. 5- the surface' see Figure 3' sinkholes wel'e ¡rot obseryect at the project site cluri¡g o'r field work but the snow cover at tbat tirne niay have obscu¡:ed sinkiroles if pr.esent. GEOLOGIC $ITN ASSESSNIENT Geologic conditions that could present an unusually high r.isk to the prnposed developurent v/ere not identifiecl by this sturly but there are geologic con¿itiçns that should be considered in the prcrject ¡rlanning ancl clesign. These conditions, their potential risks and possible mitigations to lerluce the risks are discussed below. ceoteclnical e'gheering design eonsiderations are presentecl in the prerí'rinary Design Recommendations section of this report. RTVER FLOODING The low lying ten'aces along tlie Roaring Fork River may be subject tti ¡:eriodic floocl¡g during high river f'lows. ?he hydrologic stucly corrducted fbr the piqect stornl water mãnagelneut plan desigrl shouitl evaluate the potential fbr river flooding ancl possi6le methods to prctcct proiect facilities fi'om an appro¡:riate clesign flootl on the river. SINIil{OLES Geologically young sinkholes are present in the lvestenr Colorado evaporite region mostly in areas where the Eagle valley Fornration ancl Eagle valley Evaporite are shallow, see Figure 3. In this region a few silrkholes have collapsed at the grou¡d surfàce with little or no wamiug during liistoric tímes- This inciicates that infi.equenf sinlc6ole formation is still arr active geologic process in the region. Eviclence of sinkholes was not observed at the proiect site during our lield recc¡lmaissance or aerial photogr.aplrs revierv but coulcl have been obscurecl by the srlorv cover. A field review to look for sfurkholes in tlte ¡:roposed builcling area sliould be macle after the site is clear of'snow cover. Alt¡g¡gh geologically active fur the region, tire likelihoocl tlmt a sinkhole will development duri¡g a reasonatrle exposure til¡e at tire prnject area is corLrsielerecl to be low. This inf'ere¡ice is .f ob No. 106 0920 e&Ftectr -6- based on thc large extellt of sinlchoie prone areas in the region in comparison to the sulall nr¡¡l'rber of sinldroles thnt havc developed Lr historic times. Because of the cotnplex nature of the evaporite relatecl sililiholes, it r,vill not bc p0ssible to avoitl all sirilchole risk at the project site. If conditions inclicative of sinkhole relatecl pt'oblerns are encounterecl durirtg site specific soil and founclation studies for.{he houses allcl other moveltteut sensitive faculties, an altenrative building site should be consiilerecl or the feasibility of'mitigation evaluated. Mitigation rneasul"es could inclucle: (l) a rigid rnat lòundation, (2) stabilization by grnutinø. (3) stabilizatiori by excavation ancl backfîlling, (4) a clee¡: Jbu¡rclation system or'(5) stlrctural bri¿gi'g. Watçr fbatLrres should not bc consicleretl close to builcling sites, unless evaluated ou a site specifîc basis. The home Ûwllers coulcl purchase special insurance to reriuce their potential rislcs. Ptospective owllers sllould be advised of the sinkhole potential, since early cletectiou of builcling clistress ancl liniely remedial actions are impofant in reclucing the cosf of building repair should alt uncletectecl subsurface voicl star1 to develop into a si*khole afler construction, EAI{TI-TQUAKE CON SIDEITATTON S Historic eafthqualces withirt 150 nriles of the project site h¿ì\¿e tyi:rically Seen moderatelv stlong witit magnitudes oI' M 5.5 ancl less and ulaxirnurn MoclifÌecl Mer.calli Inte'sities ofvi and less, see Figure 2. Thr: largest historic earthquake in the projecr r.egio, cicct¡r.r.e¡ in 1BB2' It was locatecl in the nofiirein Fro¡rt l{ange about I l5 nljles ro the northeast .l.the project site arrcl hacl a estùnatecl magnitude of about M 6.2 ancl a nraximr¡llr inte'sity o1'vll" Ilistoric grountl shaki'g at the p'oject site associatecl witir the I gg2 ancl the other larger lristolic earthtluakes in the regicu cloes not ap]leil to have excçeclecl Morlifìed Mer-calli Interrsity vr {Kirkrram ancl Rogers, r gg5). Modi{Ìecl Mcrca¡i Intensity vI ground shakillg sìrould be expectecl duli'g a reaso¡ralrle oxl]osure tilne lcrr-tlle houses a*c ofher prcject làcilities ' but fhe ¡:rtbability of strongel grouncl slraking is low. Inte'sit,y vI grnund shaking is li:lt hy rnost ¡:cople aucl causes gcneral ¿rrarrr, Lrul rcsults in negligible clamage Io structur.es r:f goocl clesigl ancl construction. Jub lilr.r. Il)r) rlVl() (' åötech -7 - The houses anci other 1àcilities subject to eafihquake clamage shoulcl be clesigned t. u'ithstancl tnoderately sttong gtnund shalcing rvith little or no clarnnge ancl not to collapse uncler stronger grcund shahírrg. F<>t./ìnn rctclç siles with shear wave rrelocities of 2,5û0 fus in the upper 100 feet, the U. S. Geological Survey 200? National Seismic llazarcl Maps inclicate that a peak grounrl accelelation of 0.069 has a l0% exceeclence ¡rnbability fbr a 50 yeâr exllosufe fime ancl a peak gïound acceleration of 0.239has a2yoexceeclence probability fur a 50 year exposure time at the project site (Frankel ancl Others, 2002). This collespOnds to a statistical recun'enre tirne c¡l' about -500 years anci 2,500 years, respectively' The soil profiles at the builcling sites shouid be considerecl as Class C,Jïrnr rocÌr 'vites as clescribed ill the 2006 Intenr¿tional Building code unless site specifìc shear rvave yelocity studies show otlrerrvise. RADIATION POTEÌ{TIAL Iìegional studies by the Coloraclo Cìeological Survey inclicate that the closest rac1ioactive ttiiuel'al occull'ences to the prajcct site are greater that trve¡ty miles fi-om the site (Nelson-Moore alrcl otheru, lg78). Radioactive minerai occunences are present in the Aspen-Lenaclo mining clistrict to the southeast aritl on the southwest flank ofthe White Iìivel uplift to lhe nofthwest. Regior:al stuclics by the U. S, Geological Survey (Dubiel. 1993) for the u. S. Envil'ortnteutal Protection Agencl, (EpA) inclicate that the prnject site is in a model'ate racloi gas ¡rotential zone. llhe 1993 EIIA regional radon stucty considerecl data frorrr (l) irrdoorlaclon sur-veys, (z) ¿rcrial raclioaur.ivir.v surveys, (j) thegeneral gcobgy. (4) soil permeability estinrates, ancl (5) regional arc¡itecrural practices. It is riot possible to accut'ately flssess {i-itule t'ado:r ccurcentrations in builclings l¡efirre they are construoted' Accurate tesfs of raclon co¡lcentl-ations cau only be macle when the buikJirrgs have been contpleted. Ilecause of this, nei.i, l'¡uilclings in uroclel.ate to high raclorr areas are oflcn clesigtted with ¡rrovisions fur ventilation of'the lower e¡rclosed areas s¡o¡icl ¡lgst construction testi'g show u'acceptable r:aclon concentratìons. .lotr No. lil(r O!?tl Gèötech -8- FINLD EXPLORATION The field cxploratiÚtr lor the project was conductcd on Januar.y l0 ancl 15, 200g. Twelve exploratoty pits were excavated at the locations shown on Figure 5 to evaluate t¡e subsurface conditions. The pits were crug with a tmcrcrroe ancr wer.e loggecl by a representative of He¡:worth-Pawlak Geoteclurical, Inc. samples of the su6soils were talcen with relatively uutlisturbed ancl clisturbecl sarnpling metirocls. Depths at whjch the sarnples were taken are shown on the Logs of Exploratory pits, Figure ó. The sarnples were rctu'ned to t¡u. laboratory ror review by trre project engiueer ard testi'g. SUBST.IRFACE CONDITIONS Graphic ìogs of the subsurface conclifions encounterecl at the sitc are shown on Figure 6. The subsoils consist of about tA to 3 feetof organic topsoil overlying 2 feet of silty sand in Pit I and relatively clettsq silty sandy gravel containing cobbles and boulcler.s in the renuining pits- pit 3 contai'ed a le's of slightly gravelly sand finm 4 ta Syz feet. Laboratory testing perfbnned on sarnples obtaineci fì'om the ¡rits included natuml mojsture content and density and gr-adation analyses. Results of swell-consolitlatio, testing performed on a relatively trndisturbecl sarnple, presented on Figure g, indicate motlerate compressibility under conclitions of loarling ancl wetting. Results olgr.aclatiop aualyses perfuilIed on large distulbed samples (rninus 3 to 5 inch fi.action) of the natural coarse granulaï soils are shown on Figures 9 tllnugh I ?-. The lalroraroq, testing is slr;rnrnarizecl in Table L No lì'ee water was encounterecl in the pits at the time of excavation and the subsoils were slightly moist. PRELIMINARY DESIGN RECOMMENDATIONS Tire conclulsions ancl recolnmeudations ¡lesentecl belolv are basecl on the proposed clevelopment, subsurlàce conclitions encormterecl in the explor.atory pii, an¿ nr¡r expet'ience in the area' T'lie recolurrenclations are suitable for piamrng zurcl preliminary design but site specifìc studies shoulcl be conducted fbr individual lot developrnent. .lol) hl'r. l()fl {}920 r;ê¿bt€ch 9 FOUNDAT'IONS Bearirrg conditions will vary depending on the sliecific locatio¡ of ttre building on the plopeft)¿' Basecl oll tlte natul"e of the pro¡:rosecl construction, spreacl fcrotings bearíng on the ttatural granulat'stlii.s should be suitable at the builcling sites. we expect tlie fìroti'gs can tre sized fbr a' allorvarrre bearing pressure i' the'ange of 1.500 psi'to 3,000 psi. cornpressible silty sands encountered iu builcling a¡:cas may need to be removed or tle fbotings clesignecl accordingly âs pafi of the site specilic lot study. Nested boulders a¡d loose matrix soils may neecl lreatment snch as enlarging footir:gs or ¡rlacing compacterl strucfural fill. þ-cluntJation walls should be clesigned to span local anomalies antl to rcsist lateral earth loadí:rgs rvhen acting as retaúring structures. The tiroti¡gs s¡ould haye a rnininium depth of 36 inclies fol- fi-ost protection. BELOW GT{ÄDE CONSTRUCTION Frecr water was etlcottltteretl iu some of the ex¡rlolatorypirs arrcl it has been our ex¡:er.iencc in the area that tlie water lcvel catr Lise anci local perchecl grounclwater carr clerrelop cl¡ring times ol'seasonal tulloff ancl heavy in'igation, In general. all below gmcle ar.eas sl:oulcl be protected li'om wetting anel hydlostatic pressure builclup by rme of an u¡clerdrai¡ system. We reconrtrlend thal slnb-on-grade floors be placecl ¡rcar to abclve exist jng gr.ade ancl crau'lspaces be kept shallow. Basentent levels rnay not be ßasible iu the lçl,er lyirg areas with a shallc¡w grouuchvatl:r lerrel. Potential groundrvater. inr¡:acts ou prol:rr.rsc:cl cicvelo¡rr*c't should be e'aluated äs paft of the site s¡:ecilic building stutly. FLOOR SL¿\BS Siab-orl-gratle construction should be t'easible for bearing on the natulal granular soils beiou' tlre t0¡:sÛil. Therc cor¡lcl be some post consiruction slab settlement at sites with c0tn¡:ressible silts ancl sancls. To reduce thcl effects of'some diff"el-ential nrovemcnt, fìc¡or siab.ç shoulclbe sepnt'aletl li'onl all bearing walJs arrcl coluurns rvith cxpausiçn.ioi¡ts. Flool' slab cotitrol.ioints shoLrld be usecl to reduce clanagc clue to slririlcage cr.ackilrg. A Jol.r No. i0fi 0920 GêiStech _ 10- tnhimum 4 inclr thick layer of ûee-draining g.ravel should undel.¡ie building slabs to break capillary waf.er rise ancl facilitate drainage, SURFACE DRAINAGE The gracling plan f'or the subdivision should conside¡ runuff tlrcugh the ploiect and at individr¡al sites. water shoulel not be allowed to pond next to buildings. To lirnit infiltration into the bearing sc¡ils nexf to builclings, exterior backfìll sliould be rvell cotnpacted and have a positive slope away fi'onr the building for a distance of at least l0 feet' Roof dr:rvnspouts and clrains should ctischarge well beyoncl the limits of all backfill and landscape irrigation should be restricted. PA\¡EMENT SECTION Tite near suffàce soils encountered in the exploratory pits below the topsoil typicallv sonsistcd of silty sa.tly gravel' The pavement section for the site access roads can be talçen as inches of asphait parrentent on B inches of class ó aggregate base course for preliminary design pul'poses' The subgtacle shoulcl be evaluated for pavernent srqrport at fhe time of construction. surrexcavation of trre topsoil and fine-grainecr soils and replaceurent with coarse grauular subbase rnaterial may be needecl to achieve a stable subgtadc in some areas. LIMITAT'IONS ?his study has lreen cr¡ncluctecl accorcling to generally accepted geoteclmical engi'eeri.g pdnciples ancl practices fur this a.ea flt this tinre. we marce no war.ranty either express or inrplied' The conclusions ancl recommenclations submitterl irr this report are hasecl upon the clata olrtained û'our the field recoruaissancg review of published geologic repofis, tlie exploratory pits locatecl as shorvn on Figure 5 ancl to the depths shown on Figure 6, tìre pt'oposed [ype of'corrstl'uction altd or¡l'experieiice iii thç area. our consulti¡g ser.vices clo not ilclucle deternining the pLesence, preventiori or possibility of rnolcl or ot¡er biological contamilrants IMOBC) de,velniring ur tlre fìrturc. If-thc ciie¡ii is co¡rce¡.ilcri aboui ìvÍûBu, then a professional in tlris special field of ¡rlactice shoulcl bc consulteci. our lindings Job No. l0ú 0920 cê{btech * t1- include interpolation and extlapolation of the subsurface conditions identified a'd the exploratory pits and variations in the subsurface conditions may not become evide¡t until excavatio¡l is perfbrrned. If collditions encountored cluring construction appear differ.ent fi'om thosc described in this report, rve should be r:otified so that le-evaluaticur of the recon:mendations may be rnacle. This reporl has been prepared fbr the exolusive use by our client for.plarrning and plelir:rinaly design purposos. We are irot lesponsible for teclurical interpretations 6y others of our inftrrmatioll. As the ploject evolves. we slrould prnvide co¡lti¡rued consultation, cotrduct additional evaluations and review and monitor the irnplernentation of our tecommenclations. Signi{icant design changes may require aclditional analysis or utodifications to tlle reconmendafions presented herein. we recomrnend on-site obseruaticur of excavations ancl foundation bearing strata ând testing of structural till bv a representative of the geoteclmical engirieer. Respect fully Sub¡nittecl. HEPÏYORTH - PAWLAK GEOTECHNICAL. INC Scott W. Richards, E.I -llcvicwyd iry Steven L. Pawlalc, P.E SW.Rlvad Jrlh No. l0ó t)920 eåEtectr -t2- REFERENCBS Dubiel, R' F', 1993, PreÍímínary Geologíc Ratlon Patentíal .lssessntent of coloraclo irtGeologic Ratlon Pc¡.tential Ep,A Region g, Colotudo, Àrîontana, North f)rtkoru,sauth Dakota, utah anrr. wyoming: u. s. Georogicar survcy open File Report g3_ 292_H. Frankel, A. D. ¿nd othem, ztaz, DocuntentatianJitr tke 2002 rlpdate of the NarionalSeìsmic Hazard Maps; U. S. Geological Sirvey Opcn Fiie Report AZ_42A. Kirklram, R' M' and Rogers, w' It., 1985, coloracla Earil,tc¡uake I)ata and lttterytrctarians1867 ro /98J: Colorado Geological Survey Bulletin 46. Ki'kharn. R- M. and widmaur, B. L., rgg7, Glorogy Map af the carbondare euadrangre,Gutfiekl coun\,, corararro: colo'ado Geologicaf survey open File 97-3. Kirklram, R. M. anct scott, R. 8., 2002, rnrro¿r,ction to Lctte cetnzoic EtaporiîeTectonísm atd vorcnnism in rilest-cetttrar, cororarlo, in Iürkhu,r, ir". M., scott. R. Job No. 10ri 092t1 cåFteclr ¡ f il-i¡:.l'.j¿.', i.i.,.i,i:i-;ÈII' ,!a¡¡g ¡ce[o¿'/.. -¡t'f.it-',rl,, ..tt.,l , ';,.l ¡:t.:1...t.t. ì"i"'i,','!'., li,...,':..¡i-'. ¡l-. .*..-&-. tt[!Hfll)-::Írì';¡ i4¡!'':,t'.u'g Qf = pilaful lnoluoQ'Ð 000e ='ul I :8lBrsû000ÊCI260 9ûr.Ltââlfi5rÐtcefoJd qcueu êue-l lCluor¡Bco-l slls| êJn6lJ I ì vt lnt6rmountaln SoiEmlc Bslt WY Lilamie Mtfl 1984 M 6.6 '' i: l¡04 tJ| s.1 ."t-j¡i:;Irf.li, Môåb Axial Basin Río Btan@ {Explosion)t973M57 llÊ Gl6nwood Spfings 0'r nruronf R¡llu G(E¡plæioû) project M 5.3 s. Grand : Síte Hoûbnol( - '- !19{4 / \vt (',)\_-/ cmnd Ji¡¡lct¡on Psgosa SFrin0$ Ulv Pa¡k fB?1 vt Waldenü Lovela¡dnN. ló vll 3.2 to Ìla¡0Fly M ñtaekgr tl Denvateðgle #sl" Rock,4sprn Rldocwâv19f¡ : :i:l Sleambôåt Sflrlngs.l 1882 M 6.2 E '' flFarl¡er j C¡maron !c60 M 5.5 1l \ouuo ,)¡ Sêllds Q8¡ *63Ð Cì6gtr ûsl{q: Ridgè GunÍson tlManlfos if â?T** {"t l-aks dly 1955 a Krgmnllngn. , (f,sfr! Vall ::lr L'I rl Côrte4 QSqdD!@¡0Ò Sp. Wals6nburt 13 ílÌf¡inidad a Pqshlo ú Explanatlon: \ Post.Glacial Faults:\.. Fault younger than abouf 15,000 y6âß. Largor Historic Earthquakesi Earthquakas witlr maximum int€ns¡ly gÌ€alsr thsn Vt or magnitr¡de o€aler than M 5.0 from 186¡ lôprqssnt. * NuctearExplosion: Large unds¡grôund nus,aãr exploÊion for nålural gãs reseryo¡r anhance$enl. H¡stor¡c Seismic Zones: Areas with hislor¡cal¡y high s€lsmic acl¡v¡ty. M Locaf, surface wave or ilody wave magnitudôVl Moclified Mercaili inlensity References: Widmarìn and Others (tS9g) U. S. Geologiual Survey Sarìhqrrnke t,:alâlogs 0 ã0 rni, Scale; 1 in. = 50 mi. 106 0920 Lane Ranch ProjectTÇI Faults and Historic Figure 2 Explanation* P*i*.15itÉEaqleCollapseCenter(960 sq. mi.)Shâllow EvapÕdte in EagleValley Fonnat¡on and EagleValley Evaporite,;-ìi',,*riil't:lioijpiiit\-/ãiiûPirldãt'rt3i{c'.raliãr rlrrj.¡iÊiíi:*cpriñ_e*.:'ll i¿t*.ilt')¡'lll3ðð*a-eirCarboCollapseCenter{460 sq. mi.}Ëã$;l¡10 MilesRefarences:Twêto and Others {fg?g}Kirkham ãnd Scott (2002)ßu¡t:.Èn;.i,;t:,i:Ìr..'//,".n1.ù;i{1"l,.iür hli!o',c)(or$ãIII!çoIıf)Qr\z1lffifr-Tão@o:cjc)_9[-oiooó¡m3<c,o, :räË.oo;s9o(aı'J-rt(ocıcd 0t7 at6Jl'i_;3, roÊôo- ü at3 Qt2 Fot\r 8r3:.', âf Man-Placed Fitl First Post Gtac-¡al Tqrrace $åcond Pgst.Glacial Teråce Ihird Pgst Glacial Tsrrgce Fourth lgst Gl¡cìal Terrace å¡iuv¡a¡ Fans Qrs-7 Qt1 Q12 lhW colluvium over Eaqle vallev Evaporig Çon¡,acli Approx¡mate brundåry of måp un¡ls. pl I çxplorâtgry pltsj Approx¡matê localions. Qt3 Q14 8f 0 Modiñed from t(irklìå¡ll Ënd Wdmâûn {1US/) 400 fr. Explañat¡on: ltt Scale: 1 in. = 400 ft. rlontour tnlerval: l0ft. and40 March 200e elnedale Outwash Terraoes: 5 - towesl, 6 - intermBdiate, 7- highest 106 0s20 <;&Fteclr Ranch DevelopmentTCI Lane Area Figure 4 APPROXIMATE SCALE 1":300' rillr r *l NURSERY PABCEL J a 4 I of, 1,,.' L,ti-'¡*_!-ì .Lr'PITl T ¡4)I) mü$r\f,lY cÊ¡r¡É r..+t¿':l tr',lx )¿ Ì:¡¡¡:j t_ \ t-_ L-t .,'¡ r'"',J ::'I icf 5\ ó3 loca[ion of ç previous pÊfcÖlation tost 10130/2006 L-J 'f': I I r a I rl-l I J ítl L I I J \ ---1 \i.-, -., I 10fì 0920 LOCATION OF TXPLORATCIHY PITS FIGURE 5 PIT 1 ËLFV.: PIT 2 ELEV -Ptï 3 ELEV.* PIT 4 ELEV.: 0 u ı0)tL -c o- 0)Õ WC=8.9 DD=96 -200_.-41 () 0) LL ç o_ c)o 5 5I I +¿=ts -200=2 l I r-a:66 -200=2 t0 l ll +¿=os '200=2 10 PIT S PIT 6 PIT 7 PIT 8 0 U 0) c)u_ o- a)ô 5 o(¡) LL I ! o- 0)o l I +,t=¡¡ -24û=2 I .r+=or - -200=3 't0 l 10 PIT 9 PIT 1Û PIT 11 PIT 12 0 0 0.) 0) LL c OJo 5 0)(l)lr- o-q)o Ä l -'t I l +4=54 l -t-4=68 -200=5 10 Nute:is shown on aot 10 106 0920 L LOGS OF EXPLORATOBY P S Figure 6 LËGEND: þ TOPSOIL; organic silty clay, soft, moist, dark brown. SAND (SM-SP ); silty, trace gravels, loose, slighfly moist, brown. GRAVEL AND COBBLES {GM-GP); with lroulders, clean sancl, dense to very dense, slighily moist, tightbrown to brown, subrorinded rock. 2" Diameter hand driven lirier sample Disturbed bullr sanrple. I I J a= Free waler in pit at lime of excavaling. NOTES: 1. Exploratory pits were excavated on January 1s, 200g with a kack excavator 2' Locaiions of exploratory pits were nreasured approximately by pacing frorr features shown on the s¡e planprovided. 3' Elevations of exploratory pits were not measured and the logs of exploralory pits are drawn to deplh. 4' The exÞloratory pit locations and elevations shoulcj be considered accurate only to flre degree impliecf by the metlrcd 5' The línes between *ui"lþll shown on theexploratory pit logs represent the approximate boundaries betweenmaterial types and lransilions may be graUual. 6' waler-level readings shown on the logs were made at the time ancl under the conditions indicated. Fluctualions inwater level rnåy occur with tirte. 7. Lalroratory ïesting Results: WC : Water Content (%) DD : Dry Density (pcf) +4 * Percenl retained on the No. 4 sieve -200 : Percenl passing No. 200 sieve 106 0920 LEGEND AND NOTES Figure 7 MoiçlureCr)literrL: g.ûl Dry Density - 96 $ample ol: Silty Sand From: p¡ 1 aIZl¿ Feet percetìt prf 0 ilil 7 ilil^3-( wetting lliIt ilt ill\t\t\i ilt ( ilt Iil lit ilt ilt ilil II llII II ¿ .ôo\ c .e .Ag, a)aç o LJ 4 tJ I ct 0.1 10 APPLIËD PHESSURL. ksf I.û 1Ofl 106 0920 SWELL-CONSOLIDATION TIST RESULTS f:igure B ÏIME READINGS STANDÁRD SËRIES7Hñ 15 MtN.gMlN.4 h/tN. 1 MfN.It10a #$ #30 #]6 #B #.4 CLËAR SOUARE OPENINGS 3Ì8', 314" 1 llt 3- 5'6" S" (tzıu) o-t-ztU() G LU o_ a z þ-<tUE t"-z Lrl(JÉ LlJ 0_ 10 20 3ô 40 100 9{t 8û m BO 5t) 40 l0 0 50 60 7A 80 s0 100 .æ5 üt or9 o3T .o74 t5g 1m _6m ì.rB 7.3S {.75 ù5 DIAMET€R OF PABTICIES IN MILLIÍüËTERS le.g lgû 375 tun ,nrtao â3 c{ Y rÕ sill GRAVEL 66 % LIQUID LIMIT SAMPLE OF; Sandy Gravel 7HR 15 MtN, .00r AaZ .005 .00S TIME RËADINGS U,S. STANDABD SERIES 6OMINJSMIN,4 MIN- 1 MIN.#100 #50 N|30 .019 .037 07.1 .150 .3C0 .60ü 1.18 2.36 DIAMETËH OF PARTICLES IN MILLIMETERS 32 "/" S¡LT AND CLAy a PLASTICITY INDEX O/O FROM: pn Z at B to I )¿ Feet CLEAR SOUARE OPENINGS 4^75 9.q2.51s.0 37.5 76 2 1p152 203 t4'tß #8 1t4 3/8' 3/4' 1',t12' 3' 5"6. 8" SAND CCB¡T-Eg ól/oot 24 46 0 100 90 80 7Az tt>(nuoÉ F50ñ C)u0ffi o- 30 otrJz F UJ ctr t--zylr u.Jo- 10 20 30 40 50 Ân 7A 80 90 100 t0 U ir"ÀY to $r¡ GRAVEL 15 9" LIQUID LIMIT SAMPLE OF:Gravel SAND B3 ?å SILT AND CLAY 2 PLASTICITY INDËX % FROM; Pit S at 5 to s Feet cÕåBrEs o/to /o 1 06 0920 GRADATION TEST RESULTS Figure g SIEVE ].I[4Ë READINGS r l1n r6 MrN-9M¡N.4 MIN, 1 MIN. ,w .cû5 .61 U,S. STANDARD /t t0{) #$0 #30 /t tE ÛLEAR SQUAHE OPENINGS 3/0" t/4, 1 \l?', 3" 5"0"#0 #4 Õ 10 l& 00 BO 10 69 50 {û 3ü t0 ¡t L$4v)Ø o_ t--z LUf'ì cc UI o_ 20Utu230 F- H40 t--250 IU tr60u¡o- 70 80 90 1C,Ð .Otg û17 .û?4 .150 .l@ (iS 1.t8 2.38 4.?5 9.5 ¡?5 190 31.5 18.2 152t2l 2ß3 DIAMETEF OF PARTICLËS IN MILLIMETEBS CIÂY 1¡f SLT GRAVEL 69 % I IQUID LIMIT % SAMPLE OF: g¿¡¡¡y g¡¿yp¡ 7 t-tR T|ME READ|NGS 15 MlN.60MlN19MlN.4 lvttN. l SAND 29 % SILI'AND CLAY 2 PLASTCIry INDFX % FflOM: pit 4 aI g Jza to g t_eel cú¡iÞiÊs CLEAR SOUARE OPENINûS ,ZI"203 24 c5 0 10 MlN. lÉ200 //100 DIAMETER OF PARTICLES INI h/ILLIMETERS U.S. STANDARD SERIËS t/54 /r30 #16 tÉB 44 3/8" 3!4" 1 1/2' 3" 5'6' a' 10Ò 10 90 BO {97Az U)60s t--50ñ t)n0ffi {)_ 3û tf LU230af-tlj /nE t--250 LU 860 tlJ0- 70 80 90 100 0 '0Û1 002 005 .0og .019 .o37 .ar| 150 300 600 1 18 2.36 4-75 9.q2.51'c),0 37.5 76.2 -_r|._|-.t_* __+_*_*|-___ -..,Á-.| ---J- cL4Y l0 s{ i cÖgå.ES GRAVEL 73 9ó LIQUID LIMIT SAMPLb OF Gravel SAND 25 ?å SILT AND CLAY 2 YO PL,ASTIÜI]-Y INDEX A/O FHOlvl; Pit 6 at 8,fp to g Feet 1 06 û920 GRADATION TEST RESULTS Figure i 0 TIME READINçS U.S, STANDARD SEÊIES¡ ttR 15 MtN.l,¡lN. 1 #200 #100 #50 #30 #16 1t8 tr4 .o02 ,005 009 .019 û37 0?4 .tS ,100 600 1.18 2.30 DIAMETER OF PAFTIÇLES IN MILTIMETERS CLEAR EQUABE OPENINGS 318' 3t4" 1 112', 3" 5'6"B' (nz6tn L l--ztllO cc LLI o_ .t0 ?0U uJ230 l-- Cj 40[L Lz5û tlJa't 860 UJL 70 80 s0 100 1tx) 80 7ô & û (0 ;0 æ t0 {.7Sæ¡95 t25 l9-0 37,$ tU' ,ort*203 --¿--F- -tr-f- _-t-_* clnY to s[r GRAVEL 61 O/O LIQUID LIMIT % SAMPLE OF: Sandy Gravel 7 HR TtMË FEÂDINGS 15 MlN. 60M¡NtgMtN.4 MtN. U.S. STANDARD SÊFIES {t50 #30 tþ16 *s cô5ttss CLËAR SOIJARE OPENINGS SAND 38 % SILTANDCLAY 3 PLASTICITY INDEX O/O FROM: pit I ai T lz to Blz Feet 24 0 I MtN. #200 #100 tÍ4 3/8" 314' 1 1lz' 3' 5"6" 8' 100 9C) 80 \)702(n(/) 60 à{ F50ñ() 00ffi o- 30 tllz F l.¡Jæ t--z IU() LU û_ 10 30 40 50 60 70 80 90 100 20 TO 0 .001 .004 .00s .çfJs .019 03? .o74 .t5g .300 .600 1.19 2.36 4.75 s.qe.sl9.tl 37.5 76.P f#2 203 DIAMETER OF PARTICLES IN MILLIMETERS ci¡lY TG 5U.r cGsBrÈ$ GRAVEL 54 % LIQUID LIMIT SAMPLE OF;Gravelwith Cobble SAND 41 ?'. SILT AND CLAY 5 % PLASTICITY INDEX % FROM: Pit 10 ar 6 to 7 Feet % 1 06 0920 GFADATION TEST RESULTS Figure 11 24 HR. 7l'ln 0 45 MlN. 15 MtN. TIME READINGS U.S. STANDARD SERIES #50 llSa #16 J¡B CLËAÊ SOUARE OPENINGS 60MlNrsMtN.4 MtN. 1 MtN. /1200 #100 tt| 318' 3/4' 1 112', s', 5"6" B'100 Bt) 70 60 50 40 30 2ñ 'I ¿ì !U r0 30 oL¡J 40z l- Lrtv. t".- 50z l¡J()E l,¡Jô_ 60 ozı U) o- l-.-.zf¡J(J& ÛJô- 70 BO 00 t00 0.001 .c02 005 _009 .019 .037 .Q-?4 150 .300 .600 1.18 2.36 c.75 nUrr.urno DIAMETER OF PARTICLES IN MILI.IMETERS 37.5 76.2 152 2(13 cuv it sill toaBEs GRAVEL 68 %SAND 31 "/"SILT AND CLAY 1 % LIQUID LIMIT O/O PLASICIry INDEX % SAMPI-E OF: Sandy Gravet FROM: Pit 12 at 7 b lo I FeeI -ffi----{- 1 06 0920 GRADATION TEST RESULTS Figure 12 H EPWORTH-PAWLAK GEOTECHNICAL, INC.TABLE 1SUMMARY OF LABORATORY TEST RESULTSJob No. 106 0920LIMTTSGR,AVEL(n/o)SANDf/o)PTRCsNTPASSiNG¡to. 2005¡EVEL!QUIDLIMTTPLASTICINDÊXUNCONFINETCOMPRESSTVESTRENGTH50iL oRBEDROCK TYPE41Silty sand66327Sandy gravel15832Gravelly sandSandy gravelSandy gravelSandy gravelSandy gravelSandy gravel2aLtJ5I2925364LJI69736t5468NATURALDRYDENSITY-{pcf)96Í{ATUR¡,1MOIS,TURECONTTNT(slo\8.97.'lDEPTHfftr71/zB-87¡5-SVzïVz -9\Vz-97 L/z - BVz6Vz -77t/z - B\trtrLPITI2J+oI101?